Programs and Majors

Your education at Lehigh University will help prepare you to excel by discovering and building upon your personal strengths in a campus community where active learning connects with real-world applications. Learning at Lehigh incorporates active academic research and hands-on experiences, both in and outside the classroom. As a comprehensive university, Lehigh offers students an education that integrates course work across four colleges and different fields of study in a dynamic learning experience that can be customized to individual interests.

Strong programs in business, the humanities, education, arts and sciences, and human services complement our well-known strength in engineering. Lehigh students can choose from an array of courses and enjoy the resources and facilities of a major research university and the atmosphere and personal attention of a small college. While most of the undergraduate programs listed are offered as majors, many are also available as minors. Graduate programs are offered in many of the subjects listed as well. These are described in Section IV, Graduate Study and Research.

<table>
<thead>
<tr>
<th>Arts, Humanities, and Social Sciences</th>
<th>Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africana Studies</td>
<td>Counseling and Human Services</td>
</tr>
<tr>
<td>American Studies</td>
<td>Counseling Psychology</td>
</tr>
<tr>
<td>Anthropology</td>
<td>Educational Leadership</td>
</tr>
<tr>
<td>Architectural History</td>
<td>Elementary Counseling</td>
</tr>
<tr>
<td>Architecture</td>
<td>Elementary and Secondary Education (5-year program)</td>
</tr>
<tr>
<td>Art</td>
<td>Instructional Technology</td>
</tr>
<tr>
<td>Art History</td>
<td>International Counseling</td>
</tr>
<tr>
<td>Arts and Engineering</td>
<td>Learning Sciences &amp; Technology</td>
</tr>
<tr>
<td>Asian Studies</td>
<td>School Psychology</td>
</tr>
<tr>
<td>Classical Civilization</td>
<td>Secondary Counseling</td>
</tr>
<tr>
<td>Classics</td>
<td>Special Education</td>
</tr>
<tr>
<td>Cognitive Science</td>
<td>Technology-Based Teacher</td>
</tr>
<tr>
<td>Design Arts</td>
<td>Education (5-year program)</td>
</tr>
<tr>
<td>Economics</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td></td>
</tr>
<tr>
<td>Environmental Studies</td>
<td>French</td>
</tr>
<tr>
<td>French</td>
<td>German</td>
</tr>
<tr>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>International Relations</td>
<td>International Relations</td>
</tr>
<tr>
<td>Journalism</td>
<td>Journalism/Science Writing</td>
</tr>
<tr>
<td>Journalism/Science Writing</td>
<td>Music</td>
</tr>
<tr>
<td>Music</td>
<td>Music Composition</td>
</tr>
<tr>
<td>Music Composition</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Philosophy</td>
<td>Political Science</td>
</tr>
<tr>
<td>Political Science</td>
<td>Psychology</td>
</tr>
<tr>
<td>Psychology</td>
<td>Religion Studies</td>
</tr>
<tr>
<td>Religion Studies</td>
<td>Russian Studies</td>
</tr>
<tr>
<td>Russian Studies</td>
<td>Science, Technology, and Society</td>
</tr>
<tr>
<td>Science, Technology, and Society</td>
<td>Sociology and Anthropology</td>
</tr>
<tr>
<td>Sociology and Anthropology</td>
<td>Sociology/Social Psychology</td>
</tr>
<tr>
<td>Sociology/Social Psychology</td>
<td>Spanish</td>
</tr>
<tr>
<td>Spanish</td>
<td>Theatre</td>
</tr>
<tr>
<td>Theatre</td>
<td>Urban Studies</td>
</tr>
<tr>
<td>Urban Studies</td>
<td>Women's Studies</td>
</tr>
<tr>
<td>Women's Studies</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineering, Science, and Mathematics</th>
<th>Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronomy</td>
<td>Accounting</td>
</tr>
<tr>
<td>Astrophysics</td>
<td>Business Economics</td>
</tr>
<tr>
<td>Applied Life Science</td>
<td>Business Information Systems</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>Economics</td>
</tr>
<tr>
<td>Applied Science</td>
<td>Finance</td>
</tr>
<tr>
<td>Behavioral Neuroscience</td>
<td>Marketing</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>Bioengineering</td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
</tr>
<tr>
<td>Earth and Environmental Sciences</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td></td>
</tr>
<tr>
<td>Engineering Physics</td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td></td>
</tr>
<tr>
<td>Information and Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Chemistry</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>Biomedical Science</td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td></td>
</tr>
<tr>
<td>Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>Information Science and Technology</td>
<td></td>
</tr>
<tr>
<td>Computer Engineering</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
</tr>
<tr>
<td>Information and Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>Business and Economics</td>
<td></td>
</tr>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>Business Economics</td>
<td></td>
</tr>
<tr>
<td>Business Information Systems</td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td></td>
</tr>
<tr>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>Supply Chain Management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross-Disciplinary Programs</th>
<th>Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africana Studies</td>
<td>Arts and Engineering</td>
</tr>
<tr>
<td>American Studies</td>
<td>Applied Life Science</td>
</tr>
<tr>
<td>Applied Life Science</td>
<td>Arts and Engineering</td>
</tr>
<tr>
<td>Asian Studies</td>
<td>Biological Engineering</td>
</tr>
<tr>
<td>Biological Engineering</td>
<td>Civil Engineering/Environmental Science</td>
</tr>
<tr>
<td>Cognitive Science</td>
<td>Cross-Disciplinary Programs of Study</td>
</tr>
<tr>
<td>Computer Science and Business</td>
<td>Arts and Engineering</td>
</tr>
<tr>
<td>Design Arts</td>
<td>Enterprise Systems Leadership</td>
</tr>
<tr>
<td>Electrical Engineering/Engineering Physics</td>
<td>Integrated Business and Engineering (IBE)</td>
</tr>
<tr>
<td>Environmental Studies</td>
<td>Pre-Dental Science</td>
</tr>
<tr>
<td>Global Studies</td>
<td>Pre-Medical Science</td>
</tr>
<tr>
<td>Integrated Business and Engineering (IBE)</td>
<td>Pre-Optometry Science</td>
</tr>
<tr>
<td>Music and Engineering/Science</td>
<td>Science, Technology, and Society</td>
</tr>
<tr>
<td>Special Cross-Disciplinary Programs of Study</td>
<td>Urban Studies</td>
</tr>
<tr>
<td>Arts and Engineering</td>
<td>Special Cross-Disciplinary Programs of Study</td>
</tr>
<tr>
<td>Computer Science and Business</td>
<td>Enterprise Systems Leadership</td>
</tr>
<tr>
<td>Enterprise Systems Leadership</td>
<td>Integrated Business and Engineering (IBE)</td>
</tr>
<tr>
<td>Integrated Business and Engineering (IBE)</td>
<td>Music and Engineering/Science</td>
</tr>
<tr>
<td>Music and Engineering/Science</td>
<td>Dual-degree (5-year) program</td>
</tr>
<tr>
<td>Dual-degree (5-year) program</td>
<td>Music and Engineering/Science is not a major in itself. However, Lehigh attracts many engineering and science students who wish to continue their active involvement in music and the music department as dual majors, minors, or elective participants.</td>
</tr>
</tbody>
</table>
## Contents

**Academic Calendar**

I. Information of General Interest .......................... 6  
II. University Resources ........................................ 21  
III. Undergraduate Studies ......................................... 29  
IV. Graduate Study and Research ................................. 54  
V. Courses, Programs and Curricula ............................ 89  
VI. An Overview from Past and Present ........................ 401  
VII. Administration, Faculty and Staff ........................ 410  
     Index ................................................................ 433
To advance learning through the integration of teaching, research, and service to others.

Excellence is the hallmark of a university of distinction. Excellence requires a totally quality commitment, which must characterize every activity of Lehigh University. Lehigh is an independent, coeducational university with programs in the arts and humanities, business, education, engineering, and the natural and social sciences, offering bachelor’s degrees primarily to full-time, residential students and graduate degrees through the doctorate for both full-time and part-time students. Lehigh is small enough to be personal, yet large enough to provide stimulating diversity and to play important national and international roles.

Since Lehigh’s founding in 1865, the faculty has emphasized the integration of the academic disciplines, combining the cultural with the professional, the theoretical with the practical, and the humanistic with the technological in a modern, liberal education that serves as preparation for a useful life. Lehigh is an intellectually unified community of learners, and in this sense Lehigh is an integral university.

Lehigh strives to earn international prominence as a university of special distinction through its integration of teaching, research, and service to society. The integrating element of teaching, research and service is learning, which is the principal mission of all members of the Lehigh community. Our mission of advancing learning has three aspects:

Teaching: The development of future leaders in our global society is first among Lehigh’s purposes and first among our achievements. Preparation for leadership requires the best of teaching, in which both mentor and student are so deeply engaged that they become joint owners of the learning process.

Research: Lehigh is deeply committed to the creative search for new understanding of nature and human society as an essential element of the learning process. The scholarly inquiry and research of Lehigh faculty and students add value to instruction on our campus, and contribute to the distinction of our university.

Service: The special commitment of the Lehigh community to experiential learning through service to others imbues the entire university with a sense of purpose and value in the larger society. Lehigh is extensively involved in developing partnerships with industry, government and others in education and human services to meet the needs of our society. In a societal sense, Lehigh is devoted to the concepts of unity, community, and cooperative achievement.

Lehigh believes that its graduates must develop critical thinking and effective communication as their habit; they must have both a broad understanding of human affairs and a domain of true competence; they are expected to live by a set of mature cultural and personal values, accept the virtue of work as a vehicle of service, and have the will to live and work with exceptional self-discipline.

Respect for human dignity is very important at Lehigh, a caring community deeply committed to harmonious cultural diversity as an essential element of the learning environment. In order that all members of the Lehigh community might develop as effective and enlightened citizens, the University encourages physical, social, ethical, and spiritual development as well as rigorous intellectual development.
Fall 2006

July 3 (Monday) - Deadline to apply for September degree
July 21 (Friday) - Last day for September doctoral candidates to deliver approved dissertation drafts to dean
August 11 (Friday) - Last day for September masters candidates to submit unbound thesis copies to the Registrar's Office; Last day for September doctoral candidates to complete all degree requirements
August 24 (Thursday) First Year Student Check-In
August 25 (Friday) - Freshman Orientation; Graduate Registration
August 28 (Monday) - Registration Day; Classes begin; Last day for graduate registration
September 1 (Friday) - Last day web registration; Last day to add courses without instructor's signature
September 3 (Sunday) - Degree awarding date
September 4 (Monday) - Labor Day - classes held
September 8 (Friday) - Last day of registration; Last day drop/add without a "W"
September 15 (Friday) - Last day to select or cancel pass/fail grading
September 23 (Saturday) - Rosh Hashanna
September 26 (Tuesday) - Four o’clock quizzes
September 27 (Wednesday) - Four o’clock quizzes
September 28 (Thursday) - Four o’clock quizzes
October 2 (Monday) - Yom Kippur
October 4 (Wednesday) – Four o’clock quizzes
October 5 (Thursday) - Four o’clock quizzes
October 9-10 (Monday-Tuesday) - Pacing Break - no classes
October 17 (Tuesday) - Mid-term grades due
October 31 (Friday) - Four o’clock quizzes
November 1 (Wednesday) - Applications for January degree due
November 1 (Wednesday) - Four o’clock quizzes
November 2 (Thursday) – Four o’clock quizzes
November 6-17 (Monday-Friday) - Registration for Spring
November 7 (Tuesday) – Four o’clock quizzes
November 8 (Wednesday) – Four o’clock quizzes
November 14 (Tuesday) - Last day for January doctoral candidates to deliver approved dissertation drafts to dean; Last day to withdraw from a course with a "W"
November 22-26 (Wednesday-Sunday) - Thanksgiving Vacation
December 1 (Friday) - Last day for hourly exams
December 8 (Friday) - Last day to drop a course with a WP/WF grades; Last day for January master's degree candidates to submit unbound thesis copies to the Registrar's Office; Last day for January doctoral degree candidates to complete all degree requirements

December 9 (Saturday) - Review-consultation-study period for Tuesday classes
December 11 (Monday) - Review-consultation-study period for Monday classes
December 12 (Tuesday) - Final exams begin
December 20 (Wednesday) - Final exams end

Spring 2007

January 12 (Friday) - Graduate Registration
January 14 (Sunday) – Degree awarding date
January 15 (Monday) - Registration; First day of class
January 19 (Friday) - Last day web registration; Last day to add courses without instructor's permission
January 26 (Friday) - Last day for spring registration; Last day to drop a course without a "W"
February 2 (Friday) - Last day to select or cancel pass/fail grading
February 14 (Wednesday) - Four o’clock quizzes
February 15 (Thursday) - Four o’clock quizzes
February 20 (Tuesday) - Four o’clock quizzes
February 21 (Wednesday) - Four o’clock quizzes
March 1 (Thursday) - Last day for filing applications for May graduation
March 2 (Friday) - Mid-term grades due
March 5-9 (Monday - Friday) - Spring break
March 12 (Monday) - Classes resume
March 28 (Wednesday) – Four o’clock quizzes
March 29 (Thursday) – Four o’clock quizzes
April 2-13 (Monday-Friday) Registration for Fall and Summer
April 3 (Tuesday) - Passover
April 4 (Wednesday) – Four o’clock quizzes
April 5 (Thursday) – Four o’clock quizzes
April 6 (Friday) - Last day to withdraw from a course with a "W"
April 6 (Friday) - Good Friday - classes held
April 20 (Friday) - Last day for May doctoral candidates to deliver approved dissertation drafts to dean
April 27 (Monday) - Last day for hourly exams
April 28 (Saturday) - Review-consultation-study period for Tuesday classes
April 30 (Monday) - Review-consultation-study period for Monday classes
May 1 (Tuesday) - Final exams begin
May 9 (Wednesday) - Final exams end
May 21 (Monday) - University Commencement Day

May 21 (Monday) - University Commencement Day
I. Information of General Interest

This section includes information related to accreditation, admission, advanced placement, transfer students, tuition and fees, financial aid, campus life and academic regulations. Similar information for graduate students may be found in Section IV. The university’s history, biographies of its presidents and descriptions of its buildings are found in Section VI.

