# Physics (PHY)

### Courses

**PHY 005 Concepts In Physics 4 Credits**

Fundamental discoveries and concepts of physics and their relevance to current issues and modern technology. For students not intending to major in science or engineering. Lectures, demonstrations, group activities, and laboratories using modern instrumentation and computers. This is a non-calculus course; no previous background in physics is assumed. Three class meetings and one laboratory period per week.

**Attribute/Distribution:** NS

**PHY 009 Introductory Physics I Completion 1-2 Credits**

For students who have Advanced Placement or transfer credit for 2 or 3 credits of PHY 11. The student will be scheduled for the appropriate part of PHY 11 to complete the missing material. The subject matter and credit hours will be determined by the Physics Department for each student. Students with AP Physics C credit for mechanics will take the thermodynamics and kinetic theory part of PHY 11 for one credit. Consent of department required.

**Prerequisites:** MATH 021 or MATH 031 or MATH 051 or MATH 076 or MATH 075

**Can be taken Concurrently:** MATH 021, MATH 031, MATH 051, MATH 076, MATH 075

**Attribute/Distribution:** NS

**PHY 010 General Physics I 4 Credits**

Statics, dynamics, conservation laws, thermodynamics, kinetic theory of gases, fluids. Primarily for architecture, biological science, earth and environmental science students.

**Prerequisites:** MATH 021 or MATH 031 or MATH 051 or MATH 076 or MATH 075

**Can be taken Concurrently:** MATH 021, MATH 031, MATH 051, MATH 076, MATH 075

**Attribute/Distribution:** NS

**PHY 011 Introductory Physics I 4 Credits**

Kinematics, frames of reference, laws of motion in Newtonian theory and in special relativity, conservation laws, as applied to the mechanics of mass points; temperature, heat and the laws of thermodynamics; kinetic theory of gases. Two lectures and two recitations per week.

**Prerequisites:** MATH 021 or MATH 031 or MATH 051 or MATH 076 or MATH 075

**Can be taken Concurrently:** MATH 021, MATH 031, MATH 051, MATH 076, MATH 075

**Attribute/Distribution:** NS

**PHY 012 Introductory Physics Laboratory I 1 Credit**

A laboratory course taken concurrently with PHY 10 or 11. Experiments in mechanics, heat, and DC electrical circuits. One three-hour laboratory period per week.

**Prerequisites:** PHY 010 or PHY 011

**Can be taken Concurrently:** PHY 010, PHY 011

**Attribute/Distribution:** NS

**PHY 013 General Physics II 3 Credits**

A continuation of PHY 10, primarily for biological science and earth and environmental science students. Electrostatics, electromagnetism, light, sound, atomic physics, nuclear physics, and radioactivity.

**Prerequisites:** (PHY 010 or PHY 011) and (MATH 021 or MATH 031 or MATH 051)

**Can be taken Concurrently:** MATH 021, MATH 031, MATH 051

**Attribute/Distribution:** NS

**PHY 019 Introductory Physics II Completion 1-2 Credits**

For students who have Advanced Placement or transfer credit for 2 or 3 credits of PHY 21. The student will be scheduled for the appropriate part of PHY 21 to complete the missing material. The subject matter and credit hours will be determined by the Physics Department for each student. Students with AP Physics C credit for electricity and magnetism will take the optics and modern physics part of PHY 21 for one credit. Consent of instructor required.

**Prerequisites:** (PHY 010 or PHY 011) and (MATH 022 or MATH 032 or MATH 052)

**Attribute/Distribution:** NS

**PHY 021 Introductory Physics II 4 Credits**

A continuation of PHY 11. Electrostatics and magnetostatics; DC circuits; Maxwell’s equations; waves; physical and geometrical optics; introduction to modern physics. Two lectures and two recitations per week. May not be taken by students who have previously completed PHY 023.

**Prerequisites:** (PHY 010 or PHY 011) and (MATH 022 or MATH 032 or MATH 052)

**Attribute/Distribution:** NS

**PHY 022 Introductory Physics Laboratory II 1 Credit**

A laboratory course to be taken concurrently with PHY 13 or 21. One three-hour laboratory period per week.

