Chemistry

Chemistry is a versatile subject area and the pursuit of a career in chemistry can be a most intellectually satisfying experience. No other basic science touches and shapes as many aspects of modern society as does chemistry. The study of chemistry has provided solutions to complex problems and has improved the quality of all phases of human life from soft contact lenses and synthetic blood to longer-lasting paint and alternative fuels. A particular strength of this department is in surface and interface chemistry, which bridges many areas of modern science and technology.

Chemists at all levels of education find a market for their skills and knowledge in many employment areas. Chemists provide the technical backbone for the manufacturing industries (pharmaceuticals, plastics, paper, semiconductor electronics technology, and agriculture), for service industries (clinical and forensic laboratories, academe, environmental protection, and information science) and for governmental positions in regulatory agencies and in science policy analyses. Many chemists are employed in nontraditional areas, such as patent law, insurance underwriting, sales, product management, journalism, and even banking.

The alluring challenge of chemistry inspires many bachelor degree recipients to study for advanced degrees within the discipline of chemistry and in other areas, as well. Chemistry or biochemistry is the strongest preparation for graduate studies or for professional school in the health-related disciplines (medicine, pharmacology, and biochemistry), and for other science programs (materials science, polymers, biotechnology, environmental studies, and mineralogy).

The study of chemistry opens doors to satisfying careers, to a stimulating view of the world, and to a professional life in which one’s natural tendency to ask “Why?” can lead to personally rewarding endeavors. The undergraduate curriculum in chemistry contains many of the prerequisites for biology, earth and environmental sciences, material science, molecular biology, physics, and chemical engineering. This allows students to transfer credits among these majors through the sophomore year.

Chemistry students have the opportunity to design their undergraduate curricula for specialization in a variety of fields through the ChemFlex curriculum.

THE CHEMFLEX CURRICULUM

The Department of Chemistry offers degrees in both the College of Arts and Sciences and the College of Engineering and Applied Sciences. Students in the College of Arts and Sciences have three options: the B.S. in Chemistry, the B.A. in Chemistry, and the B.S. in Pharmaceutical Chemistry. In addition we offer an interdepartmental B.S. in Biochemistry in collaboration with the Department of Biological Sciences. For students in the College of Engineering and Applied Sciences we offer the B.S. in Chemistry.

In the College of Arts and Sciences, the traditional degree certified by the American Chemical Society is offered; the B.S. degree in the College of Engineering is the ACS certified degree and is identical in terms of degree program requirements. All B.S. programs have a Common Chemistry Core and similar collateral science requirements. These programs are pre-professional in nature, and students planning to attend graduate school in chemistry or an allied science should elect the B.S. program in the college to which they have been admitted. The traditional B.A. Program in the College of Arts and Sciences is not a pre-professional program and may be elected by students who do not plan to do graduate work in chemistry or allied sciences but who desire a stronger background in chemistry than is provided by a chemistry minor.

In addition to the traditional certified B.S degree and B.A. degree, the B.A. and B.S. Chemistry programs in the College of Arts and Sciences feature an alternative flexible curriculum, called ChemFlex, which enables a student to concentrate in a specific area. The concentrations possible for the B.S. are Physical/Analytical, Polymers, and Materials. The B.A. has two areas of concentration: Business and the Health Professions. All concentrations in ChemFlex share a Common Chemistry Core; all students complete the core and then follow one of two paths for collateral courses (Path A or Path B for math, physics, and programming) as outlined in the following lists. Students may transfer from a B.S. program to a B.A. program easily, but the reverse is more difficult. Students in a B.A. program who make the decision to attend graduate school in chemistry or allied sciences can achieve a minimum preparation for this transition by electing 307 Advanced Inorganic Chemistry.

Professors. Gregory S. Ferguson, PhD (Cornell University); Robert A. Flowers, II, PhD (Lehigh University); Kai Manfred Martin Landskron, PhD (University of Munich); Steven L. Regen, PhD (Massachusetts Institute of Technology); John D. Simon, PhD (Harvard University); David A. Vicic, PhD (University of Rochester)

Associate Professors. Kerney Jebrell Glover, PhD (University of California, San Diego); James E. Roberts, PhD (Northwestern University); Damien Thevenin, PhD (University of Delaware); Dmitri Vezhenov, PhD (Harvard University); Xiaojie Xu, PhD (University of British Columbia)

Assistant Professors. Mark S. Chen, PhD (Harvard University); Crystal K. Chu, PhD (California Institute of Technology); Oriana S. Fisher, PhD (Yale University); Lisa A. Fredin, PhD (Northwestern University); Nathan Wittenberg, PhD (The Pennsylvania State University); Elizabeth Young, PhD (Massachusetts Institute of Technology)

Professor of Practice. Andy W. Ho, PhD (Harvard University)

Emeriti. Jack A. Alhadeff, PhD (Oregon Health Science University); Natalie M. Foster, PhD (Lehigh University); Ned D. Heindel, PhD (University of Delaware); Kamil Klier, PhD (Academy of Sciences of the Czech Republic); John W. Larsen, PhD (Purdue University Calumet); Joseph R. Merkel, PhD (University of Maryland, College Park); Fortunato J. Micale, PhD (Lehigh University); Keith J. Schray, PhD (The Pennsylvania State University); Gary W. Simmons, PhD (University of Virginia); James E. Sturm, PhD (University of Notre Dame); Daniel Zeroka, PhD (University of Pennsylvania)

DEGREES IN THE COLLEGE OF ARTS AND SCIENCES

In the College of Arts and Sciences the Chemistry Department offers three degrees: a B.S. in Chemistry, a B.A. in Chemistry and a B.S. in Pharmaceutical Chemistry with an interdepartmental B.S. in Biochemistry degree with the Department of Biological Sciences. The ChemFlex Curriculum allows the flexibility for a student to develop a concentration in a specific area if he/she wishes to do so. The specific concentrations are noted in the following Table.

| Table: ChemFlex Curriculum Overview |
Specialization Requirements	
B.S. Chemistry (ACS)	1,2,3
B.S. Chemistry Analytical/Physical	1,2,3
B.S. Chemistry Polymers	1,2,3
B.S. Chemistry Materials	1,2,3
B.A. Chemistry	1, 2, 3 or 4
B.A. Chemistry Business	1, 2, 3 or 4
B.A. Chemistry Health Professions	1, 2, 3 or 4
B.S. Pharmaceutical Chemistry	1, 2, 3 or 4
B.S. Biochemistry (interdepartmental degree)	1,2,3 or 4

1 Common Chemistry Core
2 Courses required for specific concentration
3 Path A (see below)
4 Path B (see below)

With regard to the B.S. in Pharmaceutical Chemistry, the pharmaceutical industry is focused on exploring the biochemistry of disease and designing or finding drugs to cure or ameliorate disease. Biochemists, organic chemists, biologists, and chemical engineers collaborate to achieve this end. The majority of chemists hired today go into the pharmaceutical industry. The B.S. in Pharmaceutical Chemistry is a chemistry degree option which focuses on core...
chemistry, biochemistry, and molecular biology to prepare students for careers in this field. Since it is a highly interdisciplinary field it requires the breadth of knowledge offered by this degree program.

Freshman chemistry courses

Common Chemistry Core

Select one of the following: 8

CHM 040 & CHM 041 Honors General Chemistry I and Honors General Chemistry II

or

CHM 030 & CHM 031 Introduction to Chemical Principles and Chemical Equilibria in Aqueous Systems

CHM 110 & CHM 111 Organic Chemistry I and Organic Chemistry Laboratory I

CHM 112 & CHM 113 Organic Chemistry II and Organic Chemistry Laboratory II

CHM 332 Analytical Chemistry

Concentrations (see below) 3-8

CHM 307 Advanced Inorganic Chemistry

CHM 351 Professional Development Seminar 2

Total Credits 27-32

Collateral requirements

Path A

MATH 021 Calculus I 4

MATH 022 Calculus II 4

MATH 023 Calculus III 4

MATH 205 Linear Methods 3

PHY 011 Introductory Physics I 5

& PHY 012 and Introductory Physics Laboratory I

PHY 021 Introductory Physics II 5

& PHY 022 and Introductory Physics Laboratory II

ENGR 010 Applied Engineering Computer Methods 2

or CSE 002

Total Credits 27

Path B

MATH 051 Survey of Calculus I 4

MATH 052 Survey of Calculus II 3

MATH 043 Survey of Linear Algebra 3

PHY 010 General Physics I 5

& PHY 012 and Introductory Physics Laboratory I

PHY 013 General Physics II 4

& PHY 022 and Introductory Physics Laboratory II

Total Credits 19

SPECIALIZATIONS

B.S. Chemistry (ACS certified Degree)

Common Core

Select one of the following: 8

CHM 040 & CHM 041 Honors General Chemistry I and Honors General Chemistry II

CHM 030 & CHM 031 Introduction to Chemical Principles and Chemical Equilibria in Aqueous Systems