Accreditation
Lehigh University is accredited by the Middle States Association of Colleges and Schools.

Both the undergraduate general and accounting programs and the master of business administration programs are accredited by the American Assembly of Collegiate Schools of Business. The engineering curricula are accredited by the Accreditation Board for Engineering and Technology. In addition, the computer science program offered in the College of Engineering and Applied Science is accredited by the Computer Science Accreditation Board, Inc. The Commonwealth of Pennsylvania approves for educational certification various programs within the College of Education. Programs in chemistry are approved by the American Chemical Society.

The department of theatre is accredited by the National Association of Schools of Theatre, recognized by the U.S. Department of Education as the accrediting body for the field of theatre.

Policy of Equality
Lehigh University provides equal opportunity on the basis of merit without discrimination because of race, color, religious creed, ancestry, national origin, age, handicap, sex, sexual orientation or union membership.

Admission Guidelines
The total undergraduate and graduate enrollment of Lehigh University is regulated by action of the board of trustees, with a resulting limitation in the number of candidates who can be admitted each year to the various divisions of the university.

Because of the limitations on enrollment, the Office of Admissions, under the leadership of the Dean of Admissions and Financial Aid, conducts a selective review of candidates for admission. Several criteria are used in an attempt to predict a student’s ability to successfully complete four years of rigorous study at Lehigh University.

The material that follows pertains to undergraduates.

Graduate students should consult Admission to Graduate Standing, Section IV.

The admission policy of the university is designed to enroll students with a variety of backgrounds. The course work or units required for admission represent the equivalent of the usual four-year college preparatory curriculum with certain specific course work being required for enrollment in certain programs within the university. Evidence of academic growth, ability to learn, and motivation are special qualities that may not be reflected in the accumulation of units. Such qualities are also considered by the admissions committee.

Minimum subject matter requirements (16 units)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>4</td>
</tr>
<tr>
<td>foreign languages*</td>
<td>2</td>
</tr>
<tr>
<td>social science</td>
<td>2</td>
</tr>
<tr>
<td>laboratory science</td>
<td>2</td>
</tr>
<tr>
<td>college preparatory mathematics</td>
<td>3</td>
</tr>
<tr>
<td>elective subjects</td>
<td>3</td>
</tr>
</tbody>
</table>

*Only in exceptional cases, and for otherwise well-qualified candidates, will the Committee on Admissions waive the foreign language requirement for admission to any one of the three undergraduate colleges.

Students planning on enrolling in the College of Engineering and Applied Science must have studied mathematics through trigonometry, and should have studied chemistry, physics and mathematics through pre-calculus. Calculus is recommended. Students planning to enroll in the College of Business and Economics must have completed mathematics through trigonometry, but also should strongly consider taking pre-calculus or calculus. Candidates for the College of Arts and Sciences preparing for a bachelor’s of science degree must also take math through trigonometry.

Minimum course work requirements can be misleading since most students who gain admission to Lehigh University exceed the minimum course work. Strength of preparation can be difficult to assess since each individual comes from a different background. However, the Committee on Admissions will look for things such as (in no particular order):

- Rank or relative rank in class
- The student’s grades within the context of the school environment
- Evidence of improvement or deterioration in grades during the secondary school career with particular attention paid to performance in senior year courses
- The quality of performance in courses that relate to the student’s anticipated area of study
- The difficulty of courses taken with special attention paid to courses recognized as being accelerated by national academic organizations
- Comments and recommendations from the principal, headmaster, guidance counselor, or other professional educators within the school system
- Performance on standardized testing
- Extra-curriculum/work experience with particular emphasis placed on demonstrated leadership
- Demonstrated interest in Lehigh University

Entrance Examinations
SAT/ACT: Each candidate for admission to the first year class is required to take either the Scholastic Assessment Test (SAT) with the writing component or the American College Test (ACT) with the writing component. It is highly recommended that the student request that his or her scores be forwarded to Lehigh (CEEB code 2365) directly. It is not the responsibility of the high school guidance office to forward the results. If, during the evaluation process, it is discovered that the test results are missing, the student will be notified by mail or phone. Unnecessary delays in the decision-making process can result if the committee does not have the scores.
The Committee on Admissions recommends that students take the exam in the junior year and again as early in the senior year as possible. In the evaluation process, the highest score in each category will be used regardless of the test date.

SAT Subject Tests: SAT Subject Tests (formerly SAT II) are recommended, but not required. It is also recommended that students who plan to study a foreign language take the SAT Subject Test or Advanced Placement Test for the language they intend to study. Also, students interested in advanced placement and/or receiving college credit in chemistry, English, or a foreign language should take the SAT Subject Tests. Please read the Advanced Placement section for specific requirements.

Test information and applications may be secured from high school guidance offices or the College Board at either of the following addresses: P.O. Box 592, Princeton, N.J. 08541, or 1947 Center St., Berkeley, C.A. 94704. Candidates writing tests outside the United States should direct their correspondence to the Princeton address.

Candidates should register for the tests early in the senior year and not later than one month prior to the test date (two months for candidates who will be tested in Europe, Asia, Africa, Central and South America and Australia). As with other standardized testing, the candidate has the responsibility to have the results sent to Lehigh.

Recommendations

The Office of Admissions requires, as part of a candidate’s file, a letter of recommendation from the guidance counselor, principal, or headmaster from the candidate’s school. One teacher recommendation is also required. Such recommendations should address the candidate’s other qualifications such as character, intellectual motivation, participation in school activities, and established habits of industry and dependability.

Campus Visits

Prospective first-year students and their parents are highly encouraged to visit Lehigh and to participate in a campus tour and to meet with a representative for a group information session. Informal interviews are also available. No appointment is necessary for a campus tour or group information session, but interviews must be scheduled by appointment. Interviews are not evaluative and are not required for admission. Visit www.lehigh.edu/visitinglehigh for a schedule of tours and information sessions. A call to the Office of Admissions is recommended because the schedule can change several times during the year as the academic calendar changes. While visiting our campus, it is often possible to meet with faculty, coaches or other professional staff of the university. Requests for such meetings should be directed to their offices at their schools.

How to Apply

Students may secure a Lehigh View Book by writing to the Office of Admissions, 27 Memorial Drive West, Lehigh University, Bethlehem, PA. 18015, or by calling (610) 758-3100. Students may use the Common Application available from school guidance counselors, or they may apply by using the Common Application on-line at www.commonapp.org or via the Lehigh Web site at www.lehigh.edu/apply. Students are required to submit a supplemental form to the Common Application that can be obtained through the Common Application web site or the Lehigh web site.

Applications should be filed according to the following deadlines:

- November 15 — Early Decision
- November 15 — 7 year BA/MD Program
- January 1 — Early Decision II
- January 1 — Regular Decision
- January 1 — Seven-year dental program with the University of Pennsylvania
- January 1 — Seven-year optometry program with the SUNY State College of Optometry

Each application must be accompanied by an application fee of $65. This fee is non-refundable and does not apply towards tuition fees. Waivers of application fees are accepted when forwarded on the appropriate forms from the school guidance office. Students for whom the application fee is a hardship should consult the guidance offices at their schools.

Early Decision

Our program is a binding early decision plan, meaning that the student is expected to withdraw all applications to other schools if accepted to Lehigh. The student, his or her parents, and guidance counselor must sign an Early Decision Request form to confirm their understanding of this provision. Students applying early should be sure that Lehigh is their first choice school. Early Decision I is for students who meet the November 15 deadline. Notification will be completed around December 15. Early Decision II is for students who have met the January 1 regular application deadline and who declare their intention to apply Early Decision II by January 15. These students will be notified early February. It is understood that all early decision candidates will continue to perform at a satisfactory academic level throughout the remainder of his or her senior year.

The early decision plan is not for everyone. It is for the student who has been early and active in their college search, and is sure that he or she wants to attend Lehigh. When reviewing an early decision application, the committee will defer a decision on any candidate when there is insufficient information to make an early decision commitment. It is also possible that a student may be denied admission. The Committee on Admissions will give early decision applicants some slight advantage in borderline cases because of the commitment of applying early, but the student must still present a strong record.

Early decision candidates who have filed the CSS/Financial Aid Profile application, available at www.collegeboard.com, and prior year tax forms, will be notified of their financial aid packages as soon as possible after the decisions on admission are made by the Office of Admissions. All other financial aid forms must be filed by the deadline indicated on each application.
Admission and Deposit

Notification of admissions decisions are made by mail. Admission is granted only through written notice by the Office of Admissions. An admitted student may secure a place in the entering class by notifying the university that he or she intends to enroll at Lehigh and by forwarding the appropriate enrollment deposit postmarked by May 1. This fee is applicable towards the fall-term bill. Students who do not attend will forfeit their deposit.

Transfer Students

Each January and August, students who have attended another college or university are admitted with advanced standing. Candidates for transfer admission must meet the high school subject matter requirements prescribed for incoming first-year students, but entrance examinations are not required if a student has completed at least one year of full-time study at another institution. Exceptions to fulfilling high school requirements will be granted following the review of a college level transcript. The academic performance at the college level is the primary focus when giving consideration to admission. Candidates who have been dropped for poor scholarship, or who are not in good standing, or who have been released for disciplinary reasons are not eligible for admission.

Each candidate must submit an official transcript and course descriptions from each institution attended. An admissions decision cannot be made without this information. Students wishing to enter in the spring should have their application in by April 1. Applications may be obtained by writing to the Transfer Coordinator, Office of Admissions, 27 Memorial Dr. West, Lehigh University, Bethlehem, PA 18015 or by calling (610) 758-3214. The application is also available at Lehigh’s web site www.lehigh.edu/apply. Each application must be accompanied by an application fee of $65.

Students are encouraged to take an active role in seeing that the various components of the student’s admission application have arrived at the university. Decisions are made as soon as possible after the application is complete. Students will be notified by the Registrar as to how many credits Lehigh will grant to the student in advanced standing.

Housing: Transfer students are guaranteed housing for at least their first semester provided an enrollment deposit is received by the date established within the text of the offer of admission letter. Every effort is made to accommodate transfer student housing needs. All students are required to live on-campus through the end of the sophomore year. Contact the Office of Residential Services, Rathbone Hall, Lehigh University, 63 University Drive, Bethlehem, PA 18015 or call (610) 758-3500. This office also can provide information about off campus housing. Fraternities and sororities often have room for members or boarders. Information on this option may be obtained through the Assistant Dean for Fraternity and Sorority Affairs, University Center, 27 Trembley Drive, Lehigh University, Bethlehem, PA 18015 or call (610) 758-4157.

Advanced Placement

The university offers capable students who have superior preparation an opportunity for advanced placement and/or college credit. Many secondary schools, in association with the College Board, offer college-level work. Students participating in these courses should write the Advanced Placement Tests offered by the College Board. Students who achieve advanced placement are afforded three major advantages. First, they commence study at Lehigh at a level where they will be academically comfortable. Second, students who qualify for college credits may be graduated at an earlier time—with resulting savings in time and tuition outlay. Third, qualified students may, in the Lehigh senior year, enroll for a limited amount of work for graduate credit.

Entering freshmen that ask the College Board to send their advanced placement grades to Lehigh are considered for advanced placement.

Some departments noted below offer examinations during Freshman Orientation to students who studied college-level subjects in secondary school but did not write the advanced placement tests. Entering freshmen wishing to write an examination in any Lehigh course should notify the Office of Admissions in writing prior to August 1. The student should specify the number and title of the course. Students who receive credit on the basis of advanced placement grades need not write Lehigh tests to confirm the credit granted.

Current practice at Lehigh is as follows:

**Art and Architecture.** Six credit hours for Art 1 and Art 2 are granted to students who earn a grade of 5. Three credit hours for Art 099 Free Elective in Art History are granted for those students who earn a grade of 4. Those students who earn grades of 5 on the Advanced Placement Studio Art Examination receive three credit hours for Art 3.

**Biology.** Four credit hours for EES 31 and 22, Introduction to Environmental/Organismal Biology and Exploring Earth Lab, given to those who earn grades of 4 or 5.

**Chemistry.** Eight credit hours for CHM 25 and CHM 31 are granted to students who earn a grade of 5. Those students who earn a grade of 4, or who score 750 or higher on the SAT II chemistry subject test, are granted five credit hours for CHM 25 and may apply to the department for a special examination that, if completed successfully, will result in an additional three credit hours for CHM 31.

**Computer Science.** Students who receive a grade of 4 or 5 on the AP exam will receive 3 credits for CSE 012 Economics. Students will receive three credit hours of ECO 00 Economics Elective for a score of 4 or 5 on the microeconomics or macroeconomics exam. Students receiving a score of 4 or 5 on both the microeconomics and macroeconomics exams will receive 4 credits for ECO 001 and 2 credits of Economics Elective and satisfy the College of Business and Economics degree requirements.

**English.** Students who earn a score of 5 on one of the College Board Advanced Placement Tests in English (either in English Language and Composition or in English Literature and Composition) or who achieve a score of 750 or higher on the SAT II Subject Test in Writing receive six hours of Lehigh credit for freshman
English (and exemption from the requirement). Students who receive a score of 4 on either of the Advanced Placements Tests in English or who have a score of 700-749 on the SAT II Writing Subject Test will receive three hours of credit in freshman English; these students will complete the six-hour requirement by taking an English course suggested by the department, typically ENGL 11.

**Environmental Science.** Students scoring a 4 or 5 on the environmental science exam will receive 4 credits for EES 3.

**Government and Politics.** Four credits for POLS 1 are awarded to those students that score a 4 or 5 on the American Government test, and four credits for POLS 3 are awarded to those that score a 4 or 5 on the Comparative Politics exam.