**Prerequisites:** (PHY 012) and (PHY 021 or PHY 013 or PHY 023)

**Can be taken Concurrently:** PHY 021, PHY 013, PHY 023

**Attribute/Distribution:** NS

**PHY 023 Introductory Physics II with Relativity 4 Credits**

A version of PHY 021 for students interested in majoring in physics or astrophysics, or students with a strong interest in related fields. It is well-suited for students with PHY 011 AP credit, or with PHY 021 AP credit who wish to replace that course with a more sophisticated version. The theory of electricity and magnetism is developed from a modern point of view, emphasizing the unity of electric and magnetic fields in the context of special relativity.

**Prerequisites:** (PHY 010 or PHY 011) and (MATH 022 or MATH 032 or MATH 052)

**Attribute/Distribution:** NS

**PHY 031 Introduction to Quantum Mechanics 3 Credits**

Experimental basis and historical development of quantum mechanics; the Schroedinger equation; one-dimensional problems; angular momentum and the hydrogen atom; many-electron systems; spectra; selected applications. Three lectures per week.

**Prerequisites:** (PHY 013 or PHY 021 or PHY 023) and MATH 205

**Can be taken Concurrently:** MATH 205

**Attribute/Distribution:** NS

**PHY 120 Physics of Medical Imaging: Ultrasound and Radiography 2 Credits**

An introduction and analysis of the physical principles and effects that underlay medical imaging techniques such as those using ultrasound, x-rays or other high-energy radiation. The course will serve as an introduction to intermediate quantum physics and electromagnetism concepts and discuss the effects and data collection techniques that ultimately allow to create an image that a physician can interpret for clinical purposes.

**Prerequisites:** PHY 021 or PHY 013

**Attribute/Distribution:** NS

**PHY 121 Physics of Medical Imaging: Ultrasound and Radiography, Supplement 1 Credit**

A supplementary course taken concurrently with PHY 120 [Physics of Medical Imaging: Ultrasound and Radiography]. Themes pertaining ultrasound and radiography will be covered more in depth, like for example: SPECT- and PET-scans, Beam forming and phased arrays, Dosimetry, Image formation (Radon transform and projection slice theorem).

**Prerequisites:** PHY 021 or PHY 013

**Corequisites: **PHY 120**Attribute/Distribution:** NS

**PHY 122 Physics of Medical Imaging: Magnetic Resonance 2 Credits**

An introduction and analysis of the physical principles and effects that underlay medical imaging techniques based on nuclear magnetic resonance, such as MRI (Magnetic Resonance Imaging). The course will serve as an introduction to intermediate/advanced quantum physics and electromagnetism concepts and discuss the effects and data collection techniques that ultimately allow to create an image that a physician can interpret for clinical purposes.

**Prerequisites:** PHY 021 or PHY 013

**Attribute/Distribution:** NS

**PHY 123 Physics of Medical Imaging: Magnetic Resonance, Supplement 1 Credit**

A supplementary course taken concurrently with PHY 122 [Physics of Medical Imaging: Magnetic Resonance]. Themes pertaining magnetic resonance will be covered more in depth, like for example: Fourier analysis in spectroscopy, Advanced techniques in magnetic resonance (fMRI, DTI, mMRI, …).

**Prerequisites:** PHY 021 or PHY 013

**Corequisites: **PHY 122**Attribute/Distribution:** NS

**PHY 212 Electricity and Magnetism I 3 Credits**

Electrostatics, magnetostatics, and electromagnetic induction.

**Prerequisites:** (PHY 021 or PHY 013 or PHY 023) and MATH 205

**Can be taken Concurrently:** MATH 205

**Attribute/Distribution:** NS

**PHY 213 Electricity and Magnetism II 3 Credits**

Maxwell’s equations, Poynting’s theorem, potentials, the wave equation, waves in vacuum and in materials, transmission and reflection at boundaries, guided waves, dispersion, electromagnetic field of moving charges, radiation, Lorentz invariance and other symmetries of Maxwell’s equations.

**Prerequisites:** PHY 212

**Attribute/Distribution:** NS

**PHY 215 Classical Mechanics I 4 Credits**

Kinematics and dynamics of point masses with various force laws; conservation laws; systems of particles; rotating coordinate systems; rigid body motions; topics from Lagrange’s and Hamilton’s formulations of mechanics; continuum mechanics.