CHM 110 & CHM 111 Organic Chemistry I and Organic Chemistry Laboratory I

CHM 112 & CHM 113 Organic Chemistry II and Organic Chemistry Laboratory II

CHM 332 Analytical Chemistry

CHM 307 Advanced Inorganic Chemistry

CHM 351 Professional Development Seminar 2

Collateral Requirement - Path A

MATH 021 Calculus I 4

MATH 022 Calculus II 4

MATH 023 Calculus III 4

MATH 205 Linear Methods 3

PHY 011 Introductory Physics I 5

& PHY 012 and Introductory Physics Laboratory I

PHY 021 Introductory Physics II 5

& PHY 022 and Introductory Physics Laboratory II

Select one from the following: 2-4

ENGR 010 Applied Engineering Computer Methods

CSE 003 Introduction to Programming, Part A

CSE 007 Introduction to Programming

Specialization Courses

CHM 334 Advanced Chemistry Laboratory I 3

CHM 335 Advanced Chemistry Laboratory II 3

CHM 341 Molecular Structure, Bonding and Dynamics 3

CHM 342 Thermodynamics & Kinetics 3

CHM 343 Physical Chemistry Laboratory 2

CHM 371 Elements of Biochemistry I 3

CHM 375 Research Chemistry Laboratory 2

Advanced Chemistry Elective Requirement

Select one of the following: 3

CHM 305 Organometallic Chemistry

CHM 323 Chemical Biology

CHM 336 Clinical Chemistry

CHM 337 Crystallography and Diffraction

CHM 340 Solid-State Chemistry

CHM 350 Special Topics

CHM 356 Spectral Analysis

CHM 357 Organic Reaction Mechanisms

CHM 358 Advanced Organic Chemistry

CHM 362 Molecular Biophysics

CHM 365 Protein Separation & Biophysical Analysis

CHM 372 Elements of Biochemistry II

CHM 373 Lipids and Membranes

CHM 376 Advanced Research Chemistry Laboratory

CHM 377 Biochemistry Laboratory

CHM 388 Polymer Synthesis and Characterization Laboratory

CHM 391 Colloid and Surface Chemistry

CHE 392 Introduction to Polymer Science

CHM 393 Physical Polymer Science

CHM 394 Organic Polymer Science I

PHY 363 Physics of Solids

Total Credits 73-75

B.S. Chemistry- Analytical/Physical Concentration

Common Core

Select one of the following: 8

CHM 040 & CHM 041 Honors General Chemistry I and Honors General Chemistry II

CHM 030 & CHM 031 Introduction to Chemical Principles and Chemical Equilibria in Aqueous Systems

CHM 110 & CHM 111 Organic Chemistry I and Organic Chemistry Laboratory I

CHM 112 & CHM 113 Organic Chemistry II and Organic Chemistry Laboratory II

CHM 332 Analytical Chemistry

CHM 307 Advanced Inorganic Chemistry

CHM 335 Analytical Chemistry 3
B.S. Chemistry - Polymers Concentration

Common Core
Select one of the following:
- CHM 040 & CHM 041 Honors General Chemistry I and Honors General Chemistry II
- CHM 030 & CHM 031 Introduction to Chemical Principles and Chemical Equilibria in Aqueous Systems

Specialization Courses
- CHM 334 Advanced Chemistry Laboratory I 3
- CHM 335 Advanced Chemistry Laboratory II 3
- CHM 341 Molecular Structure, Bonding and Dynamics 3
- CHM 342 Thermodynamics & Kinetics 3
- CHM 343 Physical Chemistry Laboratory 2

B.S. Chemistry - Materials Concentration

Common Core
Select one of the following:
- CHM 040 & CHM 041 Honors General Chemistry I and Honors General Chemistry II
- CHM 030 & CHM 031 Introduction to Chemical Principles and Chemical Equilibria in Aqueous Systems

Collateral Requirement - Path A
- ENGR 010 Applied Engineering Computer Methods
- CSE 003 Introduction to Programming, Part A
- CSE 007 Introduction to Programming

Specialization Courses
- CHM 334 Advanced Chemistry Laboratory I 3
- CHM 335 Advanced Chemistry Laboratory II 3
- CHM 341 Molecular Structure, Bonding and Dynamics 3
- CHM 342 Thermodynamics & Kinetics 3
- CHM 343 Physical Chemistry Laboratory 2
- MAT 033 Engineering Materials and Processes 3

Total Credits
68-70

B. A. Chemistry

Common Core
Select one of the following:
- CHM 040 & CHM 041 Honors General Chemistry I and Honors General Chemistry II
- CHM 030 & CHM 031 Introduction to Chemical Principles and Chemical Equilibria in Aqueous Systems

Collateral Requirement - Path A
- MATH 021 Calculus I 4
- MATH 022 Calculus II 4
- MATH 023 Calculus III 4
- MATH 205 Linear Methods 3
- PHY 011 Introductory Physics I 5
- & PHY 012 and Introductory Physics Laboratory I 5
- PHY 021 Introductory Physics II 5
- & PHY 022 and Introductory Physics Laboratory II 5

Select one of the following:
- ENGR 010 Applied Engineering Computer Methods
- CSE 003 Introduction to Programming, Part A
- CSE 007 Introduction to Programming

Specialization Courses
- CHM 334 Advanced Chemistry Laboratory I 3
- CHM 335 Advanced Chemistry Laboratory II 3
- CHM 341 Molecular Structure, Bonding and Dynamics 3
- CHM 342 Thermodynamics & Kinetics 3
- CHM 343 Physical Chemistry Laboratory 2
- MAT 033 Engineering Materials and Processes 3

Total Credits
68-70

Path A
- MATH 021 Calculus I
- MATH 022 Calculus II
- MATH 023 Calculus III
- MATH 205 Linear Methods
- PHY 011 Introductory Physics I
- & PHY 012 and Introductory Physics Laboratory I

Collateral Requirement
Select Path A or Path B 19-29

Path B
- MATH 021 Calculus I
- MATH 022 Calculus II
- MATH 023 Calculus III
- MATH 205 Linear Methods
- PHY 011 Introductory Physics I
- & PHY 012 and Introductory Physics Laboratory I
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 021</td>
<td>Introductory Physics II and Introductory Physics Laboratory II</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>2-4</td>
<td></td>
</tr>
<tr>
<td>ENGR 010</td>
<td>Applied Engineering Computer Methods</td>
<td></td>
</tr>
<tr>
<td>CSE 003</td>
<td>Introduction to Programming, Part A</td>
<td></td>
</tr>
<tr>
<td>CSE 007</td>
<td>Introduction to Programming</td>
<td></td>
</tr>
<tr>
<td>Path B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 051</td>
<td>Survey of Calculus I</td>
<td>1</td>
</tr>
<tr>
<td>MATH 052</td>
<td>Survey of Calculus II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 043</td>
<td>Survey of Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>PHY 010</td>
<td>General Physics I</td>
<td></td>
</tr>
<tr>
<td>& PHY 012</td>
<td>and Introductory Physics Laboratory I</td>
<td></td>
</tr>
<tr>
<td>PHY 013</td>
<td>General Physics II</td>
<td></td>
</tr>
<tr>
<td>& PHY 022</td>
<td>and Introductory Physics Laboratory II</td>
<td></td>
</tr>
<tr>
<td>Specialization Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 343</td>
<td>Physical Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHM 341</td>
<td>Molecular Structure, Bonding and Dynamics</td>
<td></td>
</tr>
<tr>
<td>CHM 342</td>
<td>Thermodynamics & Kinetics</td>
<td></td>
</tr>
<tr>
<td>CHM 194</td>
<td>Physical Chemistry for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>Advanced CHM elective (300 Level)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 305</td>
<td>Organometallic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHM 323</td>
<td>Chemical Biology</td>
<td></td>
</tr>
<tr>
<td>CHM 334</td>
<td>Advanced Chemistry Laboratory I</td>
<td></td>
</tr>
<tr>
<td>CHM 335</td>
<td>Advanced Chemistry Laboratory II</td>
<td></td>
</tr>
<tr>
<td>CHM 336</td>
<td>Clinical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHM 337</td>
<td>Crystallography and Diffraction</td>
<td></td>
</tr>
<tr>
<td>CHM 340</td>
<td>Solid-State Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHM 350</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>CHM 356</td>
<td>Spectral Analysis</td>
<td></td>
</tr>
<tr>
<td>CHM 357</td>
<td>Organic Reaction Mechanisms</td>
<td></td>
</tr>
<tr>
<td>CHM 358</td>
<td>Advanced Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHM 362</td>
<td>Molecular Biophysics</td>
<td></td>
</tr>
<tr>
<td>CHM 365</td>
<td>Protein Separation & Biophysical Analysis</td>
<td></td>
</tr>
<tr>
<td>CHM 371</td>
<td>Elements of Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>CHM 372</td>
<td>Elements of Biochemistry II</td>
<td></td>
</tr>
<tr>
<td>CHM 373</td>
<td>Lipids and Membranes</td>
<td></td>
</tr>
<tr>
<td>CHM 375</td>
<td>Research Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHM 376</td>
<td>Advanced Research Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHM 377</td>
<td>Biochemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHM 388</td>
<td>Polymer Synthesis and Characterization Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHM 391</td>
<td>Colloid and Surface Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHE 392</td>
<td>Introduction to Polymer Science</td>
<td></td>
</tr>
<tr>
<td>CHM 393</td>
<td>Physical Polymer Science</td>
<td></td>
</tr>
<tr>
<td>CHM 394</td>
<td>Organic Polymer Science I</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>53-65</td>
</tr>
</tbody>
</table>

1. MATH 021 may substitute for MATH 051
2. MATH 022 may substitute for MATH 052
3. MATH 205 may substitute for MATH 043
4. PHY 011 may substitute for PHY 010
5. PHY 021 may substitute for PHY 013

B.A. Chemistry - Business Concentration

Common Core

Select one of the following: 8

- CHM 040 & CHM 041 Honors General Chemistry I and Honors General Chemistry II
- CHM 030 & CHM 031 Introduction to Chemical Principles and Chemical Equilibria in Aqueous Systems
- CHM 110 & CHM 111 Organic Chemistry I and Organic Chemistry Laboratory I
- CHM 112 & CHM 113 Organic Chemistry II and Organic Chemistry Laboratory II
- CHM 332 Analytical Chemistry
- CHM 307 Advanced Inorganic Chemistry
- CHM 351 Professional Development Seminar

Collateral Requirement

Select Path A or Path B 19-27

Path A

- MATH 021 Calculus I
- MATH 022 Calculus II
- MATH 023 Calculus III
- MATH 205 Linear Methods
- PHY 011 Introductory Physics I & PHY 012 and Introductory Physics Laboratory I
- PHY 021 Introductory Physics II & PHY 022 and Introductory Physics Laboratory II

Select one of the following: 2-4

- ENGR 010 Applied Engineering Computer Methods
- CSE 003 Introduction to Programming, Part A
- CSE 007 Introduction to Programming

Path B

- MATH 051 Survey of Calculus I 1
- MATH 052 Survey of Calculus II 2
- MATH 043 Survey of Linear Algebra 3
- PHY 010 General Physics I & PHY 012 and Introductory Physics Laboratory I
- PHY 013 General Physics II & PHY 022 and Introductory Physics Laboratory II