**History.** Students earning a grade of 4 or 5 in the American History Advanced Placement examination will receive 4 credits for HIST 41. Students earning a grade of 4 or 5 in the European History exam will receive four credits for HIST 12. Students receiving advanced placement in American history may not later enroll in History 41; students receiving advanced placement credit in European history may not later enroll in History 12.

**Latin.** Students receive three semester hours of credit for a grade of 4 or 5 in the Virgil examination; those who successfully write in more than one area (e.g., Virgil and lyric poetry) receive six hours of credit. Credit will be awarded for Latin 099 Latin Elective. Students receiving credit for Latin and who wish to continue their study of Latin must consult with the Director for proper placement.

**Mathematics.** Four semester hours of credit for Math 21, Calculus I, are granted to those who earn grades of 4 or higher on the Calculus AB examination. To those who earn a grade of 4 or higher on the Calculus BC examination, eight hours of credit are granted for Math 21 and Math 22, Calculus I and II. Credit for Math 21 and 22 or both may also be earned by passing the examination offered by the Mathematics Department during Freshman Orientation. Students regardless of whether they have taken the advanced placement examination may take this examination or not.

**Modern Languages and Literature.** Students receive four semester hours of credit at the intermediate level I for grades of 4, and eight hours of credit at the intermediate level II & II for grades of 5 on the advanced placement tests. Those who write the SAT II subject tests and score 600 to 699 receive four hours of credit; 700 and above receive eight hours of credit. The maximum number of credits given is eight. Those students receiving grades of 4 or higher on the French or Spanish literature examinations will receive 4 credits for French or Spanish 151.

**Music.** Three semester hours of credit for MUS 80 are given to those students who earn a grade of 3 or higher on the Advanced Placement test in Music, Listening/Literature of Music: Theory.

**Physics.** Five hours of credit are given for Physics 11, Physics 12, for a grade of 5 on the Physics B examination, or a grade of 4 on the mechanics section of the Physics C examination. If a student receives credit for Physics 11, four hours of credit will be given for Physics 21, Physics 22, for a grade of 4 on the electricity and magnetism section of the Physics C examination. A test is offered during Freshman Orientation.

**Psychology.** Four credit hours of PSYC 1 are granted to students who earn a grade 4 or 5.

**Statistics.** Students scoring a 4 or 5 will receive 4 credits; for Math 12 if enrolled in the College of Arts & Sciences or the College of Engineering & Applied Science, or 3 credits for ECO 145 if enrolled in the College of Business & Economics.

**International Baccalaureate.** Students who earn the international baccalaureate may be granted credit in higher-level or advanced subjects with scores of 5 or better or "B" or better. All students will have their credentials evaluated on an individual basis for specific course equivalency.

**Estimate of Expense for Undergraduates**

Principally three areas of income support the operating expense of Lehigh University: tuition and fees, endowment earnings, and gifts and grants. The university is conscious that educational costs are significant and it strives to maintain a program of high quality instruction while recognizing that there are limitations on what families can afford to pay. Costs will vary somewhat from student to student depending upon the various options chosen.

**Tuition, Room, and Board**

There are three major plans that cover the major expense associated with university attendance. These are as follows:

**The Tuition Plan.**

The university provides comprehensive academic and student services under its tuition plan. The tuition sum is inclusive of most athletic events, basic treatments in the Health Center, libraries, and laboratory services. A technology fee of $300 is charged to all full-time students. An additional $350 fee is charged to all students enrolled in the College of Engineering and Applied Science or with a declared major in natural science. The full-time tuition rate is charged to students enrolled in twelve or more credit hours per semester. For students enrolled in less than twelve credit hours, tuition is charged on a per-credit-hour basis.

**University Housing Plan.**

A variety of living arrangements are available. The university provides housing for approximately 2,400 students on or near the campus in a wide selection of housing facilities. The housing arrangements are grouped within four basic categories, with rates associated with the category level. First and second year students are required to reside in university housing. Second-year students may choose residence hall or greek housing options. Junior and senior students contracting for residence hall housing are required to submit a $400 advance deposit. This deposit is credited toward the room charge for the respective semester. The deposit is either full or partially refundable based upon a published schedule.

**The Board Plan.**

Eleven board plans are available. First-year residents are required to participate in one of the Category I Meal Plans. Upperclass students living in a residence hall are required to participate in one of the Category I or II Meal Plans. Students residing in a fraternity or sorority are required to participate in their house meal plan and have the option to choose any of the university plans offered. Students residing in campus apartments or any off-campus facilities have the option to choose any of the plans offered.
Each board plan includes Dining Dollars. This pre-paid declining balance account was designed for maximum flexibility and convenience and can be used at most dining locations on campus to further increase your purchasing options.

**Tuition and Fees**

All fall semester charges are due the first business day of August and all spring semester charges are due the first business day of January. On a per-term basis, the expenses are charged at one-half the per-year charge. Accounts not settled by the due date are subject to a late-payment fee. All figures given are for the academic year (two semesters).

**Tuition, 2006-2007**

$33,470

- Technology Fee 300

**University Housing**

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (Dravo, Drinker, Richards, McClintic-Marshall, Centennial I &amp; II)</td>
<td>Category I</td>
<td>$5,100</td>
</tr>
<tr>
<td>II (ROTC, UMOJA, All Greek Houses, Warren Square)</td>
<td>Category II</td>
<td>5,460</td>
</tr>
<tr>
<td>III (Taylor, Trembley Park Suite Singles, Brodhead House)</td>
<td>Category III</td>
<td>5,680</td>
</tr>
<tr>
<td>IV (Sayre Park Village, Campus Square, Trembley Park Apartments)</td>
<td>Category IV</td>
<td>5,950</td>
</tr>
</tbody>
</table>

*Note: The above University housing rates are based on multiple occupancy.*

**Board**

The number of meals specified is per week.

<table>
<thead>
<tr>
<th>Category</th>
<th>Meal Plan</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Carte Blance</td>
<td>$4,200</td>
</tr>
<tr>
<td>I</td>
<td>The Whole Enchilada - 19 meals including $100 Dining Dollars</td>
<td>3,820</td>
</tr>
<tr>
<td></td>
<td>The Square Mealer - any 14 meals including $200 Dining Dollars</td>
<td>3,820</td>
</tr>
<tr>
<td></td>
<td>The Flexible Diner - any 12 meals including $300 Dining Dollars</td>
<td>3,820</td>
</tr>
<tr>
<td></td>
<td>225 Block Plan - any 225 meals per semester including $100 Dining Dollars</td>
<td>3,820</td>
</tr>
<tr>
<td>II</td>
<td>The Deluxe Dinner - any 10 meals including $200 Dining Dollars</td>
<td>3,370</td>
</tr>
<tr>
<td></td>
<td>The Dynamic Dinner - any 8 meals including $500 Dining Dollars</td>
<td>3,370</td>
</tr>
<tr>
<td></td>
<td>150 Block Plan - any 150 meals per semester including $300 Dining Dollars</td>
<td>3,370</td>
</tr>
<tr>
<td>III</td>
<td>The Value Plus - any 75 meals per semester including $500 Dining Dollars</td>
<td>2,060</td>
</tr>
<tr>
<td>IV</td>
<td>The Social Light - any 50 meals per semester including $500 Dining Dollars</td>
<td>1,600</td>
</tr>
<tr>
<td>V</td>
<td>The Dining Dollars - $600 Dining Dollars</td>
<td>600</td>
</tr>
</tbody>
</table>

Based upon the above charges, most first-year students are normally billed the tuition rate and technology fee along with the Category I or II room fee and a Category I meals board plan. The total cost for the four areas would be $42,690 to $43,050 for the 2006-07 academic year.

**Other Fees**

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per credit charge for credit or audit</td>
<td>$1,395</td>
</tr>
<tr>
<td>Engineering and Science Fee (for specified students)</td>
<td>350</td>
</tr>
<tr>
<td>Application fee (for undergraduate admission consideration)</td>
<td>65</td>
</tr>
<tr>
<td>Late pre-registration (assigned to all full-time students who do not select their full class load during the designated period each term)</td>
<td>50</td>
</tr>
<tr>
<td>Late registration</td>
<td>50</td>
</tr>
<tr>
<td>Late application for degree</td>
<td>25</td>
</tr>
<tr>
<td>Examination make-up (after first scheduled make-up)</td>
<td>10</td>
</tr>
<tr>
<td>Late payment (after announced date)</td>
<td>100</td>
</tr>
<tr>
<td>Returned check fine</td>
<td>20</td>
</tr>
<tr>
<td>Key/lock change (lost or non-return), room door, residence halls/sorority</td>
<td>25</td>
</tr>
<tr>
<td>Identification card (replacement)</td>
<td>10</td>
</tr>
</tbody>
</table>

The university reserves the right at any time to amend or add charges and fees, as appropriate, to meet current requirements. Fees applicable to the 2006-07 academic year will be announced no later than February 2006.

**Other Expenses**

A student should plan to meet various other expenses. These expenses include the purchase of books and supplies from the Lehigh University Bookstore located in Campus Square. Necessary purchases supporting one’s academic program should average approximately $1,200 per year. The Bookstore carries basic goods for students’ needs. A student should also plan an allowance to handle personal and travel expenses.

**Plan of Payments**

An itemized statement of charges is mailed from the Bursar’s Office approximately six weeks prior to the start of each semester. Payment is expected in full by the specified due date. Payment plans are available for those desiring extended payment arrangements.

Persons desiring a payment plan can elect participation in the university’s educational payment plan which provides for the payment of tuition, room, and board over four months per semester. Deadlines to participate are July 1st for Fall Semester and December 1st for Spring Semester.

The university also offers a plan under which enrolled undergraduate students can pre-pay more than one year of tuition. Complete information is available from the Bursar’s Office.

Students attending the university under a provision with a state board of assistance or with financial aid from other outside agencies must provide complete information to the Bursar’s Office if assistance is to be recognized on the semester statement.
Refunds of Charges

Tuition and Academic Fees
An undergraduate student in good standing who formally withdraws or reduces his or her course enrollment below twelve credit hours before 60% of the semester has been completed during the fall and spring semesters will be eligible for a tuition refund. An undergraduate student in good standing who formally withdraws or reduces his or her course enrollment before 60% of a session has been completed during the summer sessions will be eligible for a tuition refund.

A graduate student in good standing who formally withdraws or reduces his or her course enrollment before 60% of the semester has been completed during any semester will be eligible for a tuition refund.

The tuition refund for a student who withdraws or drops a course(s) is calculated on a daily basis. No refunds for tuition can be made for courses or workshops with five class sessions or less after the first day of class. Additional penalties may apply to withdraw from special programs or courses held at off-campus locations, such as Study Abroad or Geology Field Camp.

The date used to calculate refunds is based on when a properly authorized withdrawal or drop/add is received by the Registrar’s Office.

Academic fees (such as Technology Fee, Engineering and Science Fee, course associated fees, etc.) are generally non-refundable after the first day of classes.

In the event of a medical withdrawal or death of a student, certified by the Dean of Students, tuition will be refunded in proportion to the semester remaining.

Tuition Credit/Suspension
A student who is suspended from the university for disciplinary reasons will be eligible for a tuition credit (calculated on the basis of a standard tuition refund) toward the first semester the student is eligible for return as stated in the letter of suspension. If the student does not return in said semester, any tuition credit will be forfeited. Under no circumstances will a tuition refund be provided to students who are suspended for disciplinary reasons.

The amount credited will be based on the regular tuition refund schedule and calculated on the tuition rate in effect at the time of suspension. The date used to calculate the tuition credit will be the date of the incident that resulted in the suspension.

Refund Specifics
Credit balances resulting from an overpayment with a bank card are eligible to be refunded as a credit transaction to the bank card by contacting the Bursar’s Office.

Credit balances resulting from an overpayment with a check drawn on a domestic bank require a minimum two week waiting period before a refund check will be issued.

Credit balances resulting from loans, grants, scholarships, and other forms of financial aid are eligible for refund after the 10th day of class.

All refund checks will be payable to the student unless (a) the student has authorized in writing a parent or guardian listed in the Banner Student System to receive the refund, or (b) the check payment on the account was clear that the payment was from an unrelated organization or institution, such as a sponsoring corporation.

Refund checks are mailed to the student’s university post office address or, if none, to the student’s “home address” listed in the Banner Student System. Any exception to this policy must be authorized in writing by the student.

Students receiving financial aid that drop below full time status must have their financial aid package re-evaluated by the Office of Financial Aid prior to the issuance of any refund check.

Residence Hall Refunds
Residence hall rooms are rented on an annual basis only. A student who signs a room contract is expected to reside in and be financially responsible for residence hall housing for both the fall and spring semesters of the specific academic year for which the contract was signed. A student who forfeits a housing reservation and who returns to the university at any time during the contracted academic year is still obligated for housing rental charges if vacancy in the residence hall facilities exists and without regard to location. An advance deposit is required by rising juniors and seniors to hold a room. This deposit is either full or partially refundable based upon specific criteria and a published refund schedule.

Prior to registration, housing rental refunds are made in full in the event a student does not register because of illness, injury, or death; is dropped from the university due to academic reasons; attends a university-approved study abroad or co-op program; graduates; or voluntarily withdraws from the university. After registration, prorated housing rental refunds are granted based on separation from the university due to illness, injury, or death. In the event of voluntary withdrawal, a prorated refund is possible only with the provision that the lease can be transferred to another student for whom no other university accommodations exist. Prorated refunds are based upon the date the room key is returned to the Office of Residential Services. Any student suspended or expelled from the university will not be granted any housing rental refund.

Refunds for Board Plans
Board plan refunds are made in full in the event a student does not register and has not purchased any meals from the plan.

After registration, a student who purchases meals on the board plan but withdraws from the university will receive a pro-rata board plan refund based on the number of unused weeks remaining on the plan.

