Emulsion Polymers Institute

111 Research Drive; 610-758-3602
H. Daniel Ou-Yang, Ph.D., director; Eric S. Daniels, Ph.D.

Originally established in 1975, the Emulsion Polymers Institute (EPI), provides a focus for graduate education and research in polymer colloids. Formation of the institute constituted formal recognition of an activity that had grown steadily since the late 1960s. Recently, the research thrust of the Institute has been broadened to include engineered particle. The new focus is rooted in fundamental scientific-based particle design, but guided by identified applications, while still maintaining a core competency in emulsion polymerization. The rapidly broadening applications for particle technologies in fields such as biotechnology (e.g., drug delivery, imaging, assembly of biocompatible scaffolds), nanotechnology (e.g., directed assembly of hierarchically ordered, functional structures), and others demand a concomitant diversification of the Institute to include a broader class of particles: polymeric, inorganic, hybrid, macroionic, metallic, as well as novel particulate composites designed at the nanoscale that will span all industrially-relevant scales.

The Institute has close ties with polymer and surface scientists in the Center for Polymer Science and Engineering (CPSE), Center for Advanced Materials and Nanotechnology (GAMN), and the departments of chemical engineering, chemistry, physics, and materials science and engineering. These ties reflect the interdisciplinary nature of research that is carried out in the Institute.

RESEARCH ACTIVITIES

Fundamental particle research in the institute spans particle synthesis, particle functionalization, and directed assembly of particles into higher order, functional structures. Continuing emulsion polymers research is a blend of theoretical and experimental problems related to the preparation, characterization, and applications of polymer latexes and are aimed at understanding the kinetics, mechanisms, morphology, and the colloidal, surface and bulk of the latexes. Applications of this fundamental technology, resulting from interdisciplinary research among the faculty associated with the institute, stand to align well with the strategic university and college-level nanotechnology, biotechnology, and energy/environment initiatives. Many projects within EPI achieve what has been the largest obstacle to commercialization of nanotechnology: scalable process design of nanoscale functioning materials. Materials fabricated by EPI researchers are designed to function either as nano- or microscale sensors, material modifiers, or to self-assemble into advanced materials that depend on the nanoscale features of its constituents. In addition, engineered particle technologies developed at EPI and other institutions have allowed for the validation of soft condensed matter theories at scales available to experimentalists. In the biotechnology area, research focuses on diagnostic and therapeutic technology to prepare particles that are biocompatible, biologically specific, easily detectable, and responsive to external controls. In the area of energy, work focuses on a variety of different unique particle technologies that may be used in applications such as catalysis and photocatalysts for the hydrogen economy, photovoltaics and solar cells, and membrane separations. In the environmental area, in addition to seeking novel particle technology for contaminant remediation in water, tailor-made colloidal particles with desirable surface properties, should provide model systems for fundamental insight into surface phenomena, relationships between bacterial adhesion to a surface and cellular bioenergetics, and bacterial transport through unsaturated porous media. Similarly, model porous media constructed by engineered particles could benefit research on the sources, fate and transport of bacteria in the environment, new water treatment technologies for developing countries, and alternative water disinfection technologies.

Research support for institute activities is obtained from industrial organizations through their membership in the Emulsion Polymers Industrial Liaison Program as well as government agencies. Hence some considerable effort is made to relate the research results to industrial needs. Consequently, graduates can find excellent opportunities for employment.

EDUCATIONAL OPPORTUNITIES

Graduate students in the Institute undertake dissertation research leading to the master of science or doctor of philosophy degree in existing science and engineering curricula or in the Center for Polymer Science and Engineering. Programs of study are tailored to meet the individual needs of each student and considerable flexibility is permitted in the selection of courses and a research topic. Educational and research opportunities exist for postdoctoral scholars and visiting scientists as well as resident graduate students. In addition, the Institute holds a short course each June, “Advances in Emulsion Polymerization and Latex Technology” that typically attracts a number of industrial participants as well as EPI students and is an excellent opportunity to interact with industrial scientists and engineers.

For more information, write to H. Daniel Ou-Yang, Emulsion Polymers Institute, Iacocca Hall, Lehigh University, 111 Research Drive, Bethlehem, PA 18015. Please visit our web site at http://www.lehigh.edu/semuls/epi/ for further details.