**Prerequisites:** (PHY 021 or PHY 013 or PHY 023) and MATH 205

**Can be taken Concurrently:** MATH 205

**Attribute/Distribution:** NS

**PHY 220 Advanced Physics Laboratory I 3 Credits**

In a lab/lecture format, students learn basic elements needed for experimental, observational and computational work in physics, astrophysics and other technical areas. This course and its continuation as PHY 221 include topics such as electronics, optics, vacuum systems, data acquisition and analysis, curve fitting, scientific computing, interfacing of computers to experiments, and modern machining. These methods will be utilized in the examination of various physical systems; e.g., atomic and molecular spectroscopy, astronomical observations, condensed-matter phenomena, and others.

**Prerequisites:** (PHY 021 or PHY 023) and PHY 022 and CSE 002

**Attribute/Distribution:** NS

**PHY 221 Advanced Physics Laboratory II 2 Credits**

This is a continuation of PHY 220.

**Prerequisites:** (PHY 021 or PHY 023) and PHY 022 and PHY 220

**Attribute/Distribution:** NS

**PHY 272 Special Topics In Physics 1-4 Credits**

Selected topics not sufficiently covered in other courses.

**Repeat Status:** Course may be repeated.

**PHY 273 Research 2-3 Credits**

Participation in current research projects being carried out within the department.

**Repeat Status:** Course may be repeated.

**Attribute/Distribution:** NS

**PHY 300 Apprentice Teaching 1-4 Credits**

**PHY 332 (ASTR 332) High-Energy Astrophysics 3 Credits**

Observation and theory of X-ray and gamma-ray sources, quasars, pulsars, radio galaxies, neutron stars, black holes. Results from ultraviolet, X-ray and gamma-ray satellites. Generally offered in the spring of odd-numbered years.

**Prerequisites:** (PHY 021 or PHY 023) and (MATH 023 or MATH 033)

**Can be taken Concurrently:** MATH 023, MATH 033

**Attribute/Distribution:** NS

**PHY 340 Thermal Physics 3 Credits**

Basic principles of thermodynamics, kinetic theory, and statistical mechanics, with emphasis on applications to classical and quantum mechanical physical systems.

**Prerequisites:** (PHY 013 or PHY 021 or PHY 023) and (MATH 023 or MATH 032 or MATH 052)

**Attribute/Distribution:** NS

**PHY 342 (ASTR 342) Relativity and Cosmology 3 Credits**

Special and general relativity. Schwarzschild and Kerr black holes. Super massive stars. Relativistic theories of the origin and evolution of the universe. Generally offered in the spring of even-numbered years.

**Prerequisites:** (PHY 021 or PHY 023) and (MATH 023 or MATH 033)

**Can be taken Concurrently:** MATH 023, MATH 033

**Attribute/Distribution:** NS

**PHY 348 Plasma Physics 3 Credits**

Single particle behavior in electric and magnetic fields, plasmas as fluids, waves in plasmas, transport properties, kinetic theory of plasmas, controlled thermonuclear fusion devices. Must have senior standing or consent of the department chair.

**Prerequisites:** (PHY 021 or PHY 023) and MATH 205

**Attribute/Distribution:** NS

**PHY 352 Modern Optics 3 Credits**

Paraxial optics, wave and vectorial theory of light, coherence and interference, diffraction, crystal optics, and lasers.

**Prerequisites:** MATH 205 and (PHY 213 or ECE 203)

**Can be taken Concurrently:** PHY 213, ECE 203

**Attribute/Distribution:** NS

**PHY 355 Nonlinear Optics 3 Credits**

This course will introduce the fundamental principles of nonlinear optics. Topics include nonlinear interaction of optical radiation with matter, multi-photon interactions, electro-optics, self and cross phase modulation, and the nonlinear optical susceptibilities that describe all these effects in the mainframe of electromagnetic theory.

**Prerequisites:** PHY 031 and (PHY 213 or ECE 203)

**Can be taken Concurrently:** PHY 213, ECE 203

**Attribute/Distribution:** NS

**PHY 362 Atomic and Molecular Structure 3 Credits**

Review of quantum mechanical treatment of one-electron atoms, electron spin and fine structure, multi-electron atoms, Pauli principle, Zeeman and Stark effects, hyperfine structure, structure and spectra of simple molecules.