Any student suspended or expelled from the university will not be granted a board plan refund.

Board plans may be changed within the requirements of the living area up to the tenth day of class each semester at the Bursar’s Office with charges assessed per an established pro-rata schedule.

After the tenth day of class, a student who wishes to change a board plan must petition and receive approval from the Office of Student Auxiliary Services. If the change is approved, an adjustment will be processed on a pro-rata basis to the meal portion of the plan charge as of the week following the last meal purchased.

Adjustments to Financial Aid
The Office of Financial Aid is responsible for determining the appropriate redistribution of charges and refunds when students receive any financial assistance. The decisions are made on the basis of federal, state and institutional policies. Any refunds due to the Title IV...
programs will be refunded in the following order:
- Unsubsidized Federal Stafford Loan
- Subsidized Federal Stafford Loan
- Federal Direct Unsubsidized Stafford Loan
- Federal Direct Subsidized Stafford Loan
- Federal Perkins Loan
- Federal PLUS Loan
- Direct PLUS Loan
- Federal Pell Grant
- Federal SEOG
- Any other Title IV program

Financial Aid

The mission of the Office of Financial Aid is to reduce the financial barriers to a Lehigh education for those families whose resources alone would make it impossible to meet the cost of attendance. The university is deeply committed to providing need-based financial aid.

Lehigh expects each family to make every effort to pay tuition and other educational expenses. Our aid program is designed to measure the difference between our costs and the amount of money your family can be expected to contribute towards those costs. That difference is called "financial need" and represents financial aid "eligibility." The majority of Lehigh's funds are awarded on the basis of financial need. Our merit-based aid program is explained below.

The basic forms of financial aid are grants and scholarships, employment and loan assistance. Grants and scholarships are not repayable. The majority are awarded on the basis of "need" and are renewable on the basis of both continuing "need" and some stated minimum academic progress criteria. Employment provides money for books and personal expenses, and is paid through bi-weekly payroll checks based on hours submitted. Loans are repayable funds from one or more sources, repayable after the student ceases to be enrolled on at least a half-time basis.

Additional sources of aid are: state agencies, employers, and various clubs, churches, religious and fraternal organizations, and foundations. High school guidance counselors are able to provide information about local aid programs. There are also database scholarship search organizations that can be accessed via the World Wide Web. Some examples are www.collegeboard.com, www.collegenet.com and www.gocolege.com. (Caution: there are many scam operations that promise great things if you send them a check. It is better to limit your efforts to the proven sites referenced above.) You are expected to apply for all possible kinds of outside financial assistance, especially the Pell Grant and state grants. You are also expected to take maximum advantage of outside sources to enable Lehigh to spread its own funds farther and to limit student borrowing.

Application Procedures for 2007-2008

The following instructions are addressed to prospective freshmen.

To be given proper consideration for financial aid, your application must be completed and ready for review by February 1, 2007. To meet that deadline, you must register by January 15, 2007 with the College Scholarship Service PROFILE. Register over the web (www.collegeboard.com). The PROFILE service is an exclusively on-line service. Students who do not have internet access should contact CSS at 1-800-778-6888. Complete the personalized PROFILE application as soon as possible, and be sure to complete the PROFILE to CSS by February 1, 2007; supplemental forms should be sent directly to Lehigh by February 15, 2007. Within two to four weeks CSS will report the results to Lehigh and send you an acknowledgment. You may find it necessary to use estimates in completing financial aid forms. It is better to use estimates and file on time. Late filers are at risk of not being aided. Submit complete, signed copies of your and your parent’s 2006 IRS 1040 forms, including all schedules and W2 statements by February 15, 2007. Finally, Lehigh University expects citizens of the United States, and eligible non-citizens, to apply for federal and state student aid. To be considered for federal student aid, including Federal Pell Grants and Federal Stafford Loans, complete the Free Application for Federal Student Aid (FAFSA) which is available at your high school or from the web at: www.fafsa.ed.gov. Complete after January 1, 2007 but no later than February 1, 2007. Lehigh’s federal school code is 003289.

Early Decision Candidates

For Early Decision I

To receive information on your financial aid eligibility, you will be required to register with CSS by November 1, 2006 and complete the filing process by November 15, 2006. We require a complete signed copy of your parent’s 2005 IRS 1040 form by November 15, 2006. Completion of the FAFSA and submission of 2005 tax returns are the same as noted above.

For Early Decision II

To receive information on your financial aid eligibility, you will be required to register with CSS by January 1, 2007 and complete signed copies of your parent’s 2005 IRS 1040 form by January 15, 2007. Completion of the FAFSA and submission of 2006 tax returns are the same as noted above.

International students are eligible for university-funded financial aid. Opportunities are limited. Two forms are required: the Foreign Student Financial Aid Application and the Certificate of Finances. The Office of Admissions will send both forms upon receipt of a completed application for admission.

Renewal of Aid

It is necessary to reapply for financial aid for each year of study and is limited to four years, for a four year program. Extensions beyond that time period require petitions to the Committee on Undergraduate Financial Aid. Applications and filing instructions are available in December in the Office of Financial Aid, or as otherwise posted.

Returning students must file the CSS PROFILE as well as the Renewal FAFSA by April 15, 2007. The filing deadline for all forms, including signed copies of both parents’ and student’s 2006 federal tax returns, is April 15, 2007. Your application will not be reviewed until the FAFSA, PROFILE, Lehigh application and the federal income tax forms are received.

To receive any type of aid, you must be making satisfactory academic progress. The written university policy on satisfactory academic progress is available in the Office of Financial Aid. Generally speaking, it includes 1) remaining in good standing (based on your GPA), 2) advancing a minimum of 24 new credits per academic year (mini-
Scholarship program. Scholarships ranging from $1,000 to $2,000 per year may be awarded to Merit finalists selecting Lehigh as their first-choice college, and who are not also receiving another form of National Merit scholarship.

**Rodale Scholarship in Journalism**
Qualified students may receive a $2,500 scholarship (which may be renewed for three additional years); opportunities to intern at Rodale Press or other prominent media; and one-on-one instruction with Lehigh faculty.

**Athletic Awards**
Alumni Student Grants are awarded on the basis of financial need and exceptional athletic talent as evaluated by the Department of Intercollegiate Athletics. Grants are supported by annual alumni contributions. Alumni Student Grants replace the loan and employment portion of a financial aid package. Lehigh also awards NCAA grants in the sports of wrestling and men's and women's basketball.

**University Tuition Loans**
Lehigh uses these loan funds to supplement other types of educational loans, especially in the freshman and sophomore years. Parental endorsement is required on the promissory note. Repayment begins three months after graduation or withdrawal from the university. The minimum monthly repayment rate is $50 plus interest, which is seven percent (7%) per annum. Interest begins to accrue after you are no longer at least a half-time student. Deferments, up to a maximum of three years can be extended for service in the military, VISTA, or Peace Corps; for those who are experiencing undue hardship; or for those who return to school on at least a half time basis. The average debt level of Lehigh students graduating in 2005 was $23,418.

**Loan-Cancellation Awards**
This is a unique Lehigh award that may be used as an incentive if your academic average is not sufficiently competitive for scholarship consideration. Limited to $4000, a Loan-Cancellation begins as a loan, with the same terms as our regular University Tuition Loan. This form of aid has the potential of being converted to a grant if the following conditions are met: 1) the required grade point average for the award period as shown on the award notification is achieved; 2) 12 or more credits have been passed for each award term; courses above the 12 credits may be repeated courses; 3) all outstanding X or N grades must be removed prior to the end of the following academic period. It is the responsibility of the student to notify the Office of Financial Aid when any outstanding courses have been completed. If not canceled, the loan is repayable according to the terms for university tuition loans.

**President's Scholars Program**
This program provides an opportunity to receive free tuition for a period of up to 12 months immediately following the awarding of the baccalaureate degree. You may be declared a President's Scholar if, upon completion of 90 Lehigh credit hours, you have a cumulative GPA of 3.75; or, if upon graduation, you are accorded Highest Honors. The Registrar is responsible for determining eligibility. For further eligibility requirement information please go to the Registrar's Office Web page at lehigh.edu.
Availability of Jobs
If you are offered work-study as part of your aid package, the Office of Financial Aid will provide you with the necessary forms and orientation to student employment. Jobs are available throughout the university and are funded through federal and university sources. Pay rates range from the federal minimum wage to $10.50 per hour. You are paid on a bi-weekly basis, as you work and submit timesheets. Your work-study earnings are not deducted from your billed expenses.

The Job Locator Development Program is designed to assist you if you do not qualify under the Federal Work-Study program to find employment off-campus or with a number of incubator companies located on the Mountaintop Campus. This program is coordinated through the Office of Career Services.

Aid from the government
Lehigh University is an eligible participant in federally funded student aid programs. Campus-based programs, where the university makes the awards based on the dollars available, include:
Federal Supplemental Educational Opportunity Grants
Federal Perkins Loans
Federal Work-Study
Direct entitlement programs (where the government directly, or through commercial lenders for loan programs, provides the necessary funds) include:
Federal Pell Grants
Federal Stafford Loans
Federal Unsubsidized Stafford Loans
Parent Loan for Undergraduate Students (PLUS)

Alternative Educational Loan Programs

The Office of Financial Aid can provide a list of programs with current interest rates and terms and conditions of repayment.

Army ROTC Scholarships
The U.S. Army awards scholarships in varying amounts, supplemented with $480 toward course-related books and a $250 per month stipend. Lehigh University is one of a handful of universities whose ROTC recipients may receive a tuition scholarship for four years. Recipients incur an obligation to serve on active duty as commissioned officers. Contact the Department of Military Science for details.

Checklist for Financial Aid
For prospective freshmen:
1. Register for the CSS PROFILE service by January 15, 2007, and complete the application by February 1, 2007.
2. Complete the Free Application for Federal Student Aid (FAFSA) by February 15, 2007.
3. Mail a complete, signed copy of both your parents’ and your 2006 federal income tax return, including all schedules and W2 forms by February 1, 2007.

For students transferring from another college or university
1. Register for the CSS PROFILE service by February 15, 2007 and complete the application by March 1, 2007.
2. Complete the Free Application for Federal Student Aid (FAFSA) by March 1, 2007.
3. Mail a complete, signed copy of both your parents’ and your 2005 federal income tax returns including all schedules and W2 forms to the Office of Financial Aid by March 1, 2007.
4. Complete and mail the Lehigh University Transfer Application for Financial Aid which is sent to all admission candidates by the Office of Admission by March 1, 2007.

For Returning Students
1. Register for the CSS PROFILE service by April 1, 2007, and complete the application by April 15, 2007.
3. Complete and return the Lehigh University Application for Undergraduate Financial Aid, together with complete, signed copies of your parents and your 2006 IRS 1040 forms with all schedules and W2 forms, to the Office of Financial Aid by April 15, 2007.

Information for all financial aid applicants
1. Check to be sure that the correct social security number is listed on all forms. If you do not have a number, apply for one and notify Lehigh as soon as it is received.
2. Photocopy all forms filled for your records.
3. Submit the appropriate state grant application, especially if a resident of Ohio, Massachusetts, Connecticut, Rhode Island, Pennsylvania, Maryland, Delaware, Vermont, or West Virginia - states from which Lehigh students have brought scholarships. Be guided by the specific instructions. The FAFSA will be the basic form for state grant consideration, although some states do require a supplemental application. The latest date for filing the FAFSA, and being assured it will be received on time, is February 1, 2007 for prospective freshmen, and April 15, 2007 for continuing students.

Student Rights
Students have the right to know
• the cost of attendance;
• the refund policy for students who withdraw;
• the financial assistance available from federal, state and institutional sources;
• procedures and deadlines for submitting applications for financial aid;
• how financial aid recipients are selected;
• how eligibility was determined, including all resources the aid office considered available to the student;
• how and when funds will be disbursed;
• an explanation of each type of award received;
• for any student loan received: the interest rate, total amount to be repaid, when repayment begins, the length of the repayment period, and the cancellation or deferment provisions of the loan;
• for any Federal Work-Study or university-funded job: a description of the job, the hours to be worked, the rate of pay, and how and when the student will be paid;
• The criteria used to determine satisfactory academic progress for financial aid purposes; and
• how to appeal a decision by the Office of Financial Aid concerning any aid award.
Student Responsibilities

It is the student's responsibility to:

• read directions thoroughly, complete all application forms accurately, and to comply with any deadlines;
• provide any supplemental information or documentation required by the Office of Financial Aid or other agency if applicable;
• read, understand, and keep copies of any forms the student is required to sign;
• repay any student loans received;
• attend an entrance interview and an exit interview if federal, state or university loans are received while in attendance at Lehigh;
• notify the Office of Financial Aid of any change in enrollment status or financial status (including any scholarships or grants received from outside sources); changes of address and enrollment status must also be reported to lender(s) for any loan(s);
• satisfactorily perform the work agreed upon in a Federal Work-Study or university-funded work program; and
• know and comply with all requirements for continuation of financial aid, including satisfactory academic progress requirements.

For more information write to the Office of Financial Aid, Lehigh University, 218 W. Packer Avenue, Bethlehem, PA 18015; telephone (610) 758-3181; FAX (610) 758-6211, email infoa@lehigh.edu or visit our website www.lehigh.edu/~infoa.

Campus Life

Approximately 70 percent of all undergraduate men and women live on campus. Campus living facilities include traditional residence halls, apartments, suites in a multi-story building, or residence in fraternity or sorority houses. Physical facilities are also described in Section VI.

Residence Halls

The offices of Residential Life and Residential Services at Lehigh University are committed to providing quality housing and educational services for residence hall students. Lehigh firmly believes that living in a residence hall allows students to become members of a positive community, in which they can live and learn with individuals from diverse backgrounds and experiences.