Select one of the following: 2-4

- ENGR 010 Applied Engineering Computer Methods
- CSE 003 Introduction to Programming, Part A
- CSE 007 Introduction to Programming

Specialization Courses

Select one of the following: 3

- CHM 343 Physical Chemistry Laboratory
- CHM 341 Molecular Structure, Bonding and Dynamics
- CHM 342 Thermodynamics & Kinetics
- CHM 194 Physical Chemistry for Biological Sciences

Advanced CHM elective (300 Level)

Select one of the following: 3

- CHM 305 Organometallic Chemistry
- CHM 323 Chemical Biology
- CHM 334 Advanced Chemistry Laboratory I
- CHM 335 Advanced Chemistry Laboratory II
- CHM 336 Clinical Chemistry
- CHM 337 Crystallography and Diffraction
- CHM 340 Solid-State Chemistry
- CHM 350 Special Topics
- CHM 356 Spectral Analysis
- CHM 357 Organic Reaction Mechanisms
- CHM 358 Advanced Organic Chemistry
- CHM 362 Molecular Biophysics
- CHM 365 Protein Separation & Biophysical Analysis
- CHM 371 Elements of Biochemistry I
- CHM 372 Elements of Biochemistry II
- CHM 373 Lipids and Membranes
- CHM 375 Research Chemistry Laboratory
- CHM 376 Advanced Research Chemistry Laboratory
- CHM 377 Biochemistry Laboratory
- CHM 388 Polymer Synthesis and Characterization Laboratory
- CHM 391 Colloid and Surface Chemistry
- CHE 392 Introduction to Polymer Science
- CHM 393 Physical Polymer Science
- CHM 394 Organic Polymer Science I

Total Credits: 53-65
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 365</td>
<td>Protein Separation & Biophysical Analysis</td>
</tr>
<tr>
<td>CHM 371</td>
<td>Elements of Biochemistry I</td>
</tr>
<tr>
<td>CHM 372</td>
<td>Elements of Biochemistry II</td>
</tr>
<tr>
<td>CHM 373</td>
<td>Lipids and Membranes</td>
</tr>
<tr>
<td>CHM 375</td>
<td>Research Chemistry Laboratory</td>
</tr>
<tr>
<td>CHM 376</td>
<td>Advanced Research Chemistry Laboratory</td>
</tr>
<tr>
<td>CHM 377</td>
<td>Biochemistry Laboratory</td>
</tr>
<tr>
<td>CHM 388</td>
<td>Polymer Synthesis and Characterization Laboratory</td>
</tr>
<tr>
<td>CHM 391</td>
<td>Colloid and Surface Chemistry</td>
</tr>
<tr>
<td>CHE 392</td>
<td>Introduction to Polymer Science</td>
</tr>
<tr>
<td>CHM 393</td>
<td>Physical Polymer Science</td>
</tr>
<tr>
<td>CHM 394</td>
<td>Organic Polymer Science I</td>
</tr>
<tr>
<td>ECO 001</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>BUS 125</td>
<td>Behavioral Skills Workshop</td>
</tr>
<tr>
<td>BUS 126</td>
<td>Developing, Producing, and Marketing Products and Services I</td>
</tr>
<tr>
<td>BUS 127</td>
<td>Developing, Producing, and Marketing Products and Services II</td>
</tr>
<tr>
<td>BUS 225</td>
<td>Information Analysis and Financial Decision Making</td>
</tr>
<tr>
<td>BUS 226</td>
<td>Information Analysis and Financial Decision Making II</td>
</tr>
<tr>
<td>BUS 326</td>
<td>Business Strategy</td>
</tr>
<tr>
<td>MATH 012</td>
<td>Basic Statistics</td>
</tr>
</tbody>
</table>

Total Credits: 75-85

1. MATH 021 may substitute for MATH 051
2. MATH 022 may substitute for MATH 052
3. MATH 205 may substitute for MATH 043
4. PHY 011 may substitute for PHY 010
5. PHY 021 may substitute for PHY 013
6. MATH 012 may be substituted by any statistics course

B.A. Chemistry - Health Professions Concentration

Common Core

Select one of the following: 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 040</td>
<td>Honors General Chemistry I</td>
</tr>
<tr>
<td>& CHM 041</td>
<td>and Honors General Chemistry II</td>
</tr>
<tr>
<td>CHM 030</td>
<td>Introduction to Chemical Principles and Chemical Equilibria in Aqueous Systems</td>
</tr>
<tr>
<td>& CHM 031</td>
<td></td>
</tr>
<tr>
<td>CHM 110</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>& CHM 111</td>
<td>and Organic Chemistry Laboratory I</td>
</tr>
<tr>
<td>CHM 112</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>& CHM 113</td>
<td>and Organic Chemistry Laboratory II</td>
</tr>
<tr>
<td>CHM 332</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>CHM 307</td>
<td>Advanced Inorganic Chemistry</td>
</tr>
<tr>
<td>CHM 351</td>
<td>Professional Development Seminar</td>
</tr>
</tbody>
</table>

Collateral Requirement

Select Path A or Path B 19-27

Path A

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 021</td>
<td>Calculus I</td>
</tr>
<tr>
<td>MATH 022</td>
<td>Calculus II</td>
</tr>
<tr>
<td>MATH 023</td>
<td>Calculus III</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Linear Methods</td>
</tr>
<tr>
<td>PHY 011</td>
<td>Introductory Physics I</td>
</tr>
<tr>
<td>& PHY 012</td>
<td>and Introductory Physics Laboratory I</td>
</tr>
<tr>
<td>PHY 021</td>
<td>Introductory Physics II</td>
</tr>
<tr>
<td>& PHY 022</td>
<td>and Introductory Physics Laboratory II</td>
</tr>
</tbody>
</table>

Select one of the following: 2-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 010</td>
<td>Applied Engineering Computer Methods</td>
</tr>
</tbody>
</table>

Total Credits: 65-75

1. MATH 021 may substitute for MATH 051
2. MATH 022 may substitute for MATH 052
3. MATH 205 may substitute for MATH 043
4. PHY 011 may substitute for PHY 010
5. PHY 021 may substitute for PHY 013
6. MATH 012 may be substituted by any statistics course

B.A. Chemistry - Health Professions Concentration

Common Core

Select one of the following: 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 040</td>
<td>Honors General Chemistry I</td>
</tr>
<tr>
<td>& CHM 041</td>
<td>and Honors General Chemistry II</td>
</tr>
</tbody>
</table>

Specialization Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 343</td>
<td>Physical Chemistry Laboratory</td>
</tr>
<tr>
<td>CHM 391</td>
<td>Colloid and Surface Chemistry</td>
</tr>
<tr>
<td>CHE 392</td>
<td>Introduction to Polymer Science</td>
</tr>
<tr>
<td>CHM 393</td>
<td>Physical Polymer Science</td>
</tr>
<tr>
<td>CHM 394</td>
<td>Organic Polymer Science I</td>
</tr>
<tr>
<td>BIOS 041</td>
<td>Biology Core I: Cellular and Molecular</td>
</tr>
<tr>
<td>& BIOS 042</td>
<td>and Biology Core I: Cellular and Molecular Lab</td>
</tr>
<tr>
<td>BIOS 115</td>
<td>Biology Core II: Genetics</td>
</tr>
<tr>
<td>& BIOS 116</td>
<td>and Biology Core II: Genetics Laboratory</td>
</tr>
<tr>
<td>MATH 012</td>
<td>Basic Statistics</td>
</tr>
</tbody>
</table>

Additional courses in BioS are recommended.

Total Credits: 65-75

1. MATH 021 may substitute for MATH 051
2. MATH 022 may substitute for MATH 052
3. MATH 205 may substitute for MATH 043
4. PHY 011 may substitute for PHY 010
5. PHY 021 may substitute for PHY 013
6. MATH 012 may be substituted by any statistics course

B.S. Pharmaceutical Chemistry

Common Core

Select one of the following: 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 040</td>
<td>Honors General Chemistry I</td>
</tr>
<tr>
<td>& CHM 041</td>
<td>and Honors General Chemistry II</td>
</tr>
</tbody>
</table>
Chemistry

CHM 030 & CHM 031 Introduction to Chemical Principles and Chemical Equilibria in Aqueous Systems

CHM 110 & CHM 111 Organic Chemistry I and Organic Chemistry Laboratory I

CHM 112 & CHM 113 Organic Chemistry II and Organic Chemistry Laboratory II

CHM 332 Analytical Chemistry

CHM 307 Advanced Inorganic Chemistry

CHM 351 Professional Development Seminar

Collateral Requirement
Select Path A or Path B 19-27

Path A
MATH 021 Calculus I
MATH 022 Calculus II
MATH 023 Calculus III
MATH 205 Linear Methods
PHY 011 Introductory Physics I & PHY 012 and Introductory Physics Laboratory I
PHY 021 Introductory Physics II & PHY 022 and Introductory Physics Laboratory II

Select one of the following: 2-4
ENGR 010 Applied Engineering Computer Methods
CSE 003 Introduction to Programming, Part A
CSE 007 Introduction to Programming

Path B
MATH 051 Survey of Calculus I
MATH 052 Survey of Calculus II
MATH 043 Survey of Linear Algebra
PHY 010 General Physics I & PHY 012 and Introductory Physics Laboratory I
PHY 013 General Physics II & PHY 022 and Introductory Physics Laboratory II

Specialization Courses
Select one of the following: 3
CHM 194 Physical Chemistry for Biological Sciences
CHM 341 Molecular Structure, Bonding and Dynamics
CHM 342 Thermodynamics & Kinetics

Science-based writing intensive course in consultation with advisor.
CHM 358 Advanced Organic Chemistry
CHM 371 Elements of Biochemistry I
CHM 372 Elements of Biochemistry II

Advanced CHM Elective (300 Level) 3
Select one of the following:
CHM 305 Organometallic Chemistry
CHM 334 Advanced Chemistry Laboratory I
CHM 335 Advanced Chemistry Laboratory II
CHM 356 Spectral Analysis
CHM 357 Organic Reaction Mechanisms
CHM 362 Molecular Biophysics
CHM 365 Protein Separation & Biophysical Analysis
CHM 336 Clinical Chemistry
CHM 337 Crystallography and Diffraction
CHM 350 Special Topics
CHM 373 Lipids and Membranes
CHM 375 Research Chemistry Laboratory

