Computer Science & Engineering (CSE)

Courses

CSE 003 Introduction to Programming, Part A 2 Credits
Covers the same material as the first half of CSE 007. Designed to allow more class and laboratory time for each topic. No prior programming experience needed. Cannot be taken by students who have completed CSE 007.

CSE 004 Introduction to Programming, Part B 2 Credits
Covers the same material as the second half of CSE 007. Designed to allow more class and laboratory time for each topic. Cannot be taken by students who have completed CSE 007.

Prerequisites: CSE 003

CSE 007 Introduction to Programming 0,4 Credits
Prerequisites: CSE 003

CSE 012 Survey of Computer Science 3 Credits
Fundamental concepts of computing and "computational thinking": problem analysis, abstraction, algorithms, digital representation of information, and networks. Applications of computing and communication that have changed the world. Impact of computing on society. Concepts of software development using a scripting language such as Python, Perl, or Ruby. Not available to students who have taken CSE 015 or CSE 001.

CSE 017 Programming and Data Structures 0,3 Credits
Prerequisites: CSE 004 or CSE 007 or (CSE 002 and (CSE 001 or CSE 012 or ENGR 010), )
Can be taken Concurrently: CSE 001, CSE 012, ENGR 010

CSE 042 (EMC 042) Game Design 3 Credits
Modern topics in game design: Finite State Machines, iterative design processes, systems and interactivity, designing rules for digital games, emergence in games, games as Schemas of Uncertainty, games as Information Theory Schemas, games as Information Systems, games as Cybernetic Systems. The course does not count as a technical elective for majors in Computer Science, Computer Science and Business, or Computer Engineering.

CSE 109 Systems Software 0,4 Credits
Prerequisites: CSE 017

CSE 127 (COGS 127) Survey of Artificial Intelligence 3 Credits
An introduction to artificial intelligence (AI) intended for non-majors. AI concepts, systems, and history. Credit will not be given for both CSE/COGS 127 and CSE/COGS 327.
Prerequisites: CSE 002 or CSE 004 or CSE 007

CSE 140 Foundations of Discrete Structures and Algorithms 0,3 Credits
Prerequisites: (MATH 021 or MATH 031 or MATH 051 or MATH 076) and CSE 017
Can be taken Concurrently: CSE 017

CSE 160 Introduction to Data Science 0,3 Credits
Data Science is a fast-growing interdisciplinary field, focusing on computational analysis of data to extract knowledge and insight. Collection, preparation, analysis, modeling, and visualization of data, covering both conceptual and practical issues. Examples from diverse fields and hands-on use of statistical and data manipulation software.
Prerequisites: CSE 004 or CSE 007 or CSE 012 or BIS 335

CSE 190 Special Topics 1-3 Credits
Supervised reading and research. Consent of department required.

CSE 202 Computer Organization and Architecture 3 Credits
Interaction between low-level computer architectural properties and high-level program behaviors: instruction set design; digital logic and assembly language; processor organization; the memory hierarchy; multicore and GPU architectures; and processor interrupt/exception models. Credit will not be given for both CSE 201 and CSE 202.
Prerequisites: CSE 017 or CSE 018

CSE 216 Software Engineering 3 Credits
The software lifecycle; lifecycle models; software planning; testing; specification methods; maintenance. Emphasis on team work and large-scale software systems, including oral presentations and written reports.
Prerequisites: CSE 017

CSE 241 Database Systems and Applications 0,3 Credits
Design of large databases: Integration of databases and applications using SQL and JDBC; transaction processing; performance tuning; data mining and data warehouses. Not available to students who have credit for CSE 341 or ISE 224.
Prerequisites: CSE 017

CSE 242 Blockchain Algorithms and Systems 3 Credits
Blockchain system concepts, data structures, and algorithms. Cryptographic algorithms for blockchain security. Distributed consensus algorithms for decentralized control in both a public and permissioned blockchain setting. Smart contracts. Cross-chain transactions. Blockchain databases and enterprise blockchains.
Prerequisites: CSE 109 or CSE 241 or CSE 341
Can be taken Concurrently: CSE 109

CSE 252 (EMC 252) Computers, the Internet, and Society 3 Credits
An interactive exploration of the current and future role of computers, the Internet, and related technologies in changing the standard of living, work environments, society and its ethical values. Privacy, security, depersonalization, responsibility, and professional ethics; the role of computer and Internet technologies in changing education, business modalities, collaboration mechanisms, and everyday life.