Efforts are made to integrate academic and out-of-the-class learning in order to better enable students to develop balanced and realistic approaches as they prepare for life after graduation.

Approximately half of all Lehigh undergraduates live in residence halls. The university has twelve residence hall complexes for undergraduate men and women.

Residence halls offer traditional style living (in buildings with corridors), and suite/apartment-style living. A wide variety of special interest housing including the Global Citizen House, the ROTC House, Substance Free housing, Taylor Residential College, and the UMMA House are also available.

To help facilitate and maximize the residential experience, approximately ninety staff members of the Office of Residence Life live in the residence halls. On every hall there is a student staff member, a Gryphon, who provides assistance with personal and academic matters, serves as a campus resource, mediates roommate conflicts, and provides educational, and social programs. In addition to student staff, six full-time master's degree level professionals, Residence Life Coordinators, live and work in the residence halls, and oversee the daily operations for their assigned areas on campus.

All residence halls include House Councils that are part of the larger Residence Hall Association. Participation in House Councils provide students opportunities to develop leadership skills. House Councils are governed by the Residence Hall Association, which is a vital and active organization whose primary focus is to help fund and provide residence hall programs, assess student feedback and develop service-oriented programs.

All First and Second year students are required to live on campus unless they petition and are approved for exemption. Due to this requirement, housing is limited and not guaranteed for Junior and Senior students.

When a First Year student candidate accepts an offer of admission, the candidate is provided with a Lehigh Identification Number that will provide internet access to the Campus Portal and the Residence Hall Room and Board Application/Contract. Priority for assignment is based on the date the candidate accepts admission. First Year students are informed of their room assignment and other information in early July.

Second Year students have the option of becoming a member of a Greek Organization and residing in a Fraternity or Sorority or they may participate in a Room Selection Process to choose residence hall housing.

Housing that is available for Junior and Senior students is distributed through a Residence Hall Housing Lottery system. Students who are not given housing through this process may apply to a waiting list to receive housing at a later date, should it become available.

Any questions in regards to housing should be directed to the Office of Residential Services by calling 610-758-3500 or sending email to inrsd@lehigh.edu.

Fraternities and Sororities

The university has a long tradition of Greek life. The continued strength of this system is due in part to the efforts of the Interfraternity Council, Panhellenic Council, the Greek Alumni Council, the Office of Residential Services and the Office of the Dean of Students to improve the quality of fraternity and sorority life through membership, leadership, social, educational, housing, and financial management training.

Greek life is an attractive alternative among the residence options at Lehigh. Each fraternity or sorority is like a close-knit community. These groups determine their own goals; organize their own houses and business affairs with the assistance of the Office of Residential Services; conduct their own social, philanthropic, and athletic activities; assist with planning their own meals; and select their own membership. Because they are largely self-governing, these organizations offer numerous opportunities for student involvement and leadership.

The twenty-two fraternities and eight sororities form a larger Greek community comprising approximately 38 percent of the undergraduate population at Lehigh.

Through the Interfraternity Council (IFC) and the Panhellenic Council, they determine policies and organ-
ize social, philanthropic, and educational activities for the Greek community as a whole.

There are eight sorority chapters at Lehigh. Two are housed in the Centennial I complex on the Asa Packer Campus; six are located in Sayre Park. The sororities are Alpha Chi Omega, Alpha Gamma Delta, Alpha Omicron Pi, Alpha Phi, Delta Gamma, Gamma Phi Beta, Kappa Alpha Theta, Pi Beta Phi.

Twenty of the fraternities are located in Sayre Park on the Asa Packer Campus. One is located near the campus and one is non-residential. The fraternities are Alpha Chi Rho, Alpha Tau Omega, Beta Theta Pi, Chi Phi, Chi Psi, Delta Phi, Delta Sigma Phi, Delta Tau Delta, Delta Upsilon, Kappa Alpha, Kappa Alpha Psi, Kappa Sigma, Lambda Chi Alpha, Phi Gamma Delta, Phi Kappa Theta, Phi Sigma Kappa, Psi Upsilon, Sigma Alpha Mu, Sigma Chi, Sigma Phi Epsilon, Theta Chi, and Theta Xi.

Religious Activities

The Religious Program is under the general supervision of the university chaplain. The chaplain participates in the ceremonial life of the University and conducts special university worship services throughout the year. All worship services are interdenominational, with some being inter-religious. Roman Catholic masses are held regularly. The Newman Center can be contacted for a schedule of services.

Lehigh University is non-denominational. Packer Memorial Church, dedicated in 1887 in honor of the University's Founder, Asa Packer, continues to be the center for campus worship services.

The University Chaplain works with representatives of campus religious groups of all faiths and assists students in planning religious life programming. The chaplain's office sponsors an Oxfam Fast in November, organized the original Community Service Desk that helps coordinate volunteer services on campus, and creates opportunities for discussion of moral and spiritual issues through the Chaplain's Forum. In addition to providing pastoral counseling, supporting religious groups, and helping bring speakers to campus, the chaplain seeks to provide leadership to the university on religious and ethical issues.

Over fifteen religious groups on campus provide opportunities for religious fellowship. The groups include the Newman Association for Roman Catholic students under the guidance of a resident priest; the Jewish Student Center, which sponsors various activities for Jewish students; and organizations for Hindu and Muslim students. A variety of Protestant Christian organizations are available to students, including the Lehigh Christian Fellowship and the Fellowship of Christian Athletes.

The chaplain's office makes information about religious life available to all students through the Chaplain's web page and can be contacted at any time for information about worship opportunities and religious activities either on campus or in the local Bethlehem community.

Student Organizations

Lehigh offers a wide variety of extracurricular activities and student organizations. The student-run campus newspaper keeps the campus informed while the student-run campus radio station and the many drama and musical organizations entertain. Additionally, the Lehigh University Student Senate recognizes over 150 student clubs ranging from academic organizations and cultural groups to competitive club sports and political organizations. Student club activities are open to everyone and many of their activities are advertised on Lehighlive.com, an interactive site that lists campus events, movie listings, upcoming programs, and much more!

Students are invited to view a complete list of campus organizations by going to the following URL www.lehigh.edu/instuact/sac.html by visiting the Lehigh University homepage and selecting the link to clubs and organizations.

Lehigh University Theatre

In Spring, 1997, the department of theatre moved to the Zoellner Arts Center, Lehigh’s impressive performing arts facility. Three theatres, scene and costume shops, a dance studio, music practice rooms, classrooms and more enhance the department’s curricular activities. The department of theatre’s annual production program includes four productions in the three hundred-seat Diamond Theater and multiple lab productions in the one-hundred seat Black Box Theater. The plays range from classics to world premieres and recent mainstage seasons have included How I Learned to Drive, Midsummer Night’s Dream, Proof, A Funny thing happened On the Way To the Forum, and The Good Woman of Sezuan.

Shows directed and produced by students as class projects or independent work occur regularly in the Black Box Theater. Recent lab theatre productions have included Wayzareek, Black, What the Butler Saw, and Arcadia. Many events are sponsored by the Mustard and Cheese Drama Society, the country’s second oldest collegiate drama club.

Auditions and production crews are open to all members of the university community. Production opportunities exist in performance, choreography, set and costume construction, properties management, lighting, sound, house management and publicity. Advanced students have opportunities to direct or design, under faculty supervision.

Outstanding work in the mainstage or lab theatre seasons may be recognized with Williams Prizes and theatre department prizes in acting, directing, design, and technical production.

Professional guest artists — directors, playwrights, designers, and actors — frequently visit the Lehigh campus to work on mainstage productions, teach classes, and conduct seminars and workshops for all interested students. The department also sponsors artists-in-residence, guest lecturers, workshops, and touring performances.

Musical Organizations

The music department offers students an array of ensembles in which to perform and develop leadership skills. The choruses, bands, orchestra, and ensembles are conducted by members of the faculty and managed by elected student leaders. Nearly all performances, except Christmas Vespers, are held in Baker Hall in the Zoellner Arts Center.

Students earn one credit per semester for each ensemble or lesson course in which they are registered.
The Lehigh University Philharmonic Orchestra, Paul Chou, director. The Lehigh University Philharmonic Orchestra, a group of over seventy-five instrumentalists, performs approximately five times each year and has been featured in concerts in Washington, D.C., Florida, and Pennsylvania and on tour in Austria, the Czech Republic, China, Brazil, and South Africa. The orchestra has consistently earned standing ovations from audiences when performing, often for a full house.

The Jazz Ensemble, Bill Warfield, director, performs contemporary literature as well as the music of the more traditional bands such as Basie, Ellington, Goodman and Herman. In addition to performances on campus each semester, other concerts take place in New York City and the surrounding areas. Membership is by audition.

The Jazz Band, directed by Bill Warfield consists of student, faculty, and community musicians performing contemporary and traditional big band literature. Concerts are performed in the fall and spring at Lehigh as well as in the surrounding communities. Membership is by audition or invitation.

The Jazz Combo is an advanced combo (chamber group) for the most experienced improvisers under the direction of Dave Riekenberg. The group performs several times each semester on and off campus. Membership is by invitation only. Other combos are formed to accommodate student interests.

The Marching 97 meets during the fall semester and plays at each Lehigh home game, as well as several away games. Made up of students from all of the colleges at Lehigh, the band is a student-run organization dedicated to building a positive Lehigh spirit at games and off the field. Band camp is held three days during the week prior to the start of classes. No audition is required.

The Symphonic Band meets and performs only in the spring semester of each year. The ensemble consists of students, faculty and staff who are interested in playing music, and no audition is necessary.

The Wind Ensemble under the direction of David B. Diggs, is a select group of students dedicated to performing music for woodwinds, brass and percussion. These students represent many diverse majors. In 1999 The Wind Ensemble was honored by Downbeat Magazine, receiving the award for the most outstanding college symphonic band.

The Lehigh University Choir, directed by Steven Sametz, is an active force in campus life. The 50 mixed voices of the Choir, drawn from all majors of the University, are auditioned at the beginning of the academic year. They give four major concerts on campus and tour internationally. The Choir frequently performs with orchestra and regularly performs new music, including many works written especially for them. They have been heard five times on National Public Radio. Recent tours include Moscow, St. Petersburg, and Berlin; Florida; California; the Virgin Islands; Germany; Austria; France; and a five-city tour of Asia.

The Lehigh University Choral Union, composed of students, faculty, staff, and Lehigh Valley community members under the direction of Steven Sametz, performs three times a year with internationally known soloists and a full symphony orchestra. The 200 singers of the Choral Union bring major works such as Beethoven's Ninth Symphony, Mahler's Second Symphony, and the Brahms Requiem to a broad audience.

Glee Club – The recently revived Glee Club sings traditional and new music for male voices under the direction of Steve Sametz. Enthusiastically welcomed by alumni and the university community, the Glee Club has thrilled audiences on campus, on tour, and at Lincoln Center, where they performed the University Choir.

LUVME (Lehigh University Very Modern Ensemble), directed by Paul Salerni, combines students, faculty, and professionals in performances of recent music. LUVME also sponsors concerts of music by Lehigh students.

**ArtsLehigh**

ArtsLehigh is an all-university program designed to promote, facilitate and integrate the arts, creativity and an aesthetic sensibility throughout the curriculum, campus environment and local community. The program is a resource for faculty, staff and students who are interested in incorporating artistic and creative experiences in their courses, student life and civic engagement.

Programs such as, *Faculty Colloquias* focus on teaching creatively, encourage out of classroom experiences as well as interdisciplinary approaches to various subject matter. Information about campus and local arts activities are also promoted for curricular consideration.

Students are welcome to participate in numerous programs presented by ArtsLehigh: *ArtsAlive PreListen* is an orientation on the arts offered at Lehigh for Freshman and transfer students; *ArtTalk Thursdays* give students and others the opportunity to exchange thoughts and ideas on the arts; *Performance Fridays* highlight talented singers and musicians and provide a casual atmosphere for those who want to come and listen; *Spring ArtsFest* is a celebration of diversity in the arts and encourages students to express their creativity; and *ArtsVenture* trips take students and others to art museums and points of interest which correlate with their curricular studies.

The local community is invited to participate in a number of activities on campus, as well as in the surrounding geography that increase the cultural capital in South Bethlehem. ArtsLehigh presents activities in Campus Square during *First Fridays*, and partners with a number of local arts and civic organizations to engage more Lehigh students in the arts and creativity on the Southside.

**Volunteer and Community Services**

Lehigh’s Community Service Office, located in the Ulrich Student Center, is a place where students, faculty, staff, and student organizations interested in volunteering in the community can get information. The Office is staffed by students who serve as Community Service Assistants, and the Community Service Coordinator, a professional staff member in the Dean of Students Office.

Students are involved in a wide range of service programs. Some of the projects include tutoring and mentoring programs with local youth through opportunities such as the America Reads and America Counts program. Many students are also active in local hospitals, with environmental groups, senior citizen centers, and shelters. The Office also provides students the opportunity to travel around the country during Spring Break to serve in homeless shelters, on environmental projects, Habitat for Humanity, and with youth programs.
Part of the Lehigh experience is getting involved. If you want to work in the community, contact the Community Service Office at (610) 758-4583 or check out our web site at www.lehigh.edu/service.

Guest Speakers
Students have the opportunity to hear a wide variety of notable speakers. Among those to visit the campus have been former President of Poland, Lech Walesa; writer Salman Rushdie; poet and writer Maya Angelou; Attorney F. Lee Bailey; Lee Iacocca; Princeton Professor Cornel West; General Colin Powell; South Africa’s Bishop Desmond Tutu; and novelist John Irving. Thomas Armstrong, director of the Whitney Museum, spoke with students during a week long residency. An Engineering Expo with speakers representing many prominent industries featured Peter Bridenbaugh, vice president of science and technology, Alcoa. From art to engineering, the campus stays in touch with current issues, trends, and movements through its many and varied speaker series.