CHM 376 Advanced Research Chemistry Laboratory
CHM 377 Biochemistry Laboratory
CHM 388 Polymer Synthesis and Characterization Laboratory
CHM 391 Colloid and Surface Chemistry
CHE 392 Introduction to Polymer Science
CHM 393 Physical Polymer Science
CHM 394 Organic Polymer Science I
BIOS 041 Biology Core I: Cellular and Molecular Lab
& BIOS 042 Biology Core I: Cellular and Molecular Lab
BIOS 115 Biology Core II: Genetics
MATH 012 Basic Statistics

Total Credits 72-83

1 MATH 021 may substitute for MATH 051
2 MATH 022 may substitute for MATH 051
3 MATH 205 may substitute for MATH 043
4 PHY 011 may substitute for PHY 010
5 PHY 021 may substitute for PHY 013
6 MATH 012 may be substituted by any statistics course

MODEL ROSTER WHEN PATH A IS FOLLOWED
First Year CR
College Seminar 3-4
CHM 040 4
CHM 041 4
ENGL 001 3
ENGL 002 3
MATH 021 4
MATH 022 4
PHY 011 4
PHY 012 1

Second Year CR
CHM 110 & CHM 111 4
CHM 112 & CHM 113 4
PHY 021 & PHY 022 5
MATH 023 4
MATH 043 3
ENGR 010 or CSE 012 2
distribution requirements - free electives 9

Total Credits: 61-62

Note that some concentrations would insert courses such as MATH 012, BIOS 041/BIOS 042 (B.S. Pharmaceutical Chemistry), ECO 001 (B.A.-Business), etc.

Junior year/senior year (30-32 credits)
Student will need to meet with major advisor in order to formulate courses to be taken.

MODEL ROSTER WHEN PATH B IS FOLLOWED
First Year CR
College Seminar 3-4
CHM 040 4
CHM 041 4

Second Year CR
CHM 110 & CHM 111 4
CHM 112 & CHM 113 4
PHY 021 & PHY 022 5
MATH 023 4
MATH 043 3
ENGR 010 or CSE 012 2
distribution requirements - free electives 9

Total Credits: 31
ENGL 001 3
ENGL 002 3
MATH 051 4
MATH 052 3
PHY 010 4
PHY 012 1

29-30

Second Year

CHM 110 4
& CHM 111
CHM 112 4
& CHM 113
PHY 013 4
& PHY 022
MATH 043 3
distribution requirements - free electives 15

30

Total Credits: 59-60

Note that some concentrations would insert courses such as MATH 012, BIOS 041/BIOS 042 (B.S. Pharmaceutical Chemistry), ECO 001 (B.A.-Business), etc.

junior year/senior year (30-32 credits)
Student will need to meet with major advisor in order to formulate courses to be taken.

B.S. DEGREE IN CHEMISTRY, COLLEGE OF ENGINEERING & APPLIED SCIENCE

Summary of Requirements
College distribution 24
Physics, math, and computing 28
Chemistry 46
Unrestricted electives 25

Total Credits 123

Common Core
Select one of the following: 8
CHM 040 & CHM 041 Honors General Chemistry I and Honors General Chemistry II
CHM 030 & CHM 031 Introduction to Chemical Principles and Chemical Equilibria in Aqueous Systems
CHM 110 & CHM 111 Organic Chemistry I and Organic Chemistry Laboratory I
CHM 112 & CHM 113 Organic Chemistry II and Organic Chemistry Laboratory II
CHM 332 Analytical Chemistry 3
CHM 307 Advanced Inorganic Chemistry 3
CHM 351 Professional Development Seminar 2

Collateral Requirement - Path A
MATH 021 Calculus I 4
MATH 022 Calculus II 4
MATH 023 Calculus III 4
MATH 205 Linear Methods 3
PHY 011 Introductory Physics I 5
& PHY 012 Introductory Physics Laboratory I
PHY 021 Introductory Physics II 5
& PHY 022 Introductory Physics Laboratory II
Select one from the following: 2-4
ENGR 010 Applied Engineering Computer Methods
CSE 003 Introduction to Programming, Part A

CSE 007 Introduction to Programming

Specialization Courses
CHM 334 Advanced Chemistry Laboratory I 3
CHM 335 Advanced Chemistry Laboratory II 3
CHM 341 Molecular Structure, Bonding and Dynamics 3
CHM 342 Thermodynamics & Kinetics 3
CHM 343 Physical Chemistry Laboratory 2
CHM 371 Elements of Biochemistry I 3
CHM 375 Research Chemistry Laboratory 2

Advanced Chemistry Elective Requirement
Select one of the following: 3
CHM 305 Organometallic Chemistry
CHM 323 Chemical Biology
CHM 336 Clinical Chemistry
CHM 337 Crystallography and Diffraction
CHM 340 Solid-State Chemistry
CHM 350 Special Topics
CHM 356 Spectral Analysis
CHM 357 Organic Reaction Mechanisms
CHM 358 Advanced Organic Chemistry
CHM 362 Molecular Biophysics
CHM 365 Protein Separation & Biophysical Analysis

CHM 372 Elements of Biochemistry II
CHM 373 Lipids and Membranes
CHM 376 Advanced Research Chemistry Laboratory
CHM 377 Biochemistry Laboratory
CHM 388 Polymer Synthesis and Characterization Laboratory
CHM 391 Colloid and Surface Chemistry
CHE 392 Introduction to Polymer Science
CHM 393 Physical Polymer Science
CHM 394 Organic Polymer Science I
PHY 363 Physics of Solids

Total Credits 73-75

Model Roster

First Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 001</td>
<td>3</td>
<td>ENGL 002</td>
<td>3</td>
</tr>
<tr>
<td>MATH 021</td>
<td>4</td>
<td>MATH 022</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 010</td>
<td>2</td>
<td>ENGR 005</td>
<td>2</td>
</tr>
<tr>
<td>CHM 040</td>
<td></td>
<td>CHM 041</td>
<td></td>
</tr>
<tr>
<td>CHM 030</td>
<td></td>
<td>CHM 031</td>
<td></td>
</tr>
<tr>
<td>CHM 110</td>
<td></td>
<td>CHM 111</td>
<td></td>
</tr>
<tr>
<td>CHM 112</td>
<td></td>
<td>CHM 113</td>
<td></td>
</tr>
<tr>
<td>CHM 332</td>
<td></td>
<td>CHM 307</td>
<td></td>
</tr>
<tr>
<td>CHM 351</td>
<td></td>
<td>CHM 351</td>
<td></td>
</tr>
<tr>
<td>MATH 021</td>
<td>4</td>
<td>MATH 022</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 010</td>
<td>2</td>
<td>ENGR 005</td>
<td>2</td>
</tr>
<tr>
<td>CHM 040</td>
<td>3</td>
<td>CHM 041</td>
<td>3</td>
</tr>
<tr>
<td>CHM 030</td>
<td>3</td>
<td>CHM 031</td>
<td>3</td>
</tr>
<tr>
<td>CHM 110</td>
<td>4</td>
<td>CHM 111</td>
<td>4</td>
</tr>
<tr>
<td>CHM 112</td>
<td>4</td>
<td>CHM 113</td>
<td>4</td>
</tr>
<tr>
<td>CHM 332</td>
<td>3</td>
<td>CHM 307</td>
<td>3</td>
</tr>
<tr>
<td>CHM 351</td>
<td>2</td>
<td>CHM 351</td>
<td>2</td>
</tr>
<tr>
<td>MATH 021</td>
<td>4</td>
<td>MATH 022</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 010</td>
<td>2</td>
<td>ENGR 005</td>
<td>2</td>
</tr>
<tr>
<td>CHM 040</td>
<td>3</td>
<td>CHM 041</td>
<td>3</td>
</tr>
<tr>
<td>CHM 030</td>
<td>3</td>
<td>CHM 031</td>
<td>3</td>
</tr>
<tr>
<td>CHM 110</td>
<td>4</td>
<td>CHM 111</td>
<td>4</td>
</tr>
<tr>
<td>CHM 112</td>
<td>4</td>
<td>CHM 113</td>
<td>4</td>
</tr>
<tr>
<td>CHM 332</td>
<td>3</td>
<td>CHM 307</td>
<td>3</td>
</tr>
<tr>
<td>CHM 351</td>
<td>2</td>
<td>CHM 351</td>
<td>2</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 023</td>
<td>4</td>
<td>MATH 025</td>
<td>3</td>
</tr>
<tr>
<td>PHY 011</td>
<td>5</td>
<td>PHY 012</td>
<td>5</td>
</tr>
<tr>
<td>PHY 021</td>
<td>5</td>
<td>PHY 022</td>
<td>5</td>
</tr>
<tr>
<td>Distribution Requirement/Electives</td>
<td>17</td>
<td>PHY 021 & PHY 022</td>
<td>16</td>
</tr>
</tbody>
</table>
A minor in chemistry may be achieved by completing the following requirements:

CHM 031 Chemical Equilibria in Aqueous Systems 4

CHM 032 & CHM 334 6 & 6
CHM 342 3
CHM 351 2

Distribution Requirement/Electives 6

16

Total Credits: 123-124

ACCELERATED COMBINED B.S. - M.S. DEGREE OPTIONS IN CHEMISTRY

Individual degree paths can be designed to earn either the B.S. or both B.S. and M.S. degrees in Chemistry over a reduced or accelerated time frame. A discussion with the Chemistry faculty advisor during the first academic year is required to successfully complete any of the following options:

1. If you have more than 20 credits total of AP or transfer courses, it may be possible to earn the B.S. in three years and the M.S. in four. This path may require up to two summers of courses and/or research for most students.

2. If you have 30 or more AP or transfer credits, then it may be possible to be supported as a Teaching Assistant or Research Assistant during the fourth year as a graduate student to finish the M.S. degree, although such support is not guaranteed. The B.S. degree must be completed in three years, and up to two summers of courses and/or research may be required.