CSE 260 Foundations of Robotics 3 Credits
This course introduces students to the field of robotics, covering foundational mathematics and physics as well as important algorithms and tools. Topics include simulation, kinematics, control, machine learning, and probabilistic inference. The mathematical basis of each area will be covered, followed by practical application to common robotics tasks. This course is designed to be taught remotely using simulated robot platforms and sensors.
Prerequisites: CSE 140

CSE 261 (MATH 261) Discrete Structures 3 Credits
Topics in discrete structures chosen for their applicability to computer science and engineering. Sets, propositions, induction, recursion; combinatorics; binary relations and functions; ordering, lattices and Boolean algebra; graphs and trees; groups and homomorphisms. Various applications.
Prerequisites: (MATH 021 or MATH 031 or MATH 051 or MATH 076) Attribute/Distribution: MA

CSE 262 Programming Languages 0,3 Credits
Use, structure and implementation of several programming languages.
Prerequisites: CSE 017
CSE 264 Web Systems Programming 3 Credits
Practical experience in designing and implementing modern Web applications. Concepts, tools, and techniques, including: HTTP, HTML, CSS, DOM, JavaScript, Ajax, PHP, graphic design principles, mobile web development. Not available to students who have credit for IE 272.
Prerequisites: CSE 017
Attribute/Distribution: ND

CSE 265 System and Network Administration 3 Credits
Overview of systems and network administration in a networked UNIX-like environment. System installation, configuration, administration, and maintenance; security principles; ethics; network, host, and user management; standard services such as electronic mail, DNS, and WWW; file systems; backups and disaster recovery planning; troubleshooting and support services; automation, scripting; infrastructure planning.
Prerequisites: CSE 017

CSE 271 Programming in Linux and Windows Operating Systems 3 Credits
Students learn Linux and Windows operating system fundamentals, including features, history, organization, process management, and file systems. Tools commonly available with these operating systems, such as those for program development, text processing, scheduling jobs, and communications, are also explored. Emphasis is placed on learning the Bash and PowerShell scripting languages, and students should expect to work on a variety of small programming assignments.
Prerequisites: CSE 017

CSE 280 Capstone Project I 3 Credits
First of a two semester capstone course sequence that involves the design, implementation, and evaluation of a computer science software project. Conducted by small student teams working from project definition to final documentation. Each student team has a CSE faculty member serving as its advisor. The first semester emphasis is on project definition, planning and implementation. Communication skills such as technical writing, oral presentations, and use of visual aids are also emphasized. Project work is supplemented by weekly seminars.
Prerequisites: CSE 216
Can be taken Concurrently: CSE 216

CSE 281 Capstone Project II 0.3 Credits
Second of a two semester capstone course sequence that involves the design, implementation, and evaluation of a computer science software project; conducted by small student teams working from project definition to final documentation; each student team has a CSE faculty member serving as its advisor; The second semester emphasis is on project implementation, verification & validation, and documentation requirements. It culminates in a public presentation and live demonstration to external judges as well as CSE faculty and students.
Prerequisites: CSE 280
Attribute/Distribution: ND

CSE 300 Apprentice Teaching 1-4 Credits
CSE 302 Compiler Design 3 Credits
Principles of artificial language description and design. Sentence parsing techniques, including operator precedence, bounded-context, and syntax-directed recognizer schemes. The semantic problem as it relates to interpreters and compilers. Dynamic storage allocation, table grammars, code optimization, compiler-writing languages.
Prerequisites: (CSE 109)