Speakers are invited by various committees and academic departments. Several of the committees, including the Visiting Lecturers Committee, welcome participation by students as well as faculty and staff. Major lectureships include The Cohen Lecture, Trezolini Lecture (on law), the Connell Lecture (on religion), the Distinguished Lecture Series: Leaders of Practice (Education Department), and The Kenner Lecture on Tolerance. Lectures are also presented by the Humanities Center and the Friends of the Library.

Athletic Opportunities
Students can participate in many intercollegiate, recreational, and intramural athletic programs.

NCAA Division I intercollegiate varsity sports include the following, FALL: football, men’s and women’s cross-country, men’s and women’s soccer, women’s field hockey, and women’s volleyball. WINTER: men’s and women’s basketball, wrestling, men’s and women’s indoor track and field, and men’s and women’s swimming and diving. SPRING: baseball, men’s and women’s tennis, men’s and women’s golf, men’s and women’s outdoor track and field, men’s and women’s lacrosse, women’s softball and women’s crew.

Athletic facilities are located in Taylor Gymnasium and Grace Hall on the Asa Packer campus, and on the Murray H. Goodman campus, which is located one and one-half miles south of the main campus. The 500-acre Goodman athletic complex includes Stabler Arena, which seats 5,600 and hosts all Lehigh basketball games and tournament wrestling matches. The campus also contains Goodman Stadium, a 16,000-seat football stadium, and the Philip Rauch Field House, which includes a one-eighth-mile track and indoor tennis and basketball courts. The four-court Lewis Indoor Tennis Center was completed in 1994. A dual field complex, Ronald J. Ulrich Sports Complex, features both artificial turf and natural grass fields for lacrosse, soccer and field hockey. Other facilities on the campus include a championship cross-country course, baseball and softball fields, outdoor tennis courts, the John C. Whitehead Football Practice Complex, the A. Haigh Cundy Varsity House, numerous practice fields, and an all-weather, nine-lane, outdoor 400-meter track.

Lehigh is affiliated with the National Collegiate Athletic Association (NCAA), the Patriot League and the Eastern Intercollegiate Wrestling Association (EIWA). Lehigh frequently hosts collegiate championship events in men’s and women’s sports and is the summer training camp facility of the Philadelphia Eagles of the National Football League.

Intramural/Club Sports
The Department of Intramural and Club Sports supervises some 10 intramural and 30 club sports. The aim is to insure the health and physical development of students while participating in various levels of competition. ALL PARTICIPANTS ARE RESPONSIBLE TO SUPPLY THEIR OWN APPROPRIATE INSURANCE COVERAGE.

Through its program of intramural sports, the university endeavors to maintain among its students a high degree of physical fitness, to establish habits of regular and healthful exercise, to foster the development of self-confidence, good sportsmanship, and a spirit of cooperation, and to provide each student with ample opportunity for acquiring an adequate degree of skill in sports of the type in which participation can be continued after graduation.

Club sports are oriented toward mutual interest and physical activity. The underlying purpose of any club is to join together those members of the student population that share a common activity interest. Club competition can range from a club varsity status (Men’s Crew or Ice Hockey) to equestrian, cycling, cheerleading, skiing, rugby or water polo.

Good Citizenship
The university exists for the transmission of knowledge, the pursuit of truth, the development of students, and the general well-being of society. Free inquiry and free expression are indispensable to the attainment of these goals. All members of the academic community are encouraged to develop the capacity for critical judgment and to engage in a sustained and independent search for truth.

Out of concern for individuality and respect for the privacy of all persons, the university does not impose a common morality on its members. Institutional existence, however, is a privilege granted by public trust, subject to the sanctions and responsibilities defined by the society of which the university is a part. Furthermore, society generally provides legal canons, ethical mores, and conduct expectancies pertaining to individual and collective behavior. Thus, the university has the obligation to establish standards of conduct appropriate and applicable to the university community.

Lehigh accepts its responsibility as an institution within the broader social community. The standards of behavior expected of its members are those that the university regards as essential to its educational objectives and to community living.

Lehigh relies primarily on general principles and statements of expectation for standards of conduct, and assumes that those admitted to the university community are capable of accepting that responsibility. Specific regulations are kept to a reasonable minimum and are published in the Lehigh Student Handbook. Students
are responsible for knowing the procedures, rules and regulations as published in the Handbook.

In accordance with these purposes and objectives, disciplinary action will be taken when necessary to protect the academic integrity of the university and the welfare of its members.

All members of the university community are subject to municipal, state, and federal laws. The university is not a sanctuary for persons who violate these laws. Lehigh is concerned, however, about the rights of students as citizens and will direct them to legal counsel when necessary. Off-campus misconduct may be the basis for disciplinary action.

Further, the university as a part of the community has an obligation to report serious crimes to civil authorities.

Gottlob Klemm. The musical tradition, including the Bach Choir of Bethlehem, whose yearly Bach Festival continues today, including Moravian Academy and Moravian College, stem from this tradition.

The Moravians, although avowedly opposed to war, found their community pressed into service as a hospital when Washington's troops bivouacked at Valley Forge during the winter of 1777-78. Washington came to the community once, and many other Continental Army officers were visitors.

The Moravians, although avowedly opposed to war,...
Atop South Mountain is a steel tower known as the Star of Bethlehem. During the holiday period, the star’s hundreds of bulbs create a 95-foot-high star that can be seen for many miles. The star was the gift to the community of Marion Brown Grace, wife of Eugene Gifford Grace, the steel magnate and president of the university board of trustees.

The community of Bethlehem has a population of approximately 78,000 persons with segments from a variety of nations who retain traditions of their country of origin.

There are five principal independent colleges in the Lehigh Valley besides Lehigh. They are Lafayette, DeSales University, Moravian, Muhlenberg, and Cedar Crest. A cooperative program is maintained that allows cross-registration for courses as well as shared cultural events. There are also two community colleges in the area.

In August 1984, Bethlehem held its first Musikfest, a 10-day annual festival that features a variety of musical performances and ethnic foods. An instant success, Musikfest was the brainchild of Jeffrey A. Parks, a lawyer and 1970 Lehigh graduate.
II. University Resources

Library and Technology Services

The exponential growth and increasing sophistication of information technology offer new and exciting opportunities for enhanced teaching, learning, and research. At Lehigh University, one merged organization called Library and Technology Services (LTS) delivers communications, computing, distance education administration, enterprise systems implementation, library, and media services to capitalize on these new opportunities. Additional information about Library and Technology Services, can be found at www.lehigh.edu/lts.

Libraries

Lehigh University has two major facilities, the Fairchild-Martindale Library and the Linderman Library. From May 2005 through December 2006, the university will renovate Linderman Library and create a laboratory and showcase for humanities programs and collections, as well as an intellectual center for the campus at large. During this time, library services have been relocated and there are interim procedures in place for using humanities research materials. The web site www.lehigh.edu/lts/linderman has detailed information about the project, how to use library services during the renovation, and the construction phase itself.

The Lehigh University library collection comprises over one million volumes and subscriptions to more than 12,000 periodicals, many of them in electronic format. The Fairchild-Martindale Library contains books, journals, newspapers, audio-visual resources, and microform collections in all branches of science, engineering, mathematics, and the social sciences, including business and education. It provides collaborative learning spaces, wireless connectivity, and comfortable lounge areas. As a government depository, the Fairchild-Martindale Library contains books, journals, newspapers, audio-visual resources, and microform collections in all branches of science, engineering, mathematics, and the social sciences, including business and education. It provides collaborative learning spaces, wireless connectivity, and comfortable lounge areas.

In spring 2007 the historic Linderman Library will reopen with many new features: four seminar rooms, a computer classroom, a large quiet study space, five group studies, and a café commons space. It will again house books and journals in the humanities and Lehigh’s impressive collection of rare books including Darwin’s *Origin of Species* and James John Audubon’s four-volume elephant folio edition of *Birds of America*. Seven digital library projects highlight various aspects of the collection, ranging from “Digital Bridges” (books on 19th century bridge construction) to “The Problem of the Planets” (Copernicus’ 1543 posthumous publication). In addition Special Collections holds some 30 separate archival collections that focus on industrial and regional history.

The “My Library” tab on the campus portal offers students, faculty, and staff a full range of electronic indexes, reference works, full text databases, and image databases customized for their disciplines, easily accessible from on and off campus. Lehigh’s own online catalog (named ASA after Lehigh founder Asa Packer) provides direct links to electronic resources. Personalized interlibrary loan software (“Illiad”) allows for easy borrowing from collections in other libraries throughout Pennsylvania and around the world. Twenty-six million books in Pennsylvania’s largest academic libraries may be identified immediately for quick borrowing through a shared online catalog. Students and faculty may borrow books directly from other academic libraries in the Lehigh Valley.

Networking and Voice Communications

Lehigh University is a “wired” campus in every sense of the word. A high-speed fiber optic backbone network ties together campus buildings and student residences, including fraternities and sororities. The Campus Portal allows each member of the Lehigh community to fully customize their access to web-based information and applications. Student computer use in the residences is supported by the WIRED program. Staff communicate with students well in advance of their arrival at Lehigh to identify for them compatible hardware and software for use on the campus network. When students bring their computers to campus, staff assist them with their initial setup and then provide continuing assistance with any networking problems throughout the semester. The front line WIRED consultants are well-trained students who live in the residences and can readily provide prompt, on-site assistance. See www.lehigh.edu/wired.

Lehigh also provides secure wireless connectivity in many campus settings – see www.lehigh.edu/wireless. Full-time graduate and undergraduate students who live off-campus in the local area are eligible for a free university-provided Internet Service Provider (ISP) subscription to facilitate their access to campus and Web resources. Through Lehigh’s enterprise systems, convenient interactive services such as online course registration and online grades are offered to students. Library and Technology Services supports a telephone system, with voice-mail services to the entire campus, including residence facilities, and many other useful features.

Computing

Providing technology and consulting services to support classroom teaching, laboratories, and other aspects of the academic and research programs is a strategic priority for Lehigh University. More than 600 microcomputers (PCs and Apple personal computers) are distributed across campus for convenient use by Lehigh students at more than 24 computing sites. For example, there are more than one hundred computers in the libraries and computing center, and another hundred in Rauch Business Center. A twenty-four hour site at Grace Hall has 30+ machines. There are portable laptops equipped with wireless network cards available for short-term loan to students at Fairchild Library and at the Media Center.

Local and wide area networking solutions are in place to give students and faculty access to site-licensed software applications and central file space from the campus sites or their residence facility. Each full-time student receives access to an enhanced Microsoft Professional software package for his or her own computer. In addition, LTS provides other software at public sites such as desktop publishing and graphics software, programming languages, mathematical and statistical packages, and specialized applications for engineering, scientific publishing, and creative writing.
For research and computer-intensive applications, a separate powerful machine serves as a scientific "compute server." Unix-based workstations, two Beowulf clusters, and a Condor grid are also available for research applications. See www.lehigh.edu/computing/research.html. The university computing capacity and bandwidth are constantly being increased to meet the escalating demand. Lehigh also offers gigabit connections to the research-based Internet2 network by virtue of its charter membership in that organization.

The Technology Resource Learning Center supports faculty innovation—see the Faculty Development section of this catalog for details. Library and Technology Services provides technical support for an increasing number of computer classrooms, suitable for individual "hands-on" instruction. In addition 80% of all Lehigh University classrooms are equipped with permanently-installed computer projection systems. Laptops and portable computer projectors are available through Instructional Media Services to enable faculty or students to give computer-based presentations in any classroom.

**Instructional Media Services**

Instructional Media Services operates two facilities in Fairchild Library to provide students with access to and instruction in a wide range of media resources: the Digital Media Studio, and the Media Center. The Media Center offers media resources, scanners, and color printers. Resources include audio, video, and electronic media and the equipment and viewing spaces needed for their use. More than 5,000 videos and DVDs are available for viewing or short-term loan and the Center coordinates the acquisition of films and videos for classroom use.

The Media Center is also the location of Lehigh’s Technology Resource Learning Center which offers faculty the services of instructional designers and the use of a high technology demonstration classroom with Internet2 teleconferencing capability.

The newly constructed Digital Media Studio offers students and faculty consulting assistance, a graphics training lab, and a wide range of technology for the creation of professional audio, graphic, or video materials for classroom presentations, projects, and portfolios. Students can scan and edit text, photographs, and slides, and these images can be output to standard laser printers, color printers, or to computer files for transfer and manipulation. Video cameras, a video and photography studio, and editing software facilitate the production of audio and video material to support the academic program. Students can use digital cameras, a photo-quality printer, and image-manipulation software.

A third media facility, the International Multimedia Resource Center (IMRC), is located in nearby Maginnes Hall and offers a collaborative learning environment. In cooperation with the College of Arts and Sciences, the IMRC assists students in using multimedia resources and producing Web-based and multimedia projects. The IMRC assists faculty in incorporating educational technology into the academic curriculum with workshops that emphasize Web-authoring, Web site design, and multimedia production. Student language and cultural learning is enhanced through the provision of interactive multimedia resources at the IMRC and the adjacent World View Room can be used for viewing satellite programming and international news broadcasting.

**Student Services**

The library, computing center, and most distributed computing facilities are open seven days per week and for extensive evening hours during the fall and spring semesters. For most of these hours, a help desk located at the Fairchild-Martindale Library provides general help for students and faculty on-site and for telephone inquiries related to both library research and computing. Help desk staff refer difficult or more specialized questions to experts as needed. There is also a service desk located at the Computing Center.

Students may also take advantage of virtual help desks where they enter the questions or problems relating to library research, computing hardware or software, or telecommunications at any hour of the day or night for response at a later time, usually within one working day. Most library and computing services are available electronically; for example, requests for books to be recalled, film rental requests, and seminar registrations. “Live chat” library reference and computing help services are also available during many hours.