**Prerequisites:** PHY 031 or CHM 341

**Attribute/Distribution:** NS

**PHY 363 Physics of Solids 3 Credits**

Introduction to the theory of solids with particular reference to the physics of metals and semiconductors.

**Prerequisites:** (PHY 031 or MAT 316 or CHM 341) and PHY 340

**Can be taken Concurrently:** PHY 340

**Attribute/Distribution:** NS

**PHY 364 Nuclear and Elementary Particle Physics 3 Credits**

Models, properties, and classification of nuclei and elementary particles; nuclear and elementary particle reactions and decays; radiation and particle detectors; accelerators; applications.

**Prerequisites:** PHY 031 and MATH 205

**Attribute/Distribution:** NS

**PHY 365 Physics Of Fluids 3 Credits**

Concepts of fluid dynamics; continuum and molecular approaches; waves, shocks and nozzle flows; nature of turbulence; experimental methods of study.

**Prerequisites:** (PHY 212 or ECE 202) and (PHY 340 or ME 104)

**Can be taken Concurrently:** PHY 212, ECE 202, PHY 340, ME 104

**Attribute/Distribution:** NS

**PHY 366 Introduction to String Theory 3 Credits**

Introduction to string theory for upper-level undergraduates and beginning graduate students. Building on Einstein’s theory of general relativity and quantum theory, this course covers the fundamentals of string theory and the latest developments. Advanced topics such as D-branes, non-perturbative dualities and holography will also be covered. The course content is appropriate to students who have a working knowledge of quantum mechanics and special relativity, and have had some exposure to general relativity. Instructor permission required in lieu of Phy 362/369.

**Prerequisites:** PHY 031 and PHY 215 and (PHY 362 or PHY 369)

**Can be taken Concurrently:** PHY 369

**Attribute/Distribution:** NS

**PHY 369 Quantum Mechanics I 3 Credits**

Principles of quantum mechanics: Schroedinger, Heisenberg, and Dirac formulations. Applications to simple problems.

**Prerequisites:** PHY 031 and MATH 205 and PHY 215

**Can be taken Concurrently:** PHY 215

**Attribute/Distribution:** NS

**PHY 372 Special Topics In Physics 1-3 Credits**

Selected topics not sufficiently covered in other courses.

**Repeat Status:** Course may be repeated.

**Attribute/Distribution:** NS

**PHY 380 Introduction to Computational Physics 3 Credits**

Introduction to computational modeling of physical systems. Methods for systems of particles and fields with examples drawn from mechanics, chemical kinetics, planetary motion, chaotic dynamics, normal modes and waves, random walks, electrodynamics, biological, thermal and quantum systems. Converting models into well-documented code organized into manageable tasks. Extracting physical insight. Choice of numerical methods considering accuracy, speed, stability, and conservation laws.

**Prerequisites:** MATH 205

**Can be taken Concurrently:** MATH 205

**Attribute/Distribution:** NS

**PHY 382 Physics of Cells 3 Credits**

This course focuses on the physical principles underlying the organization of living cells, which spans several orders of magnitude in length and time. It provides an introduction to biological physics and relevant concepts of soft-matter physics. Topics include: self-organization of filaments and motor proteins of the cytoskeleton that determine cell shape and motion; the plasma membrane as a fluid responsive to environmental and biochemical signals; biological waves and pattern formation; mathematical modeling of biological systems; experimental methods and image analysis.

**Prerequisites:** (PHY 010 or PHY 011) and (PHY 013 or PHY 021)

**Attribute/Distribution:** NS

**PHY 389 Honors Project 1-8 Credits**

**Repeat Status:** Course may be repeated.

**PHY 420 Mechanics 3 Credits**

Includes the variational methods of classical mechanics, methods of Hamilton and Lagrange, canonical transformations, Hamilton-Jacobi Theory.

**PHY 421 Electricity & Magnetism I 3 Credits**

Electrostatics, magnetostatics, Maxwell’s equations, dynamics of charged particles, multipole fields.