CSE 303 Operating System Design 3 Credits
Process and thread programming models, management, and scheduling. Resource sharing and deadlocks. Memory management, including virtual memory and page replacement strategies. I/O issues in the operating system. File system implementation. Multiprocessing. Computer security as it impacts the operating system.
Prerequisites: ECE 201 or (CSE 201 or CSE 202) and CSE 109

CSE 307 (BIOE 307) Structural Bioinformatics 3 Credits
Computational techniques and principles of structural biology used to examine molecular structure, function, and evolution. Topics include: protein structure alignment and prediction; molecular surface analysis; statistical modeling; QSAR; computational drug design; influences on binding specificity; protein-ligand, -protein, and -DNA interactions; modeling, simulation, electrostatics. Tutorials on UNIX systems and research software support an interdisciplinary collaborative project in computational structural biology. Credit will not be given for both CSE 307 and CSE 407. Must have junior standing or higher.
Prerequisites: BIOS 120 or CSE 109 or CHM 113 or MATH 231

CSE 308 (BIOE 308) Bioinformatics: Issues and Algorithms 3 Credits
Computational problems and their associated algorithms arising from the creation, analysis, and management of bioinformatics data. Genetic sequence comparison and alignment, physical mapping, genome sequencing and assembly, clustering of DNA microarray results in gene expression studies, computation of genomic rearrangements and evolutionary trees. Credit will not be given for both CSE 308 (BIOE 308) and CSE 408 (BIOE 408). No prior background in biology is assumed.
Prerequisites: CSE 017

CSE 313 Computer Graphics 3 Credits
Computer graphics for animation, visualization, and production of special effects: displays, methods of interaction, images, image processing, color, transformations, modeling (primitives, hierarchies, polygon meshes, curves and surfaces, procedural), animation (keyframing, dynamic simulation), rendering and realism (shading, texturing, shadows, visibility, ray tracing), and programmable graphics hardware.
Prerequisites: CSE 109 and (MATH 043 or MATH 205 or MATH 242)

CSE 318 Introduction to the Theory of Computation 3 Credits
Provides a deep understanding of computation, its capabilities and its limitations. The course uses discrete formal methods to (1) formulate precise definitions of three kinds of finite-state machines (finite automata, pushdown automata, and Turing machines); (2) prove properties of these machines by studying their expressiveness (i.e., the kinds of problems that can be solved with these machines), and (3) study computational problems that cannot be solved with algorithms.
Prerequisites: CSE 140

CSE 319 Image Analysis and Graphics 3 Credits
State-of-the-art techniques for fundamental image analysis tasks: feature extraction, segmentation, registration, tracking, recognition, search (indexing and retrieval). Related computer graphics techniques: image processing, color, transformations, modeling (primitives, hierarchies, polygon meshes, curves and surfaces, procedural), animation (keyframing, dynamic simulation), rendering and realism (shading, texturing, shadows, visibility, ray tracing), and programmable graphics hardware.
Prerequisites: CSE 313

CSE 320 (BIOE 320) Biomedical Image Computing and Modeling 3 Credits
Biomedical image modalities, image computing techniques, and imaging informatics systems. Understanding, using, and developing algorithms and software to analyze biomedical image data and extract useful quantitative information: Biomedical image modalities and formats; image processing and analysis; geometric and statistical modeling; image informatics systems in biomedicine. Credit will not be given for both CSE 320 and CSE 420.
Prerequisites: (MATH 205 or MATH 043) and CSE 017
Can be taken Concurrently: MATH 231, ECO 045, CSE 017
CSE 325 Fundamentals of Machine Learning 3 Credits
Bayesian decision theory and the design of parametric and nonparametric classification and regression: linear, quadratic, nearest-neighbors, neural nets. Boosting, bagging. Credit will not be given for both CSE 326 and CSE 426.
Prerequisites: CSE 017 and (MATH 205 or MATH 043) and (MATH 231 or ISE 121 or ECO 045)

CSE 327 (COGS 327) Artificial Intelligence Theory and Practice 3 Credits
Detailed analysis of a broad range of artificial intelligence (AI) algorithms and systems. Problem solving, knowledge representation, reasoning, planning, uncertainty and machine learning. Applications of AI to areas such as natural language processing, vision, and robotics. Credit will not be given for both CSE/COGS 127 and CSE/COGS 327.
Prerequisites: CSE 017 and CSE 140