Each semester Library and Technology Services offers an extensive program of seminars and course-based instructional sessions for students. Attendees learn how to use software applications, the extensive print and electronic library resources, and Web-authoring tools. LTS staff work closely with faculty, to integrate library, computing and media resources into the curriculum. LTS computing, library, and instructional technology consultants facilitate the use of course management software, online courses of various kinds, and course projects in a wide range of disciplines using interactive Web sites created by faculty and students.

Through seminars and policies on the use of print and electronic resources, students are taught computer ethics, recommended computing practices such as frequent back-up and password changes, and an understanding and respect for state and federal laws governing copyright, privacy, and destruction or vandalism of library resources or computer systems, networks, databases or software. An electronic newsletter, LTS Digest, with quick tips and updates is published throughout the year and is available to students who sign up to receive it by email.

Library and Technology Services maintains a variety of facilities for printing, copying, and duplicating within the constraints of copyright legislation. In the library, public photocopiers and microform printers are maintained for convenience in copying print or microform resources. The Digital Media Studio (described under Instructional Media Services) can duplicate audio and video resources. Printers at public sites handle most computer print jobs, and there is a printer designated for very large print jobs in the Fairchild-Martindale Computing Center.

**Student Employment**

Student assistants are essential for the operation of most Library and Technology Services functions. Working for LTS, students gain valuable skills and good work habits. At the job fair held each fall there are opportunities to learn in-depth about the jobs available.

**Art Galleries – Museum Operation**

The Lehigh University Art Galleries are visual laboratories that maintain and develop the university’s permanent art collection, and present temporary exhibitions.
designed to make visual literacy a result of the university learning experience. More than twenty exhibitions a year in six campus galleries introduce students and the community to current topics in art, architecture, history, science, and technology. The exhibition schedule is supplemented by lectures, films, workshops, and research opportunities in the permanent collection. The art galleries play an important role in the educational mission of the university through its exhibitions and programs. The galleries occupy exhibition, storage, office and workshop space in several campus locations. The Upper Gallery and Lower Gallery permanent exhibitions are in the Zoellner Arts Center. Magazines Hall houses the Douglas Gallery, the Gridler Student Gallery is in the University Center, and the Siegel Gallery is in Iacocca Hall on the mountaintop campus. The Murriel and Philip Berman Sculpture Gardens are located on Memorial Walkway and on the mountaintop campus, and Saucon Fields on the Murray H. Goodman campus. The Ralph L. Wilson Study Gallery and Open Storage facility is located in Building J, mountaintop campus and available by appointment. LUG offices are in the Zoellner Arts Center.

Exhibitions
Exhibitions and gallery events are planned to supplement formal classroom study in the visual arts, to create educational opportunities for the entire student body, and to enrich the cultural life of the campus and the community at large. The annual schedule includes the exhibition of works from the permanent collection, the use of borrowed objects, and traveling exhibitions on loan from major museums and cultural institutions. Experts in various fields serve as guest curators of special project exhibitions. Interdepartmental projects within the university encourage increased involvement by faculty and students. Undergraduates may take advantage of courses in museum studies including internship and independent study in the collection.

Collections
Lehigh University’s permanent art collection is a work/study collection intended as a resource for students pursuing formal study in the visual arts and/or museum studies, for the faculty, and for interested members of the community. Each year, several exhibitions are prepared from the collection and works are loaned to major museums throughout the nation. The permanent art collection consists of a variety of works by old masters and contemporary artists. Important collection groups include: the Marion B. Grace Collection of European Paintings (Gainsborough, Reynolds, Goya, Hobbema, Hoppen, and others); the Dreyfus Collection of French Paintings (Bonnard, Sisley, Vuillard, Courbet); the Ralph L. Wilson Collection of American Art (paintings by Prendergast, Sloan, Henri, Lawson, Bellows, Davies, Burchfield; prints by Whistler, Hassam, Motherwell, Johns, Rauschenberg, Calder, Warhol); the Prasse Collection of Prints (Delacroix, Matisse, Renoir, Kent, Kuniyoshi, Rivera); the Philip and Muriel Berman Collection of Contemporary Sculpture (Kadishman, Unger, Turnmairk, Bertoia, Shaw and Segal). Also, the Freinsme Collection of European Old Master Paintings and Drawings; the Baker Collection of Chinese Porcelain; the Langemann Collection of Pre-Columbian and Ethnographic Sculpture; the Mr. and Mrs. Franklin H. Williams African Collection (gold weights of the Akan and West African objects); the Lehigh University Photography Collection (Fox-Talbot, Jackson, Anget, Steiner, Mendlera, Kasebier, Brandt, Siskind, Clark, Martinez-Canas, Serrano); and the Lehigh University Contemporary Prints and Drawings Collection (Bearden, Rivers, Soto, Roth, Ruscha, Tobey, Calder, Kira, Marca-Relli, Cruz Azaceta, Segal, Lam, Picasso, Warhol, Llinas, Golub, Jimenez, Piper, Simpson), and the Philatelic and Numismatic collection.

Faculty Development and Learning Innovations
Lehigh’s Faculty Development Program aims to foster excellence in teaching and learning by providing faculty with tools, development opportunities, workshops, and consultation services. As part of the Lehigh Lab, Lehigh’s award-winning campus-wide initiative to advance the adoption of innovative technologies and techniques that enhance teaching, learning, and research, Faculty Development works closely with the other divisions of Library and Technology Services to provide a coordinated array of support for faculty. Central to the Lehigh Lab is the Technology Resource Learning Center (TRLC) located in the Fairchild-Martindale Library Media Center. The TRLC offers both physical facilities and consulting services. The physical facilities include a state-of-the-art technology classroom and a public cluster of computers. Consulting services are offered by the Director of Faculty Development, the Lehigh Lab Faculty Fellow, the Coordinator for Writing Across the Curriculum, and instructional technology and digital media consultants. Faculty who wish to learn more about academic uses of technology are encouraged to arrange a visit to the TRLC or the Digital Media Studio, where they can receive guidance, assistance, and training with instructional technology projects at any stage of development. The Director of Faculty Development also offers confidential, voluntary consultations to faculty about their teaching, which may include discussions of effective approaches to teaching, classroom observation visits, informal mid-semester evaluations of classes, assistance with course development questions, and advice on the effective incorporation of academic technology into courses.

Lehigh University Photography Collection (Fox-Talbot, Jackson, Anget, Steiner, Mendlera, Kasebier, Brandt, Siskind, Clark, Martinez-Canas, Serrano); and the Lehigh University Contemporary Prints and Drawings Collection (Bearden, Rivers, Soto, Roth, Ruscha, Tobey, Calder, Kira, Marca-Relli, Cruz Azaceta, Segal, Lam, Picasso, Warhol, Llinas, Golub, Jimenez, Piper, Simpson), and the Philatelic and Numismatic collection. A faculty member meeting with a student may seek advice on the effective use of instructional technology in the classroom.

Lehigh University Press
Lehigh University Press represents a clear expression of faculty and institutional commitment to the advancement of scholarship. With the retirement of director, Philip A. Metzger, Press management for the interim rests with the editorial board, which is made up of faculty from the four colleges of the University. The press is interested in all fine scholarship, but places special emphasis on traditional areas of strength at Lehigh: Science, Technology and Society (STS) studies; and Eighteenth-Century studies, and the relationship of America and Asia. In linking the name of the university to a list of exemplary work by scholars across the nation, the press reinforces the value of excellence in the academic environment for faculty, graduate and undergraduate students alike, and helps to maintain intellectual contact with alumni.

Dr. Gregory Reihman, Faculty Development Director and Co-director, Lehigh Lab, may be contacted at 610-758-6840 or gr3@lehigh.edu. The Faculty Development web site is accessible at www.lehigh.edu/~infdli.

Lehigh University Press
Lehigh University Press represents a clear expression of faculty and institutional commitment to the advancement of scholarship. With the retirement of director, Philip A. Metzger, Press management for the interim rests with the editorial board, which is made up of faculty from the four colleges of the University. The press is interested in all fine scholarship, but places special emphasis on traditional areas of strength at Lehigh: Science, Technology and Society (STS) studies; and Eighteenth-Century studies, and the relationship of America and Asia. In linking the name of the university to a list of exemplary work by scholars across the nation, the press reinforces the value of excellence in the academic environment for faculty, graduate and undergraduate students alike, and helps to maintain intellectual contact with alumni.

Dr. Gregory Reihman, Faculty Development Director and Co-director, Lehigh Lab, may be contacted at 610-758-6840 or gr3@lehigh.edu. The Faculty Development web site is accessible at www.lehigh.edu/~infdli.

For more information, contact Lehigh University Press, Lehigh University, B040 Christmas-Saucon Hall, 14 E. Packer Avenue, Bethlehem, PA 18015, by phone (610-758-3933); by fax (610-758-6331) or by website (http://www.lehigh.edu/library/inlup/).

**Resources for Students**

Lehigh’s administrators firmly believe that the interrelatedness among students’ classroom and nonclassroom activities can be fostered to become an educational avenue through which students grow, accept responsibility, and gain maturity in ways that will contribute to productive and meaningful lives. Through various services, students are assisted in becoming informed decision makers. They are also encouraged to develop greater self-awareness and self-confidence in their ability to lead the lives they choose. Support and assistance for individual students often begins in the residential setting. Staff members in the residence halls include six live-in professional residence life coordinators, and approximately ninety undergraduate residence hall assistants, known as Gryphons. All staff members are carefully selected, extensively trained, and are available to assist resident students who may have a variety of concerns.

Students are also encouraged to seek counsel and guidance from professionals in many areas of student life. The Office of the Dean of Students serves as a central agency to help students who have questions about academic and procedural matters, personal problems, and other general concerns, both through its staff and through referral to other student affairs and academic offices. Through the programs and services provided by the Office of Student Affairs, students can become involved in community service, leadership skill development, multicultural opportunities, and a myriad of other activities designed to develop the well-rounded individual.

Students who need assistance with their physical well-being are referred to the university health center. If a student has interests or concerns related to any personal or interpersonal issues, the office of University Counseling and Psychological Services offers a wide range of options, confidential and free of charge. Counseling Center staff interact with students around campus in classrooms, residence halls, and other settings. In addition, traditional services such as individual and group counseling, psychological evaluation, and crisis intervention are provided by the licensed professionals in the center.

The university chaplain is available for the student with religious, cultural, or personal concerns that are interfering with peace of mind and study. A Roman Catholic chaplain also is in residence and available for counseling. A member of the faculty serves as adviser to Hillel Foundation members, who also may obtain spiritual advice from a local rabbi. The Office of Career Services offers assistance to students in identifying and developing career options that can be initiated at graduation. The office also manages an active on-campus interviewing program for graduating students.

The registrar assists students who have questions involving matters of transferred credits, graduation requirements, and allied topics.

The Office of Financial Aid consults with students who have financial concerns that are affecting their educational plans. The Writing and Math Center offers free individual tutoring in mathematics and writing.

The Center for Academic Success offers individual and group tutoring for most first and second year classes as well as study strategies and other academic skills. Many members of the teaching faculty are also interested in students and student life. They serve as academic advisers, activity sponsors, group sponsors and advisers, and in friendly personal relationships with students.

In these and in other ways Lehigh University endeavors to maintain the close contacts with students that characterize the smaller institution. Services are available for all student concerns, and the student need only turn to his or her nearest Residence Life Coordinator, professor, or the Lehigh Handbook to learn where help can be obtained.
Alcohol and Other Drug Programs

Alcohol and Other Drug (AOD) programs, education, and services are integrated into many aspects of student life with administrative coordination of much of this work provided by the Office of Counseling and Psychological Services (610-758-3880) located in Johnson Hall. Web based (see Counseling Service Site) and direct services are provided for a wide range of issues ranging from wellness and health to matters of substance use and misuse. Because members of the Lehigh community recognize that substance abuse and chemical dependency can significantly affect student lives, educational programs are designed to encourage peak performance and avoid high-risk behavior. Confidential individual and group counseling and consultation services are available to students who find themselves having problems because of their own substance use, or related to friends and/or family members having problems with substance use. Appointments are easy to make by calling the office of Counseling and Psychological Services at 610-758-3880 or by visiting the 4th floor of Johnson Hall during office hours (8:00 a.m. to 5:00 p.m. with some additional evening hours), Monday through Friday.

Theme weeks and sponsored outreach programs such as Alcohol and Drug Awareness Week and National Alcohol Screening Day provide educational programs on a variety of AOD and peak performance topics. Peer education consultation is also available to students creating programs and planning interventions. Intervention services include training programs for Residence Life staff, peer educator groups, athletes, and students referred by the Dean of Students office, and other members of the Lehigh community. Individual and group counseling is provided by the office of Counseling and Psychological Services. Students who struggle with defining their own values regarding substance use and addiction are encouraged to clarify and process their beliefs in a safe, confidential environment. On-campus counseling may allow students to successfully enter into recovery (from alcoholism or chemical dependency) without having to disrupt their university careers. If a student cannot accomplish this on campus, referrals to in-patient or outpatient treatment programs can be made. Aftercare services can be provided once the student returns to campus, utilizing on-campus counseling or by referral to 12-step group meetings (such as A.A. and N.A.). These meetings are held on campus and in the surrounding community. Referral to other treatment programs, community service programs, and programs associated with the court system can also be facilitated by various offices within Student Affairs.

Disability Support Services

In accordance with federal legislation, specifically Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act, Lehigh University recognizes the special needs of students with physical, sensory and learning disabilities. Services for students with physical disabilities are coordinated by the director of Facilities Services in conjunction with the Dean of Students Office. Academic support services for students with learning disabilities and other cognitive and sensory disorders are coordinated by the Dean of Students Office in conjunction with faculty members to provide appropriate classroom accommodations for students with a diagnosed learning disability. Students requesting accommodations must present the university with a current and comprehensive psycho-educational evaluation. For more information, contact the Dean of Students Office 610-758-4152; University Center, room 212. For physical disabilities contact: 610-758-4159.