**PHY 422 Electricity & Magnetism II 3 Credits**

Electrodynamics, electromagnetic radiation, physical optics, electrodynamics in anisotropic media. Special theory of relativity.

**Prerequisites:** PHY 421

**PHY 424 Quantum Mechanics II 3 Credits**

General principles of quantum theory; approximation methods; spectra; symmetry laws; theory of scattering.

**Prerequisites:** PHY 369

**PHY 425 Quantum Mechanics III 3 Credits**

A continuation of Phys 424. Relativistic quantum theory of the electron; theory of radiation.

**Prerequisites:** PHY 424

**PHY 428 Methods of Mathematical Physics I 3 Credits**

Analytical and numerical methods of solving the ordinary and partial differential equations that occur in physics and engineering. Includes treatments of complex variables, special functions, product solutions and integral transforms.

**PHY 429 Methods of Mathematical Physics II 3 Credits**

Continuation of Physics 428 to include the use of integral equations. Green's functions, group theory, and more on numerical methods.

**Prerequisites:** PHY 428

**PHY 431 Theory Of Solids 3 Credits**

Advanced topics in the theory of the electronic structure of solids. Many-electron theory. Theory of transport phenomena. Magnetic properties, optical properties. Superconductivity. Point imperfections.

**Prerequisites:** PHY 363 and PHY 424

**PHY 442 Statistical Mechanics 3 Credits**

General principles of statistical mechanics with application to thermodynamics and the equilibrium properties of matter.

**Prerequisites:** PHY 340 and PHY 369

**PHY 443 Nonequilibrium Statistical Mechanics 3 Credits**

A continuation of PHY 442. Applications of kinetic theory and statistical mechanics to nonequilibrium processes; nonequilibrium thermodynamics.

**Prerequisites:** PHY 442

**PHY 446 Atomic and Molecular Physics 3 Credits**

Advanced topics in the experimental and theoretical study of atomic and molecular structure. Topics include fine and hyperfine structure, Zeeman effect, interaction of light with matter, multi-electron atoms, molecular spectroscopy, spectral line broadening atom-atom and electron-atom collisions and modern experimental techniques.

**Prerequisites:** PHY 424

**PHY 455 Physics of Nonlinear Phenomena 3 Credits**

Basic concepts, theoretical methods of analysis and experimental development in nonlinear phenomena and chaos. Topics include nonlinear dynamics, including period-multiplying routes to chaos and strange attractors, fractal geometry and devil’s staircase. Examples of both dissipative and conservative systems will be drawn from fluid flows, plasmas, nonlinear optics, mechanics and waves in disordered media. Must have graduate standing in science or engineering, or consent of the chairman of the department.

**PHY 462 Theories of Elementary Particle Interactions 3 Credits**

Relativistic quantum theory with applications to the strong, electromagnetic and weak interactions of elementary particles.

**Prerequisites:** PHY 425

**PHY 472 Special Topics In Physics 1-3 Credits**

Selected topics not sufficiently covered in other courses.

**Repeat Status:** Course may be repeated.

**PHY 474 Seminar In Modern Physics 3 Credits**

Discussion of important advances in experimental physics.

**Repeat Status:** Course may be repeated.

**PHY 475 Seminar In Modern Physics 3 Credits**

Discussion of important advances in theoretical physics.

**Repeat Status:** Course may be repeated.

**PHY 482 Applied Optics 3 Credits**

Review of ray and wave optics with extension to inhomogenous media, polarized optical waves, crystal optics, beam optics in free space (Gaussian and other types of beams) and transmission through various optical elements, guided wave propagation in planar waveguides and fibers (modal analysis), incidence of chromatic and polarization mode dispersion, guided propagation of pulses, nonlinear effects in waveguides (solitons), periodic interactions in waveguides, acousto-optic and electro-optics.

**Prerequisites:** PHY 352

**PHY 490 Thesis 1-6 Credits**

**PHY 491 Research 3 Credits**

Research problems in experimental or theoretical physics.

**PHY 492 Research 3 Credits**

Continuation of PHY 491.

**Repeat Status:** Course may be repeated.

**PHY 499 Dissertation 1-15 Credits**

**Repeat Status:** Course may be repeated.