CSE 331 User Interface Systems and Techniques 3 Credits
Principles and practice of creating effective human-computer interfaces. Design and user evaluation of user interfaces; design and use of interface building tools. Programming projects using a variety of interface building tools to construct and evaluate interfaces.
Prerequisites: CSE 017

CSE 335 Topics on Intelligent Decision Support Systems 3 Credits
Intelligent decision support systems (IDSSs). AI techniques that are used to build IDSSs: case-based reasoning, decision trees and knowledge representation. Applications of these techniques: helpdesk systems, e-commerce, and knowledge management. Credit will not be given for both CSE 335 and CSE 435.
Prerequisites: CSE 327 or CSE 109

CSE 336 (ECE 336) Embedded Systems 3 Credits
Prerequisites: CSE 017

CSE 337 Reinforcement Learning 3 Credits
Algorithms for automated learning from interactions with the environment to optimize long-term performance. Markov decision processes, dynamic programming, temporal-difference learning, Monte Carlo reinforcement learning methods. Credit will not be given for both CSE 337 and CSE 437.
Prerequisites: (MATH 231, ECO 045) and CSE 109

CSE 340 (MATH 340) Design and Analysis of Algorithms 3 Credits
Algorithms for searching, sorting, manipulating graphs and trees, finding shortest paths and minimum spanning trees, scheduling tasks, etc.: proofs of their correctness and analysis of their asymptotic runtime and memory demands. Designing algorithms: recursion, divide-and-conquer, greediness, dynamic programming. Limits on algorithm efficiency using elementary NP-completeness theory.
Prerequisites: (MATH 021 or MATH 031 or MATH 076) and CSE 140 and CSE 017

CSE 341 Database Systems, Algorithms, and Applications 3 Credits
Design of large databases: normalization; query languages (including SQL); Transaction-processing protocols; Query optimization; performance tuning; distributed systems. Not available to students who have credit for CSE 241.
Prerequisites: CSE 017 and CSE 140

CSE 342 Fundamentals of Internetworking 3 Credits
Architecture and protocols of computer networks. Protocol layers; network topology; data-communication principles, including circuit switching, packet switching and error control techniques; sliding window protocols, protocol analysis and verification; routing and flow control; local and wide area networks; network interconnection; client-server interaction; emerging networking trends and technologies; topics in security and privacy.
Prerequisites: CSE 109

CSE 343 Network Security 3 Credits
Overview of network security threats and vulnerabilities. Techniques and tools for detecting, responding to and recovering from security incidents. Fundamentals of cryptography. Hands-on experience with programming techniques for security protocols. Credit will not be given for both CSE 343 and CSE 443.
Prerequisites: CSE 202 or CSE 271 or CSE 342

CSE 345 WWW Search Engines 3 Credits
Study of algorithms, architectures, and implementations of WWW search engines; Information retrieval (IR) models; performance evaluation; properties of hypertext crawling, indexing, searching and ranking; link analysis; parallel and distributed IR; user interfaces. Credit will not be given for both CSE 345 and CSE 445.
Prerequisites: CSE 109

CSE 347 Data Mining 3 Credits
Overview of modern data mining techniques: data cleaning; attribute and subset selection; model construction, evaluation and application. Fundamental mathematics and algorithms for decision trees, covering algorithms, association mining, statistical modeling, linear models, neural networks, instance-based learning and clustering covered. Practical design, implementation, application, and evaluation of data mining techniques in class projects. Credit will not be given for both CSE 347 and CSE 447.
Prerequisites: CSE 017 and (CSE 160 or CSE 326) and (MATH 231 or ECO 045 or ISE 121)