3. If you have limited or no AP or transfer credits, then two paths are available: A) A five-year path is possible with one summer of research work after the B.S. degree is finished in four years. B) A five-year path with support during the fifth year as a TA or RA may be possible if courses are excluded from the undergraduate degree (requiring course overloads), and one summer of research is generally required, but support is not guaranteed.

Accelerated B.S. degree options are also possible for some students. See the Chemistry faculty advisor to develop a customized program for your situation.

B.S. IN BIOCHEMISTRY

An interdepartmental B.S. in Biochemistry major is offered in the College of Arts and Sciences. Faculty in both Chemistry (Glover, Pires and Thévenin) and Biological Sciences (Lowe-Krentz, Iovine & Behe) provide integrated teaching and research opportunities.

MINOR IN CHEMISTRY

A minor in chemistry may be achieved by completing the following requirements:

CHM 031 Chemical Equilibria in Aqueous Systems 4

CHM 032 & CHM 334 6 & 6
CHM 342 3
CHM 351 2

Distribution Requirement/Electives 6

16

Total Credits 16

Necessary pre- or co-requisites for the above would be CHM 030 or CHM 040 and (MATH 021 or MATH 022) and (PHY 013 or PHY 021).

Students who wish to minor in chemistry but whose major program requires any of the above courses may achieve the minor with substitutions approved by the department chair.

GRADUATE PROGRAMS IN CHEMISTRY

The Department of Chemistry offers graduate studies leading to two advanced degrees. Doctor of philosophy degrees in Chemistry and in Polymer science and engineering may be obtained by study and research in any appropriate area of chemistry.

The following information on admissions, proficiency examinations and other policies applies to doctor of philosophy degrees in chemistry.

Admission to graduate study in chemistry assumes that a student has met, or is willing to meet through further study, minimum undergraduate requirements for a bachelor’s degree in chemistry. This would include (beyond two semesters of introductory chemistry) two semesters of organic chemistry, two semesters of physical chemistry, two semesters of analytical chemistry and one semester of inorganic chemistry. A promising student whose degree is in a field related to chemistry (e.g., biology, chemical engineering) may be admitted to graduate study in chemistry provided that any deficiencies in basic chemistry preparation are made up in the first year of graduate study, noting that some of the courses required for this may not carry graduate credit.

The Chemistry Department administers proficiency examinations at the advanced undergraduate level in analytical, biochemistry, inorganic, organic and physical chemistry to all regular graduate students at the time of matriculation. Each student is required to take three examinations. Information regarding material to be covered on these examinations will be sent to each student several months in advance of matriculation. It is expected that each student will prepare diligently for these tests. A Ph.D. candidate must show proficiency in three areas. An incoming student who fails one or more of the examinations will have two additional opportunities to demonstrate proficiency by re-taking the examination(s). The student is highly encouraged to meet with the Graduate Advising Director to determine the best course of action in light of the exam performance and projected area of study. The student may prepare for the examination(s) by self-study and/or enrolling in or auditing of appropriate courses, and is strongly encouraged to seek faculty advice on preparing to retake any exam.

Doctor of Philosophy Degree

Completion of a doctor of philosophy degree program normally requires a minimum of four years fulltime work after entrance with a bachelor’s degree. There are few specific credit requirements for the Ph.D.; however, approved degree programs generally have at least 24 hours of course work (including any applied toward a master’s degree) and 6 credits of research. Thus, the program consists of approximately one-third formal course work and two-thirds independent study and research. There is a two-credit seminar requirement (CHM 481). After Ph.D. proficiency has been established and the research advisor selected (this must be done by the end of the first year in residence), the major hurdle is the doctoral examination in the student’s area of concentration. This exam must be passed by the end of 2 1/2 years of residence. If this hurdle is surmounted, the remaining time is spent completing (and ultimately defending) the dissertation research under the guidance of the research advisor and the dissertation committee.

Course Work 1

CHM 421 Chemistry Research 6

1

CHM 110 & CHM 111 Organic Chemistry I and Organic Chemistry Laboratory I 4
CHM 332 Analytical Chemistry 3
CHM 342 Thermodynamics & Kinetics 3
CHM 343 Physical Chemistry Laboratory 2

Total Credits 16
CURRENT RESEARCH PROJECTS
Current research projects of interest are listed below.

Analytical Chemistry
NMR studies of organic solids and polymeric systems; biosensors; microfluidic platforms; electroanalytical chemistry.

Biochemistry
Membrane protein interactions; structural characterization of membrane proteins; production of membrane proteins; biophysical characterization of membrane proteins; biomaterials; multi-drug resistance; selective drug delivery; anti-cancer therapy; antibiotic drug discovery; cell surface remodeling; immunotherapy; activity based probes; fluorescence assay development.

Inorganic Chemistry
Synthesis, characterization, and reactivity of transition metal complexes and nano particles; coordination chemistry and molecular self-assembly at metal surfaces and semi-metal surfaces; electrochemistry at metal, semi-metal, and oxide-coated electrodes; synthesis and characterization of mesoporous solids from transition metal and main-group element precursors; applications of mesoporous solids for carbon sequestration; formation of multilayered thin films of inorganic and organic-inorganic hybrid materials; and application of lanthanide catalysis in organic synthesis.

Materials and Polymer Chemistry
Inorganic and organometallic chemistry in the synthesis of thin-film materials; synthesis at and dynamics of polymer interfaces; acoustic, optical, permeability, dielectric and mechanical behavior of thin films; laser light scattering and small-angle X-ray scattering studies on polymer solutions; polyelectrolytes and ion-containing solutions; nanofabrications in polymer systems; organic-inorganic hybrid solid state materials; synthesis and characterization of novel mesoporous materials; characterization of semiconducting material.

Organic Chemistry
Synthesis of medicinal agents and functional materials, correlation of molecular structure with pharmacological behavior; chemical models for biochemical reactions; chemistry of monolayers and organized molecule assemblages; drug carriers; synthetic ion conductors; Langmuir-Blodgett films; organometallic reaction mechanisms; organofluorine chemistry; protein folding and renaturation; molecular recognition; calorimetry; electrochemical studies of electron transfer reactions; synthetic methods development.

Physical Chemistry
Chemistry at surfaces and interfaces of polymers, electrodes, thin films, and biosensors using an array of surface sensitive methods; spectrosopic ellipsometry, scanning probe microscopy, angle resolved X-ray photo electron spectroscopy, electrochemistry, and quartz crystal microbalance; nanomechanics; intermolecular interactions in soft matter; single-molecule force spectroscopy; chemically sensitive imaging at nanoscale; development of optics-based tools for chemical analysis; femtosecond ultra-fast spectroscopy; investigation of charge transfer in energy materials; spectroscopy; transient absorption spectroscopy; time-resolved photoluminescence; proton-coupled electron transfer reactions.

Major Instrumentation
Chemistry research spans all areas: analytical, biochemistry, inorganic, organic, and physical. Special equipment available for graduate research in chemistry is as follows.

Research facilities
LC/MS/MS, GC-MS, MALDI-TOF-MS, HPLCs, GCs, ultracentrifuges, cold rooms, cell disintegrator, zone and disc electrophoresis apparatus, column chromatograph, autoclave, freezers (-80°C), rotary vaporator, Milli-Q water purification system, shaking heated water baths, spectropolarimeter with circular dichroism capability. Cell culture facilities – complete with optical microscopes having fluorescent and photographic capabilities. Electron optical facilities – transmission electron microscopy with x-ray fluorescence analysis capability, scanning electron microscope, and scanning electron microscope. Gas chromatographs. Liquid chromatographs – high performance for analytical and preparative work. NMR spectrometers – 400 MHz for both solids and solutions, and 500 MHz for solutions with an enhanced sensitivity multinuclear cyroprobe. Photochemistry equipment – lamps and filters for selected wavelength work. Polargraphs, chronopotentiometers, electrophoresis apparatus, electrochemical impedance, electrochemical scanning tunneling microscope, potentiostats, and rotating disk electrode. Portable data interface (8-channel 50 KHz), digital readout polarimeter, Vibrion elastoviscometers, differential refractometer.

Spectrometers
UV/visible double beam automated, fluorescence, UV/visible/near IR, Fourier transform IR with diffuse reflectance, photoacoustic and attenuated reflectance capability, and GC mass spectrometers. Surface analysis facilities – rotating anode high-sensitivity high-energy resolution ESCA with imaging capability (ESCA is equipped with automated angular data acquisition). Surface science facility – Low energy electron diffraction (LEED), photocorrelation spectroscopy for submicron particle analysis. Ellipsometer, contact angle capabilities, gas adsorption apparatus (BET), atomic force microscope, instructional scanning tunneling microscope, and light scanning. Microcalorimeter (flowing with UV and refractive index detectors), differential scanning calorimeter (DSC).

Courses

CHM 030 Introduction to Chemical Principles 4 Credits
An introduction to important topics in chemistry: atomic structure, properties of matter, chemical reactions, energy, structure and bonding in organic and inorganic compounds. The course features a lecture tightly linked to a three-hour studio experience that combines laboratory work and recitation.

Attribute/Distribution: NS

CHM 031 Chemical Equilibria in Aqueous Systems 4 Credits
An introduction to: intermolecular forces and their influence on physical properties and phase behavior; chemical kinetics; thermodynamics in chemical systems; and electrochemistry. The course includes a detailed treatment of equilibria in aqueous solutions, including acid-base, precipitation-solubility, metal-ligand, oxidation-reduction and distribution equilibria. The laboratory work emphasizes the qualitative and quantitative analysis of equilibria in aqueous media. Three lectures and one three-hour laboratory period.

Prerequisites: (CHM 030 or CHM 040) and (MATH 021 or MATH 031 or MATH 051 or MATH 076)

Attribute/Distribution: NS

CHM 040 Honors General Chemistry I 4 Credits
A first-semester course in chemistry for students planning to major in chemistry, biochemistry, chemical engineering, materials science, or other chemistry-related fields. Chemical and physical properties, structures, bonding concepts, and quantitative analysis. Laboratory includes synthesis, separation and analysis procedures; computer applications to chemistry. Three lectures and one three-hour laboratory period.