CSE 348 AI Game Programming 3 Credits
Contemporary computer games: techniques for implementing the program controlling the computer component; using Artificial Intelligence in contemporary computer games to enhance the gaming experience: pathfinding and navigation systems; group movement and tactics; adaptive games, game genres, machine scripting language for game designers, and player modeling. Credit will not be given for both CSE 348 and CSE 448.
Prerequisites: CSE 327 or CSE 109

CSE 349 Big Data Analytics 3 Credits
Provides working knowledge of large-scale data analysis using open source frameworks such as Apache Spark and Waikato Environment for Knowledge Analysis (Weka). Includes patterns employed in big data analytics, including classification, collaborative filtering, recommender systems, natural language processing, simulation, deep learning, and anomaly detection. Project-oriented software course; students should have substantial programming experience in one or more high-level languages. Past experience in data mining and/or machine learning expected. Credit will not be given for both 349 and 449.
Prerequisites: CSE 109 and (CSE 326 or CSE 347)

CSE 350 Special Topics 3 Credits
Selected topics in the field of computer science not included in other courses.
Repeat Status: Course may be repeated.
Prerequisites: MATH 205

CSE 360 Introduction to Mobile Robotics 3 Credits
Algorithms employed in mobile robotics for navigation, sensing, and estimation. Common sensor systems, motion planning, robust estimation, bayesian estimation techniques, Kalman and Particle filters, localization and mapping. Credit will not be given for both CSE 360 and CSE 460.
Prerequisites: MATH 205
CSE 367 Blockchain Projects 0.3 Credits
Independent or small-group unique projects related to blockchain systems and/or applications. While pursuing their own project, students serve as consultants to the other teams via a once-weekly class meeting in which each team presents updates on status, progress, and open problems, and one student gives a longer prepared presentation on current research or development results in the blockchain field. Each project team has its own separate second weekly meeting with the instructor for a more in-depth project review and discussion.
Repeat Status: Course may be repeated.
Prerequisites: CSE 242

CSE 371 Principles of Mobile Computing 3 Credits
Fundamental concepts and technology underlying mobile computing. Current research in these areas. Examples drawn from a variety of application domains such as health monitoring, energy management, commerce, and travel. Issues of system efficiency will be studied, including efficient handling of large data such as images and effective use of cloud storage. Recent research papers will be discussed. Credit will not be given for both CSE371 and CSE471.
Prerequisites: (CSE 109 and (CSE 202 or ECE 201),

CSE 375 Principles of Practice of Parallel Computing 3 Credits
Parallel computer architectures, parallel languages, parallelizing compilers and operating systems. Design, implementation, and analysis of parallel algorithms for scientific and data-intensive computing. Credit is not given for both CSE 375 and CSE 475.
Prerequisites: (ECE 201 or CSE 201) or CSE 303 or CSE 202.
Can be taken Concurrently: ECE 201, CSE 201, CSE 303, CSE 202

CSE 376 3 Credits
Exploration of theoretical and practical aspects of topics in distributed systems through a combination of readings, programming assignments, and projects. The main focal point is large distributed systems, in particular protocols to synchronize the activities of machines when operating over shared data. Techniques to ensure fault-tolerance and service-availability will also be discussed. Using distributed systems as a foundation, students gain skills in the design of complex, multilayered systems. Credit will not be given for both CSE 376 and CSE 476.
Prerequisites: CSE 303 and CSE 340 and (CSE 241 or CSE 242 or CSE 341 or CSE 375)

CSE 389 Honors Project 1-8 Credits
CSE 392 Independent Study 1-3 Credits
An intensive study, with report, of a topic in computer science which is not treated in other courses. Consent of instructor required.
Repeat Status: Course may be repeated.

CSE 401 (ECE 401) Advanced Computer Architecture 3 Credits
Design, analysis and performance of computer architectures; high-speed memory systems; cache design and analysis; modeling cache performance; principle of pipeline processing, performance of pipelined computers; scheduling and control of a pipeline; classification of parallel architectures; systolic and data flow architectures; multiprocessor performance; multiprocessor interconnections and cache coherence.

CSE 403 Advanced Operating Systems 3 Credits
Principles of operating systems with emphasis on hardware and software requirements and design methodologies for multi-programming systems. Global topics include the related areas of process management, resource management, and file systems.
Prerequisites: CSE 303

CSE 404 (ECE 404) Computer Networks 3 Credits
Study of architecture and protocols of computer networks. The ISO model; network topology; data-communication principles, including circuit switching, packet switching and error control techniques; sliding window protocols, protocol analysis and verification; routing and flow control; local area networks; network interconnection; topics in security and privacy.

CSE 405 Advanced Programming Languages 3 Credits
Basic ideas behind modern programming language design, with a focus on functional languages: type systems, modularity, operational semantics, and others. Students need to have some mathematical maturity, including familiarity with proof techniques such as induction.

CSE 406 Research Methods 3 Credits
Technical writing, reading the literature critically, analyzing and presenting data, conducting research, making effective presentations, and understanding social and ethical responsibilities. Topics drawn from probability and statistics, use of scripting languages, and conducting large-scale experiments. Must have first-year status in either the CS or CompE Ph. D. program.

CSE 407 (BIOE 407) Structural Bioinformatics 3 Credits
Computational techniques and principles of structural biology used to examine molecular structure, function, and evolution. Topics include: protein structure alignment and prediction; molecular surface analysis; statistical modeling; QSAR; computational drug design; influences on binding specificity; protein-ligand, -protein, and -DNA interactions; molecular simulation, electrostatics. This course, a version of 307 for graduate students, requires advanced assignments and a collaborative project. Credit will not be given for both CSE 307 and 407. Consent of instructor required.

CSE 408 (BIOE 408) Bioinformatics: Issues and Algorithms 3 Credits
Computational problems and their associated algorithms arising from the creation, analysis, and management of bioinformatics data. Genetic sequence comparison and alignment, physical mapping, genome sequencing and assembly, clustering of DNA microarray results in gene expression studies, computation of genomic rearrangements and evolutionary trees. This course, a version of 308 for graduate students requires advanced assignments. Credit will not be given for both BIOE 308 (CSE 308) and BIOE 408 (CSE 408). No prior background in biology is assumed.
Prerequisites: CSE 017 or CSE 018

CSE 409 Theory of Computation 3 Credits
Finite automata. Pushdown automata. Relationship to definition and parsing of formal grammars. Credits will not be given for both CSE318 and CSE409.
Prerequisites: CSE 318 or CSC 318

CSE 411 Advanced Programming Techniques 3 Credits
Deeper study of programming and software engineering techniques. The majority of assignments involve programming in contemporary programming languages. Topics include memory management, GUI design, testing, refactoring, and writing secure code.

CSE 418 Theory of Computation 3 Credits
Finite automata. Pushdown automata. Relationship to definition and parsing of formal grammars. Credit may be given for only one of the following: CSE318 and CSE409.

CSE 419 Image Analysis and Graphics 3 Credits
State-of-the-art techniques for fundamental image analysis tasks; feature extraction, segmentation, registration, tracking, recognition, search (indexing and retrieval). Related computer graphics techniques: modeling (geometry, physically-based, statistical), simulation (data-driven, interactive), animation, 3D image visualization, and rendering. This course, a graduate version of CSE 319, requires additional advanced assignments. Credit will not be given for both CSE 319 and CSE 419.

CSE 420 (BIOE 420) Biomedical Image Computing and Modeling 3 Credits
Biomedical image modalities, image computing techniques, and imaging informatics systems. Understanding, using, and developing algorithms and software to analyze biomedical image data and extract useful quantitative information. Biomedical image modalities and formats; image processing and analysis; geometric and statistical modeling; image informatics systems in biomedicine. This course, a graduate version of BIOE 320, requires additional advanced assignments. Credit will not be given for both BIOE 320 and BIOE 420.
Prerequisites: MATH 205 and CSE 109
Attribute/Distribution: ND
CSE 424 Advanced Communication Networks 3 Credits
Current and emerging research topics in communication networks: network protocols, network measurement, internet routing, network security, adhoc and sensor networks, disruption tolerant networks. Lecture, readings, and discussion, plus a project.
Prerequisites: CSE 342 or CSE 303 or CSE 404