Attribute/Distribution: NS

CHM 041 Honors General Chemistry II 4 Credits
Continuation of Chemistry 40. Three lectures and one three-hour laboratory period.

Prerequisites: (CHM 040 or CHM 030) and (MATH 021 or MATH 031 or MATH 051)

Attribute/Distribution: NS

CHM 110 Organic Chemistry I 3 Credits
Systematic survey of the typical compounds of carbon, their classification, and general relations; study of synthetic reactions.

Prerequisites: CHM 031 or CHM 041

Attribute/Distribution: NS
CHM 110 Organic Chemistry Laboratory I 1 Credit
Preparation of pure organic compounds. Modern techniques of characterization.
Prerequisites: CHM 110
Can be taken Concurrently: CHM 110
Attribute/Distribution: NS

CHM 112 Organic Chemistry II 3 Credits
Continuation of CHM 110.
Prerequisites: CHM 110
Attribute/Distribution: NS

CHM 113 Organic Chemistry Laboratory II 1 Credit
Continuation of Organic Chemistry Laboratory I.
Prerequisites: CHM 111 and CHM 112
Can be taken Concurrently: CHM 112
Attribute/Distribution: NS

CHM 177 Introduction to Research 1-2 Credits
For advanced freshmen and sophomore chemistry majors. Consent of department chair required.
Repeat Status: Course may be repeated.
Attribute/Distribution: NS

CHM 194 Physical Chemistry for Biological Sciences 3 Credits
The principles and applications of physical chemical concepts to systems of biological interest, including the gas laws, thermodynamics of metabolic reactions, coligative properties, electrolytically. The equilibria, reaction kinetics and enzyme catalysis, and transport of macromolecules and viruses.
Prerequisites: (CHM 030 or CHM 040) and (CHM 031 or CHM 041)
Attribute/Distribution: NS

CHM 250 Special Topics 1-4 Credits
Selected topics in chemistry. Consent of instructor required.
Repeat Status: Course may be repeated.

CHM 300 Apprentice Teaching 3 Credits
Consent of instructor required.
Repeat Status: Course may be repeated.

CHM 305 Organometallic Chemistry 3 Credits
The chemistry of compounds containing bonds between carbon and the transition metals. Topics include the synthesis, characterization, and electronic structure of organometallic compounds, and mechanistic studies of their reactions. A description of common ligands and their bonding is covered, as well as applications of organometallic chemistry in organic synthesis and catalysis.
Prerequisites: CHM 112
Attribute/Distribution: NS

CHM 307 Advanced Inorganic Chemistry 3 Credits
Introduction to transition metal complexes; theories of bonding; kinetics and mechanisms of transition metal complex reactions; selected aspects of organometallic chemistry; bioinorganic chemistry.
Prerequisites: CHM 031 or CHM 041
Attribute/Distribution: NS

CHM 323 Chemical Biology 3 Credits
Chemical biology is a discipline at the interface of organic and biological chemistry. It entails the design, synthesis, and evaluation of probes, substrates, and materials for the study of biological systems using chemical principles. Chemical biology can also take inspiration from biological systems for the design and synthesis of novel molecules and materials for non-biological applications. The class is designed to be an introduction to chemical biology for upper-level undergraduates and graduate students.
Prerequisites: CHM 112 and (BIOS 371 or CHM 371)

CHM 332 Analytical Chemistry 3 Credits
Theory and practice of chemical analysis. Principles of quantitative separations and determinations; theory and application of selected optical and electrical instruments in analytical chemistry; interpretation of numerical data, design of experiments, solute distribution in separation methods.
Prerequisites: (CHM 031 or CHM 041) and CHM 110
Attribute/Distribution: NS

CHM 334 Advanced Chemistry Laboratory I 3 Credits
Exploration of synthetic methods and analysis techniques for inorganic and organic compounds. Determination of product structures and quantitative analysis using modern chemical analysis techniques, including NMR, GC-MS, GC, HPLC, FT-IR, and Electrochemistry.
Prerequisites: (CHM 110 and CHM 111 and CHM 112 and CHM 113 and CHM 332)
Can be taken Concurrently: CHM 332

CHM 335 Advanced Chemistry Laboratory II 3 Credits
Continuation of CHM 334.
Prerequisites: (CHM 334)

CHM 336 Clinical Chemistry 3 Credits
Applications of analytical chemistry to clinical problems. Discussion of methods in common use and the biochemical/medical significance of the results.
Prerequisites: CHM 332 or CHM 112
Attribute/Distribution: NS

CHM 337 Crystallography and Diffraction 3 Credits
Introduction to crystal symmetry, point groups, and space groups. Emphasis on materials characterization by Xray diffraction and electron diffraction. Specific topics include crystallographic notation, stereographic projections, orientation of single crystals, textures, phase identification, quantitative analysis, stress measurement, electron diffraction, ring and spot patterns, convergent beam electron diffraction (CBED), and space group determination. Applications in mineralogy, metallurgy, ceramics, microelectronics, polymers, and catalysts. Lectures and laboratory work. Prerequisites may be waived if student has senior standing in chemistry.
Prerequisites: MAT 203 or EES 131
Attribute/Distribution: NS

CHM 340 Solid-State Chemistry 3 Credits
This solid state chemistry course will introduce students into symmetry of extended solids, X-ray crystallography of solids, crystal structures, band theory, electronic and ionic conductivity in solids, defects in solids, silicate chemistry and nonporous solids.
Prerequisites: CHM 031 or CHM 041
Attribute/Distribution: NS

CHM 341 Molecular Structure, Bonding and Dynamics 3 Credits
Nature of chemical bonding as related to structure and properties of molecules and extended systems. Quantum chemistry of atoms and molecules applied to chemical transformations and spectroscopic transitions. Symmetry analysis and selection rules. Interpretation of electronic, vibrational and rotational spectra.
Prerequisites: (MATH 023 or MATH 033) and (PHY 021 or PHY 013) and (CHM 031 or CHM 041)
Attribute/Distribution: NS

CHM 342 Thermodynamics & Kinetics 3 Credits
Development of the principles of classical and statistical thermodynamics and their application to chemical systems. In classical thermodynamics emphasis will be on systems in which composition is of major concern: solutions, chemical and phase equilibria. Kinetic theory of gases; chemical reaction kinetics; chemical reaction dynamics.
Prerequisites: (CHM 031 or CHM 041) and (PHY 013 or PHY 021) and (MATH 022 or MATH 032 or MATH 052)

CHM 343 Physical Chemistry Laboratory 2 Credits
Laboratory studies that illustrate and extend the various fields of study in experimental physical chemistry as discussed in CHM 341 and CHM 342. This course fulfills the junior year writing intensive course requirement in CAS.
Prerequisites: CHM 194 or CHE 210 or CHM 342
Attribute/Distribution: NS
CHM 346 Photochemistry of Consequence 3 Credits
Photochemistry involves using photons (light from the sun) to drive critical chemical reactions and is attractive because of its application to solar energy. Fundamental processes in photochemistry will be covered. Topics will include: energy transfer, electron transfer, proton-coupled electron transfer processes and their applications to biological systems.
Prerequisites: CHM 031 or CHM 041
Attribute/Distribution: NS

CHM 350 Special Topics 1-3 Credits
Selected advanced topics in chemistry.
Repeat Status: Course may be repeated.
Attribute/Distribution: NS

CHM 351 Professional Development Seminar 2 Credits
Topics for the developing professional chemist include lab safety, using a laboratory notebook, searching the scientific literature, reading and writing scientific papers, ethics, and developing both a poster and an oral presentation. Students will present their own poster and a short talk on the same subject. Each student will write his/her own resume and participate in a mock interview session.
Attribute/Distribution: NS

CHM 356 Spectral Analysis 3 Credits
Use of data from nuclear magnetic resonance, infrared, ultraviolet, and mass spectrometric techniques for the determination of structure of organic compounds. Emphasis on information from one- and two-dimensional proton and carbon NMR, and a mechanistic interpretation of data from mass spectrometry.
Prerequisites: CHM 112

CHM 357 Organic Reaction Mechanisms 3 Credits
Intensive in class problem solving that involves the formulation of reasonable reaction mechanisms for complex multistep pathways, i.e. organic transformations that proceed via highly energetic intermediates such as carboxylations, carbanions, free radicals, carbones, and nitrenes.
Prerequisites: CHM 112

CHM 358 Advanced Organic Chemistry 3 Credits
Reaction mechanism types and supporting physical-chemical data. Classes of mechanisms include elimination, substitution, rearrangement, oxidation-reduction, enolate alkylations, and others. Must have completed one year of organic chemistry.
Prerequisites: CHM 112
Attribute/Distribution: NS

CHM 362 Molecular Biophysics 3 Credits
This course focuses on the physical tools that exist to obtain information about biological macromolecules, with an emphasis on spectroscopic and imaging techniques (e.g., circular dichroism, fluorescence spectroscopy, FRET, BRET, calorimetry, analytical ultracentrifugation, X-ray crystallography, electron microscopy, dynamic light scattering, surface plasmon resonance). Lectures and discussion of research articles are used to illustrate the use of the different tools and methods.
Prerequisites: BIOS 371 or CHM 371
Attribute/Distribution: NS

CHM 365 Protein Separation & Biophysical Analysis 3 Credits
Laboratory studies of techniques and principles used for the isolation, characterization, and biophysical analysis of proteins.
Prerequisites: BIOS 371 or CHM 371
Attribute/Distribution: NS

CHM 371 (BIOS 371) Elements of Biochemistry I 3 Credits
A general study of carbohydrates, proteins, lipids, nucleic acids and other biological substances and their importance in life processes. Protein and enzyme chemistry are emphasized. Must have completed one year of organic chemistry.
Prerequisites: CHM 112
Attribute/Distribution: NS

CHM 372 (BIOS 372) Elements of Biochemistry II 3 Credits
Dynamic aspects of biochemistry: enzyme reactions including energetics, kinetics and mechanisms, metabolism of carbohydrates, lipids, proteins and nucleic acids, photosynthesis, electron transport mechanisms, coupled reactions, phosphorylations, and the synthesis of biological macromolecules.
Prerequisites: BIOS 473 or ((BIOS 371 or CHM 371) and BIOS 041)
Attribute/Distribution: NS