CSE 425 Natural Language Processing 3 Credits
Overview of modern natural language processing techniques: text normal- ization, language model, part-of-speech tagging, hidden Markov model, syntactic and dependency parsing, semantics, word sense, reference resolution, dialog agent, machine translation. Three projects to design, implement and evaluate classic NLP algorithms. Credit will not be given for both CSE 325 and CSE 425.
Prerequisites: (MATH 231 or ECO 045) and CSE 017

CSE 426 Fundamentals of Machine Learning 3 Credits
Bayesian decision theory and the design of parametric and nonparametric classification and regression: linear, quadratic, nearest-neighbors, neural nets. Boosting, bagging. This course, a version of CSE 326 for graduate students requires advanced assignments. Credit will not be given for both CSE 326 and CSE 426.

CSE 428 Semantic Web Topics 3 Credits
Theory, architecture and applications of the Semantic Web. Issues in designing distributed knowledge representation languages, ontology development, knowledge acquisition, scalable reasoning, integrating heterogeneous data sources, and web-based agents.

CSE 431 Intelligent Agents 3 Credits
Principles of rational autonomous software systems. Agent theory; agent architectures, including logic-based, utility-based, practical reasoning, and reactive; multi-agent systems; communication languages; coordination methods including negotiation and distributed problem solving; applications.

CSE 435 Topics on Intelligent Decision Support Systems 3 Credits
AI techniques used to build IDSSs: case-based reasoning, decision trees and knowledge representation. Applications: helpdesk systems, e-commerce, and knowledge management. This course, a version of CSE 335 for graduate students, requires research projects and advanced assignments. Credit will not be given for both CSE 335 and CSE 435.

CSE 437 Reinforcement Learning and Markov Decision Processes 3 Credits
Formal model based on Markov decision processes for automated learning from interactions with stochastic, incompletely known environments. Markov decision processes, dynamic programming, temporal-difference learning, Monte Carlo reinforcement learning methods. Credit will not be given for both CSE 337 and CSE 437. Must have graduate standing in Computer Science or have consent of instructor.

CSE 440 Advanced Algorithms 3 Credits
Average-case runtime analysis of algorithms. Randomized algorithms and probabilistic analysis of their performance. Analysis of data structures including hash tables, augmented data structures with order statistics. Amortized analysis. Elementary computational geometry. Limits on algorithm space efficiency using PSPACE-completeness theory. Credit will not be given for both CSE 440 and CSE 441.
Prerequisites: CSE 340 or MATH 340

CSE 442 Advanced Blockchain Systems and Theory 3 Credits
Formal foundations of blockchain systems: cryptography, consensus, zero-knowledge proofs, transaction processing both on-chain and cross-chain, validation, and governance. Algorithms and data structures for blockchain systems. Programming paradigms for smart contracts. Current research in blockchain drawing from the cryptography, database, operating system, and parallel computing research communities.
Prerequisites: CSE 241 or CSE 341 or CSE 303 or CSE 403 or CSE 375 or CSE 475

CSE 443 Network Security 3 Credits
Overview of network security threats and vulnerabilities. Techniques and tools for detecting, responding to and recovering from security incidents. Fundamentals of cryptography. Hands-on experience with programming techniques for security protocols. This course, a version of CSE 343 for graduate students, requires research projects and advanced assignments. Credit will not be given for both CSE 343 and CSE 443.
Prerequisites: (CSE 404 or ECE 404) or CSE 271 or CSE 202 or CSE 342

CSE 445 WWW Search Engines 3 Credits
Study of algorithms, architectures, and implementations of WWW search engines. Information retrieval (IR) models; performance evaluation; properties of hypertext crawling, indexing, searching and ranking; link analysis; parallel and distributed IR; user interfaces. This course, a version of CSE 345 for graduate students, requires research projects and advanced assignments. Credit will not be given for both CSE 345 and CSE 445.