CHM 373 Lipids and Membranes 3 Credits
The study of lipids and lipid membranes similar to those found in mammalian cells including methods of synthesis, surface activity, bilayer and micellar structures, lipid mixing, fluidity, permeability and membrane stability. Special emphasis will be given to the current evidence for and against the lipid raft hypothesis.
Prerequisites: BIOS 372 or CHM 372
Attribute/Distribution: NS

CHM 375 Research Chemistry Laboratory 1-3 Credits
An introduction to independent study or laboratory investigation under faculty guidance. Consent of instructor required.
Repeat Status: Course may be repeated.
Attribute/Distribution: NS

CHM 376 Advanced Research Chemistry Laboratory 1-6 Credits
Advanced independent study or laboratory investigation under faculty guidance. Consent of faculty research supervisor.
Repeat Status: Course may be repeated.
Attribute/Distribution: NS

CHM 377 (BIOS 377) Biochemistry Laboratory 3 Credits
Laboratory studies of the properties of chemicals of biological origin and the influence of chemical and physical factors on these properties. Laboratory techniques used for the isolation and identification of biochemicals.
Prerequisites: (BIOS 371 or CHM 371) and (BIOS 031 or BIOS 041)
Can be taken Concurrently: BIOS 371, CHM 371
Attribute/Distribution: NS

CHM 388 (CHE 388, MAT 388) Polymer Synthesis and Characterization Laboratory 3 Credits
Techniques include: free radical and condensation polymerization; molecular weight distribution by gel chromatography; crystallinity and order by differential scanning calorimetry; pyrolysis and gas chromatography; dynamic mechanical and dielectric behavior; morphology and microscopy; surface properties.
Prerequisites: (CHEM 341 or CHE 210 or CHM 342) and CHM 110
Attribute/Distribution: NS

CHM 389 Honors Project 1-6 Credits
Repeat Status: Course may be repeated.

CHM 391 (CHE 391) Colloid and Surface Chemistry 3 Credits
Physical chemistry of everyday phenomena. Intermolecular forces and electrostatic phenomena at interfaces, boundary tensions and films at interfaces, mass and charge transport in colloidal suspensions, electrostatic and London forces in disperse systems, gas adsorption and heterogeneous catalysis.
Prerequisites: CHM 342
Attribute/Distribution: NS

CHM 393 (CHE 393, MAT 393) Physical Polymer Science 3 Credits
Structural and physical aspects of polymers (organic, inorganic, natural). Molecular and atomic basis for polymer properties and behavior. Characteristics of glassy, crystalline, and paracrystal-line states (including viscoelastic and relaxation behavior) for single- and multi-component systems. Thermodynamics and kinetics of transition phenomena. Structure, morphology, and behavior. Available to graduate and undergraduate students (with senior level standing) in CHE, CHEM or MAT.
CHM 394 (CHE 394) Organic Polymer Science 3 Credits
Organic chemistry of synthetic high polymers. Polymer nomenclature, properties, and applications. Functionality and reactivity of monomers and polymers. Mechanism and kinetics of step-growth and chain-growth polymerization in homogenous and heterogenous media. Brief description of emulsion polymerization, ionic polymerization, and copolymerization. Must have completed one year of physical chemistry and one year of organic chemistry.
Prerequisites: CHM 112 or CHM 342 or CHE 210
Attribute/Distribution: NS

CHM 400 First Year Graduate Student Seminar 0 Credits
First year graduate student seminar course and introduction to research. Topics include: research opportunities in the department, introduction to instrumentation facilities, ethics in science, use of library facilities, effective teaching methods. Course may be repeated.
Repeat Status: Course may be repeated.

CHM 405 Organometallic Chemistry 3 Credits
The chemistry of compounds containing bonds between carbon and the transition metals. Topics include the synthesis, characterization, and electronic structure of organometallic compounds, and mechanistic studies of their reactions. A description of common ligands and their bonding is covered, as well as applications of organometallic chemistry in organic synthesis and catalysis.

CHM 407 Advanced Inorganic Chemistry 3 Credits
Introduction to transition metal complexes; theories of bonding; kinetics and mechanisms of transition metal complex reactions; selected aspects of organometallic chemistry; bio-inorganic chemistry. Must have completed one semester of physical chemistry and have CAS graduate student status.

CHM 421 Chemistry Research 1-6 Credits
Research in one of the following fields of chemistry: analytical, inorganic, organic, physical, polymer, biochemistry. A maximum of 6 credits total may be earned. Consent of the instructor is required.
Repeat Status: Course may be repeated.

CHM 423 Chemical Biology 3 Credits
Chemical biology is a discipline at the interface of organic and biological chemistry. It entails the design, synthesis, and evaluation of probes, substrates, and materials for the study of biological systems using chemical principles. Chemical biology can also take inspiration from biological systems for the design and synthesis of novel molecules and materials for non-biological applications. The class is designed to be an introduction to chemical biology for upper-level undergraduates and graduate students.

CHM 424 Medicinal and Pharmaceutical Chemistry 3 Credits
Principles of drug design, structure-reactivity relationships in antibacterial, antimalarial, antifungal and psychoactive drugs; synthesis and modes of action of pharmacologically active agents of radioactive pharmaceuticals.
Prerequisites: CHM 358

CHM 425 Pharmaceutical Regulatory Affairs 1: Drug Discovery to Approval 3 Credits
Coverage includes the stages of the drug approval process and how these relate to the laboratory activities that provide the scientific basis of the New Drug Application (NDA). Lectures treat drug discovery, chemical process development of the active pharmaceutical ingredient (API), and pharmaceutical process development of the drug product. Regulatory issues in screening and testing, the management of the preclinical trials, and the management of clinical trials will be covered.
Attribute/Distribution: NS

CHM 426 Statistical Thermodynamics 3 Credits
Principles and applications of statistical mechanics to chemical problems. A study of the techniques for evaluating the properties of matter in bulk from the properties of molecules and their interactions.

CHM 427 Thermodynamics & Kinetics 3 Credits
Development of the principles of classical and statistical thermodynamics and their applications to chemical systems. In classical thermodynamics, emphasis will be on systems in which composition is of major concern: solutions, chemical and phase equilibria. Kinetic theory of gases; chemical reaction kinetics. Must have CAS graduate student status. This course cannot be taken by students who have already taken CHM 342.

CHM 428 Pharmaceutical Regulatory Affairs-II-Biomarkers for Pharmaceuticals and Diagnostics: Laws & Regulation 3 Credits
For decades diagnostic products and technologies have been used to monitor or detect a variety of indicators for disease and infection. Each year, over 4,000 devices are reviewed by the U.S. Food & Drug Administration for safety and efficacy before being allowed to enter the marketplace. Today, regulations have set in motion the use of Biomarkers as a key element for new pharmaceutical development. Biomarkers in a way similar to Diagnostic markers will become a method to demonstrate safety and efficacy of experimental drugs during human trials. This course will review the history of Biomarker and medical device law and regulations in the United States. It will also define the current scientific requirements for Biomarkers to meet the new regulations. Case studies will be used to educate participants on the use of Biomarkers in pharmaceutical development as well as Design Controls, Quality System Regulations, Manufacturing Requirements for diagnostic testing technologies. Specific examples include Nucleic Acid Diagnostics, Cardiovascular Stents, Drug Delivery, Cancer Diagnostics, and Consumer Self-Testing. Students will also use knowledge gained to prepare class presentations to address current issues within the field. This course is one of four courses required to fulfill the requirements for a Certificate in Regulatory Affairs. It may be applied as a 400-level credit in the Masters of Chemistry degree program.
Attribute/Distribution: NS

CHM 430 Chemical and Biochemical Separations 3 Credits
Theory and applications of equilibrium and nonequilibrium separation techniques at both the analytical and preparative levels. Solvent and buffer extractions, chromatographic separations (e.g., thin layer, partition, gas liquid, gel filtration, ion exchange, affinity, supercritical fluid), electrophoretic separations (e.g., gel, capillary, isoelectric focusing, immuno-electrophoresis), centrifugal separations (e.g., differential, velocity sedimentation, density gradient) and other separation methods (e.g., dialysis, ultrafiltration). Examples will focus on biological applications.

CHM 431 Contemporary Topics in Analytical Chemistry 1 Credit
Discussion of the current literature in analytical chemistry, including spectroscopy, separations, and electrochemistry. Students find current papers and lead discussions.
Repeat Status: Course may be repeated.

CHM 432 Chemometrics 3 Credits
Mathematical and statistical methods for experimental design, calibration, signal resolution, and instrument control and optimization.

CHM 434 Advanced Topics in Spectroscopy 3 Credits
Fundamentals of interactions of electromagnetic radiation with matter: electronic, vibrational, scattering based spectroscopies, instrumentation and signal processing. Advanced applications to the analysis of molecular structure and chemical processes including surface analysis, time-resolved spectroscopies, and ultrasensitive spectroscopic techniques.

CHM 436 Special Topics in Analytical Chemistry 1-3 Credits
Topics of contemporary interest in analytical chemistry.
Repeat Status: Course may be repeated.

CHM 437 (BIOS 437) Pathophysiological Chemistry 3 Credits
Biochemical basis of human diseases involving abnormal metabolism of proteins, nucleic acids, carbohydrates, and lipids. Emphasis on the correlation of the clinical presentation of disease processes seen as physiological dysfunctions with clinical laboratory methods. Lectures, student presentations, and clinical case discussions. Must have completed one semester of biochemistry.
CHM 438 Analytical Chemistry 3 Credits
Theory and practice of chemical analysis. Principles of quantitative separations and determinations; theory and application of selected optical and electrical instruments in analytical chemistry; interpretation of numerical data; design of experiments; solute distribution in separation methods. Must have CAS graduate student status.

CHM 442 Pharmaceutical Regulatory Affairs 3: Analytical Methods, Validation, and Data Manipulation 3 Credits
A review of the FDA guidance and common industry practices. A presentation of the more user-friendly and higher accuracy analytical methods, which are supplanting traditional analyses. Lectures will cover the eight fundamentals of analytical method validation: accuracy, linearity, precision, limits of detection, selectivity, limits of quantification, specificity, and ruggedness of method. In addition, the student will be taught what to do when the results do not meet the Acceptance Criteria. Lectures also cover evaluation of data streams for supporting conclusions.

CHM 443 (MAT 443) Solid-State Chemistry 3 Credits
This solid state chemistry course will introduce students into symmetry of extended solids, X-ray crystallography of solids, crystal structures, band theory, electronic and ionic conductivity in solids, defects in solids, silicate chemistry and nonporous solids.

CHM 444 Molecular Structure, Bonding and Dynamics 3 Credits
Nature of chemical bonding as related to structure and properties of molecules and extended systems. Quantum chemistry of atoms and molecules applied to chemical transformations and spectroscopic transitions. Symmetry analysis and selections rules. Interpretation of electronic, vibrational and rotational spectra. Must have CAS graduate student status.

CHM 446 Photochemistry of Consequence 3 Credits
Photochemistry involves using photons (light from the sun) to drive critical chemical reactions and is attractive because of its application to solar energy. Fundamental processes in photochemistry will be covered. Topics will include: energy transfer, electron transfer, proton-coupled electron transfer processes and their applications to biological systems.

CHM 452 Advanced Organic Chemistry 3 Credits
Reaction mechanism types and supporting physical chemical data. Classes of mechanisms include elimination, substitution, rearrangement, oxidation reduction, enolate alkylations, and others. Must have completed one year of organic chemistry and have CAS graduate student status.

CHM 453 Heterocyclic Compounds 3 Credits
An intensive study of the syntheses, reactions and properties of heteroaromatic compounds including derivatives of thiophene, pyrrole, furan, indole, pyridine, quinoline, the azoles and the diazines all considered from the viewpoint of modern theories of structure and reaction mechanisms.
Prerequisites: CHM 358 or CHM 452

CHM 455 Organic Reactions 3 Credits
Prerequisites: or CHM 452, CHM 358 or CHM 452

CHM 456 Spectral Analysis 3 Credits
Use of data from nuclear magnetic resonance, infrared, ultraviolet, and mass spectrometric techniques for the determination of structure of organic compounds. Emphasis on information from one- and two-dimensional proton and carbon NMR, and a mechanistic interpretation of data from mass spectrometry.

CHM 457 Organic Reaction Mechanisms 3 Credits
Intensive in class problem solving that involves the formulation of reasonable reaction mechanisms for complex multistep pathways, i.e. organic transformations that proceed via highly energetic intermediates such as carbocations, carbanions, free radicals, carbenes, and nitrenes.

CHM 458 Topics in Organic Chemistry 1-3 Credits
An intensive study of limited areas in organic chemistry.
Repeat Status: Course may be repeated.

CHM 462 3 Credits
This course focuses on the physical tools that exist to obtain information about biological macromolecules, with an emphasis on spectroscopic and imaging techniques (e.g., circular dichroism, fluorescence spectroscopy, FRET, BRET, calorimetry, analytical ultracentrifugation, X-ray crystallography, electron microscopy, dynamic light scattering, surface plasmon resonance). Lectures and discussion of research articles are used to illustrate the use of the different tools and methods.

CHM 463 Pharmaceutical Regulatory Affairs 4: Commercial Production, Validation, and Process Qualification 3 Credits
This course covers the scientific principles and the registry requirements for polymeric implants, controlled-release drug depot units, pumps, point-of-care testing kits, contrast media for MRI, x-ray, and ultrasound and all FDA controlled products not defined as therapeutic pharmaceuticals.

CHM 465 Protein Separation & Biophysical Analysis 3 Credits
Laboratory studies of techniques and principles used for the isolation, characterization, and biophysical analysis of proteins.
Attribute/Distribution: NS

CHM 467 (BIOS 467) Principles of Nucleic Acid Structure 3 Credits
An examination of the principles underlying nucleic acid structure including stereochemistry, electrostatics, hydration, torsional constraints, sequence specific effects, and interaction with nuclear proteins. Special emphasis will be placed on DNA structure. Must have completed one year of biochemistry and one year of physical chemistry or have consent of the department chair.

CHM 468 (BIOS 468) Principles of Protein Structure 3 Credits
An examination of the principles underlying protein structure including stereochemistry, preferred tertiary structures, protein homology, excluded volume effects, time dependent structural fluctuations, and prediction of protein structure from sequence information. Must have completed one year of biochemistry and one year of physical chemistry or consent of department required.

CHM 469 (BIOS 469) Biochemical Problem Solving II 1 Credit
Applications of material covered in BIOS/CHM 371 including techniques used in research.

CHM 470 (BIOS 470) Biochemical Problem Solving II 1 Credit
Applications of concepts covered in BIOS/CHM 372 including techniques used in research.

CHM 472 (BIOS 472) Lipids and Membranes 3 Credits
The study of lipids and lipid membranes similar to those found in mammalian cells including methods of synthesis, surface activity, bilayer and micellar structures, lipid mixing, fluidity, permeability and membrane stability. Special emphasis will be given to the current evidence for and against the lipid raft hypothesis.
Prerequisites: BIOS 372 or CHM 372

CHM 473 (BIOS 473) Principles of Biochemistry I 3 Credits
Study of proteins, carbohydrates, lipids, nucleic acids and other biological substances. Protein and enzyme chemistry are emphasized. Must have completed one year each of general chemistry and organic chemistry.

CHM 474 Pharmaceutical Regulatory Affairs 5: Pharmaceuticals 3 Credits
This course covers the development of therapeutic products subsequent to the initial discovery of the active pharmaceutical ingredient (API) through to the final dosage form. Both small molecule drugs and biotechnological pharmaceuticals will be included. Issues of API formulation, choice of excipients, control of release, target specificity, mode of delivery, drug-drug interactions, and product stabilization will be addressed with special reference to the regulatory issues involved at that stage of drug development. This course builds upon a foundation in organic, analytical, and biochemistry.
CHM 475 Advanced Topics in Chemistry 1 Credit
Audiovisual courses in topics such as acid-base theory, NMR, chromatography, electroanalytical chemistry and mass-spectroscopy interpretation; course material obtained from the American Chemical Society.
Repeat Status: Course may be repeated.

CHM 477 (BIOS 477) Topics In Biochemistry 1-3 Credits
Selected areas of biochemistry, such as mechanisms of enzyme action, new developments in the chemistry of lipids, nucleic acids, carbohydrates and proteins. Must have completed one semester of biochemistry.
Repeat Status: Course may be repeated.

CHM 479 (BIOS 479) Biochemical Techniques 3 Credits
Laboratory studies of the techniques and principles involved in the isolation, identification, and biochemical transformation of carbohydrates, lipids, nucleic acids and proteins.

CHM 480 (BIOS 480) Advanced Biochemical Preparations 1-3 Credits
An advanced laboratory course in the preparation, isolation, purification, and identification of biochemically produced materials. Emphasis is placed on materials and procedures of current interest in biochemistry. Must have completed two semesters of biochemistry.

CHM 481 Chemistry Seminar 1 Credit
Student presentations on current research topics in the student’s discipline but not on subjects close to the thesis. A one-hour presentation and attendance at other presentations are required for credit.
Repeat Status: Course may be repeated.

CHM 482 (CHE 482, MAT 482) Mechanical Behaviors of Polymers 3 Credits
Mechanical behavior of polymers. Characterization of experimentally observed viscoelastic response of polymeric solids with the aid of mechanical model analogs. Topics include time-temperature superposition, experimental characterization of large deformation and fracture processes, polymer adhesion, and the effects of fillers, plasticizer, moisture, and aging on mechanical behavior.

CHM 483 (CHE 483, MAT 483) Emulsion Polymers 3 Credits
Fundamental concepts important in manufacture, characterization, and application of polymer latexes. Topics include colloidal stability, polymerization mechanisms and kinetics, reactor design, characterization of particle surfaces, latex rheology, morphology considerations, polymerization with functional groups, film formation and various application problems.

CHM 485 (CHE 485, MAT 485) Polymer Blends 3 Credits
Synthesis, morphology, and mechanical behavior of polymer blends. Polymer/polymer miscibility and thermodynamics of mixing of polymer/solvent and polymer/polymer blends. Prediction of miscibility using various theoretical models and methods that can be used to help enhance miscibility (H bonding etc.). Methods to enhance the compatibility of polymer/polymer blends (e.g., block copolymers, ternary addition, IPNs), etc.). Types of polymer blends. Must have completed any introductory polymer course or equivalent.

CHM 487 Topics in Colloid and Surface Chemistry 3 Credits
Applications of colloid chemistry; special topics in surface chemistry. Lectures and seminar.
Repeat Status: Course may be repeated.

CHM 488 Advanced Topics in Physical Chemistry 1-3 Credits
Advanced topics in physical chemistry, such as photochemistry and molecular beam dynamics, Fourier transform spectroscopy, kinetics of rapid reactions, theory of magnetic resonance, liquids and solutions.
Repeat Status: Course may be repeated.

CHM 489 Organic Polymer Science II 3 Credits
Continuation of CHM 394. Theory and mechanism of ionic vinyl addition chain growth polymerization. Chain copolymerization by radical and ionic mechanism. Mechanism of ring-opening polymerization, stereochemistry of polymerization including ionic, coordination, and Ziegler-Natta mechanisms. Reactions of polymers, including crosslinking, reaction of functional groups, graft and block copolymers, and polymer carriers and supports.

CHM 490 Thesis 1-6 Credits
Repeat Status: Course may be repeated.

CHM 492 (CHE 492, MAT 492) Topics in Polymer Science 3 Credits
Intensive study of topics selected from areas of current research interest such as morphology and mechanical behavior, thermodynamics and kinetics of crystallization, new analytical techniques, molecular weight distribution, non-Newtonian flow behavior, second-order transition phenomena, novel polymer structures. Credit above three hours is granted only when different material is covered.

CHM 494 Quantum Chemistry 3 Credits
Principles and applications of quantum mechanics to chemical problems. Applications to chemical bonding, molecular structure, reactivity and spectroscopy.

CHM 499 Dissertation 1-15 Credits
Repeat Status: Course may be repeated.