CSE 447 Data Mining 3 Credits
Modern data mining techniques: data cleaning; attribute and subset selection; model construction, evaluation and application. Algorithms for decision trees, covering algorithms, association rule mining, statistical modeling, model and regression trees, neural networks, instance-based learning and clustering covered. This course, a version of CSE 347 for graduate students, requires research projects and advanced assignments, and expects students to have a background in probability, statistics, and programming. Credit will not be given for both CSE 347 and CSE 447.
Prerequisites: CSE 326

CSE 449 Big Data Analytics 3 Credits
Provides working knowledge of large-scale data analysis using open source frameworks such as Apache Spark and Waikato Environment for Knowledge Analysis (Weka). Includes patterns employed in big data analytics, including classification, collaborative filtering, recommender systems, natural language processing, simulation, deep learning, and anomaly detection. Project-oriented software course; students should have substantial programming experience in one or more high-level languages. Past experience in data mining and/or machine learning expected. Credit will not be given for both 349 and 449.
Prerequisites: CSE 109 and (CSE 326 or CSE 347)

CSE 450 Special Topics 3 Credits
Selected topics in computer science not included in other courses.
Repeat Status: Course may be repeated.

CSE 460 Mobile Robotics 3 Credits
Algorithms employed in mobile robotics for navigation, sensing, and estimation. Common sensor systems, motion planning, robust estimation, Bayesian estimation techniques, Kalman and particle filters, localization and mapping. This course, a version of CSE 360 for graduate students will require an independent project to be presented in class. Credit will not be given for both 360 and 460.

CSE 467 Blockchain Projects 0.3 Credits
Independent or small-group graduate-level unique projects related to blockchain-systems and/or applications. While pursuing their own project, students serve as consultants to the other teams via a once-weekly class meeting in which each team presents updates on status, progress, and open problems, and one student gives a longer prepared presentation on current research or development results in the blockchain field. Each project team has its own separate second weekly meeting with the instructor for a more in-depth project review and discussion.
Repeat Status: Course may be repeated.
CSE 471 Principles of Mobile Computing 3 Credits
Course topics include fundamental concepts and technology underlying mobile computing and current research in these areas. Examples drawn from a variety of application domains such as health monitoring, energy management, commerce, and travel. Issues of system efficiency will be studied, including efficient handling of large data such as images and effective use of cloud storage. Recent research papers will be discussed. The graduate version of CSE 371 requires additional effort. Credit will not be given for both CSE371 and CSE471.
Prerequisites: CSE 109 and CSE 202 or CSE 303

CSE 475 Principles and Practice of Parallel Computing 3 Credits
Parallel computer architectures, parallel languages, parallelizing compilers and operating systems. Design, implementation, and analysis of parallel algorithms for scientific and data-intensive computing. This is a graduate version of CSE 375. As such, it will require additional assignments. Credit is not given for both CSE 375 and CSE 475.

CSE 476 Distributed Systems 3 Credits
Exploration of theoretical and practical aspects of topics in distributed systems through a combination of readings, programming assignments, and projects. The main focal point is large distributed systems, in particular protocols to synchronize the activities of machines when operating over shared data. Techniques to ensure fault-tolerance and service-availability will also be discussed. Using distributed systems as a foundation, students gain skills in the design of complex, multilayered systems. Credit will not be given for both CSE 376 and CSE 476.
Prerequisites: (CSE 303 or CSE 403) and (CSE 340 or CSE 440) and (CSE 241 or CSE 242 or CSE 341 or CSE 375 or CSE 404 or ECE 404 or CSE 475)

CSE 490 Thesis 1-6 Credits
Thesis.
Repeat Status: Course may be repeated.

CSE 491 Research Seminar 1-3 Credits
Regular meetings focused on specific topics related to the research interests of department faculty. Current research will be discussed. Students may be required to present and review relevant publications. Consent of instructor required.
Repeat Status: Course may be repeated.

CSE 492 Independent Study 1-3 Credits
An intensive study, with report of a topic in computer science that is not treated in other courses. Consent of instructor required.
Repeat Status: Course may be repeated.

CSE 499 Dissertation 1-15 Credits