Health & Wellness Center

The university offers health services to all students at the Health Center in Johnson Hall. During the fall and spring semesters, providers are available to see patients from 8:35 a.m. to 4:45 p.m. Monday to Friday. Providers include nurse practitioners and physicians. A registered nurse is present to see patients on Saturday 10:00 a.m. to 4 p.m. with a provider on call. During breaks, hours are shortened.

The Health Center staff treats a variety of health problems, including illnesses and injuries. Gynecologic care is available by appointment. Allergy injections can be administered. Some minor surgery is performed at the Health Center. Many laboratory studies can be done at the Health Center; students are referred to local facilities for X-rays. Patients are referred to local medical and surgical specialists when indicated. More seriously ill students are sent to a general hospital.

Prior to arrival on campus, each new or transfer student must submit to the Health Center a completed health history form, and updated immunization record. A recent physical examination is required if a student plans to participate in varsity athletics.

Following enrollment, additional examinations are provided by the Health Center for students participating in intercollegiate athletic programs, and when required for graduate school or scholarship programs.

There is no charge for most of the care provided to students. Some exceptions are as follows: referrals to physicians, hospitals, or other medical facilities outside the student Health Center, and medications not carried by the Health Center which require prescriptions. A low-cost university-sponsored insurance plan is available, which complements the services of the Health Center. Expenses covered include costs for services that are not available at the Health Center, such as X-rays, laboratory studies, consultant fees, and medications not stocked by the Center. Hospital expenses are also covered. Students are urged to check with their parents regarding existing insurance coverage and to consider purchasing the university-sponsored plan if they are not adequately covered. Please consult your insurance carrier or physician if your plan is of the managed care/preferred provider type.

A health service brochure is available through the Health Center or consult our web page at www.lehigh.edu/health.

Counseling and Psychological Service

The University Counseling and Psychological Service (at 610-758-3880) is located on the fourth floor of Johnson Hall. The office is open from 8:00 - 5:00 (with some additional evening hours), Monday through Friday. Most services are free of charge. Counselors are available for 24-hour emergency consultations via campus police (610-758-4200).

I. Philosophy & Mission

The University Counseling and Psychological Service (UCPS) is dedicated to the belief that a person’s college years are a time of challenge, inquiry,
I. Services to the Lehigh University Community

II. Direct Services

To accomplish its mission, and while upholding the established state and APA (American Psychological Association) ethical principles and code of conduct for psychologists, the UCPS provides a variety of services to the Lehigh University community including:

- Crisis Intervention Services
  The UCPS provides assistance to individuals and groups in crisis. Psychologists provide 24-hour coverage via pager access (call campus police dispatcher at 758-4200) during the Fall and Spring semesters.
- Group and Individual Psychotherapy
  UCPS staff members provide group and individual counseling and psychotherapy services to both undergraduate and graduate students. A short-term treatment model is used for individual work while much of the group work is of longer duration. Referrals for psychiatric consultation are made when requested and appropriate. All counseling and therapy services within the UCPS are confidential.
- Outreach Programming
  The UCPS provides programming focused on the developmental needs of college students—designed to enhance the capacity of students to maximize their personal, social, and academic potential. These presentations occur in various settings, including living residences, classrooms, athletic sites, and meeting rooms across the university. Topics may include issues related to race, eating and body image, sexuality, drinking and other drug use, study styles, athletic performance, grieving, stress, and relationships. Some of this programming may include partnership with UCPS sponsored student peer education groups.
- Assessment and Evaluation
  Upon request and when appropriate, UCPS personnel administer and use personality and career exploration instruments. They also utilize a wide variety of assessment tools when assisting groups and individual students.
- Consultation Services
  Staff members provide consultative services to the university community with the objective of helping students, faculty, and staff identify and resolve difficulties that may be exerting a negative effect on some individual, group, or system. This may include the use of referral resources within the university or in the local community.
- Training
  One component of UCPS work is to help persons such as residence life staff, peer counselors, university personnel, student leaders, and faculty more effectively advise, counsel, interact, and communicate with others. A second component is to enhance the development of persons specifically interested in securing the identity and skills of a psychologist—these typically being advanced graduate students, doctoral level interns, and professional staff.
- Advocacy
  Staff of the UCPS advocate for those students and groups who struggle for understanding and respect in a society sometimes blinded by traditional norms and expectations. Through dialogue, education, programming, consultation, and direct service, the staff is committed to being engaged with issues such as racism, sexism, and other practices that destroy self and group esteem.

Center for Academic Success: University Center 403

Mastering time management, study skills appropriate for college level courses, as well as specific subject matter is imperative for academic success. The Center for Academic Success provides undergraduate and graduate tutors for most first and second year courses as well as study skills strategies and presentations to individual students and student groups. The Center is located on the fourth floor of the University Center. Center staff members work closely with other Academic Support Services to ensure that students are supported in their academic endeavors.

The Writing and Math Center: 110 Drown

Success at Lehigh depends, in part, on mastery of a number of advanced academic skills. The Writing and Math Center supports these vital academic abilities, providing trained consultants in writing, and math. The Center provides a variety of services such as (1) individual or small group tutoring for students enrolled in undergraduate math courses, (2) writing consultation for students and for the Lehigh community. Tutoring and consultations are provided by graduate students and faculty; the service is free of charge. The Center is located in room 110 of Drown Hall. Appointments can be scheduled by calling 758-3098.

Career Services

One function of a college education is to foster the growth and development of the student to prepare for a meaningful and satisfying life after college. Lehigh provides career planning services for undergraduate and graduate students as an integral part of the career development process.

Career planning can best be described as an educational process through which students (1) identify and develop their abilities, aptitudes, and interests; (2) learn the relationship between their capabilities and interests, their university experiences, and professional opportunities outside the university; and (3) prepare for those opportunities.

Career Services assists students through the process of researching targeted organizations that provide the types of work desired, interviewing for specific positions.
through which career or professional interests can be satisfied, and then selecting from the available options the one that best meets the student's needs. This part of the process requires students to develop skills in such areas as effective resume and cover letter writing, interviewing techniques, and individual job search strategies to enhance productive interactions with employers.

The goals of this process include: to enable Lehigh students to think of themselves as educated individuals with skills and abilities of value to employers; to think in terms of functional responsibilities rather than simply linking major subjects to jobs; to acquire and develop the skills necessary to become self-reliant and informed decision-makers; to prepare for a competitive job market; and to develop the potential to become self-reliant managers of their own careers.

The Office of Career Services is committed to the preparation and education of all Lehigh students during the transition from the academic environment to the work place. Career Services offers the following resources and services to help students prepare for professional opportunities after graduation:

Career Counseling. Students may meet with professional counselors to discuss their career options and goals, individual job search strategies, effective interviewing, and related interests. Self-assessment tools are available to assist students in identifying interests, skills and values.

Peer Educators. Peer Educators are student volunteers who have applied and interviewed to be trained to provide career assistance to their peers. Peer Educators are available throughout the semester to students who walk in with quick questions regarding resume assistance, the LUCIE system, library resources, and general job searching help.

Career Resources. Among the resources available in the Career Library are books and articles on career planning, current information on career opportunities, occupational information, graduate school resources, job search directories, a library of employer literature, and a database of alumni contacts who have volunteered to assist students with their job search strategies. Students may obtain a free Job Search Manual that describes how to use the on-campus interviewing system, prepare for interviews and plant/office visits, write resumes and letters, and develop individual strategies.

Workshops and Special Programs. Throughout the year counselors conduct a variety of seminars and presentations in collaboration with academic departments, professional societies, living groups, and other interested campus organizations. Workshops are offered on resume writing, interviewing techniques, networking, career portfolios, job searching and internet strategies. Special programs are conducted each semester, including career panels and mini career classes.

Experiential Education. Experiential Education programs are designed to enable Lehigh students to make educated decisions about career choices. Through participation in these programs, students gain firsthand knowledge and experience in a particular career field.

On-Campus Interviewing. Career Services works with over 200 organizations that interview on campus each year. Students utilize web-based software called LUCIE (Lehigh University Career Information Exchange) to view job openings, apply for positions using an on-line resume and sign-up electronically for specific interview times. Employers interview undergraduate and graduate candidates from all four colleges. Each year the OCI program is kicked off by a Career Fair that showcases over 100 employers interested in recruiting Lehigh students.

Lehigh Listings On-Line. Lehigh Listings On-Line is a searchable job listing database available on Career Service's Web Page as part of the LUCIE system. Job openings for part-time, summer, full-time and advanced-level positions can be searched by employer, location, job function, or major. Undergraduates and graduate students from all four colleges will find listings related to their fields of study.

Pre-professional Advising. The pre-professional advisor, along with a faculty advisory committee, provides information and guidance to candidates pursuing careers in medicine, dentistry, and other health professions, including individualized advising, special programs on health-related topics and field trips. In addition, information and assistance is provided for students interested in law school and legal careers.

The office is open throughout the year. The main phone number is (610)-758-3710.

Office of Fellowship Advising
The Office of Fellowship Advising (OFA) helps Lehigh undergraduates apply for competitive national fellowships and scholarships. It publicizes opportunities, oversees the selection of candidates for awards that require university nomination and, with the assistance of Fellowship Advisors, guides students through frequently complicated application procedures.

The OFA web-site (http://www.lehigh.edu/~inofa/) contains continually updated descriptions of more than two hundred fellowships and scholarships, with links to the foundations' official sites. The descriptions are divided into two categories. “Awards for Undergraduate Study” are fellowships and other grants which students hold before taking their bachelor’s degrees and, in a few cases, during the summer following graduation. “Awards for Graduate Study” are fellowships for which students apply before completing their bachelor’s degrees and hold during their time at graduate school. Other sections of the site provide three types of information: the latest news and deadlines of the major awards; advice about how to present an effective application; and a compendium of publications, databases, and web-sites pertaining to awards in general.

Similar information is contained in the OFA’s booklet National Fellowships and Scholarships, which is published annually. Copies of the booklet and further information about awards can be obtained from the OFAs director, Ian Duffy (ipd0@lehigh.edu).
Special Academic Programs

Distance Education
The University's distance education program provides graduate degree programs, certificate programs, individual graduate credit courses, and non-credit professional programming to adults in an accessible and cost-effective manner. The goal is to allow working men and women to pursue their educational goals through the University while remaining highly productive employees. Admission standards and course requirements are the same for distance and on-campus students, and distance education students receive the same degrees and transcripts. Lehigh distance education is delivered to the students by satellite (Lehigh Educational Satellite Network or LESN) or Internet (LESN-Online) with some use of videoconferencing, Internet2, DVD, CD-ROM, and videotapes. Satellite-based programs include Master's Degrees in Chemistry, Chemical Engineering, Information Systems Engineering, Manufacturing Systems Engineering, Mechanical Engineering, Molecular Biology, Quality Engineering, Polymer Science and Engineering, and the MBA. Certificate programs in Chemistry, Engineering, and Business are also available. Satellite courses are transmitted to downlink sites at the students' work locations. LESN-Online, using the capabilities of the WWW, delivers programming to distance students at any location that can be connected to the Internet. Featuring both synchronous and asynchronous streaming media technology, LESN-Online allows students to see and hear their instructors while they view course materials as downloadable graphics. The following programs are now fully available online: non-credit professional and technical short courses; individual credit courses; credit/non-credit certificate programs, including Supply Chain Management, Project Management, and full Master's Degrees in Chemistry, and Manufacturing Systems Engineering.

For specific information on programs and course offerings, admissions, registration, and technical system requirements, visit the distance education website at www.distance.lehigh.edu or call (610) 758-4572.

Summer Studies
There has been a summer session program at Lehigh for over a century, developing into a significant part of the University's overall academic program. Lehigh now offers over 200 courses each summer. They range from travel programs in Europe, to field camp in the Rocky Mountains to on-campus courses that service Lehigh undergraduates and graduates, adult professionals in business and education, and students at other colleges who return to their Lehigh Valley region homes during the summer. At Lehigh, summer is a time for educational experimentation. There are many special summer offerings not available during the regular academic year, including a growing number of courses offered completely on-line. For more information visit the summer sessions website at www.lehigh.edu/summersessions or call (610) 758-3966.

Continuing Education
Lehigh University departments and research centers offer a varied selection of non-credit continuing education programs for adults. Reflecting Lehigh's traditional educational strengths, these offerings focus on professional development, organizational problem solving, and technical skills. They carry no regular academic credit, but participants can often earn some form of continuing education credential.

Lehigh continuing education programs are designed to meet specific needs. Contents, schedules, and timing are adapted to effectively serve the audiences for which they have been developed. Apart from programs presented on the Lehigh campus, a number of seminars are available for "in-house" presentation to organizations on a contract basis. For more information about these programs, contact the appropriate department or research center.

English Language Learning Center (ELLC)
For ESL students who want to improve their ability to use and comprehend English on-campus and off-campus in formal and informal settings.
The ESL English Language Learning Center provides professional English language tutoring for undergraduate and graduate international students and their spouses wanting to improve their English skills in all skill areas: academic and conversational speaking, listening, reading, writing and grammar, and test preparation for TOEFL, GRE and GMAT.
The ELLC lab is located in the ESL Department Office in Coxe Hall, Room 204. Contact the ESL office for more information: (610) 758-6099 or email inesl@lehigh.edu. Also, please visit our website for online English assistance and information www.lehigh.edu/~inesl/ELLC
Graduation Requirements

Students are expected to maintain regular progress toward the baccalaureate degree by carrying the “normal” course load—between 12 and 18 credit hours each semester. Each student is expected to complete the baccalaureate degree by attending four consecutive years and eight semesters. They may, however, wish to accelerate the pace toward graduation by using advanced placement credits, summer session study, and receiving credit for courses through examination. Students will have a limit of 8 calendar years to complete the requirements for the bachelor’s degree. Students may petition the Committee on Standing of Students for up to a one-year leave of absence for special circumstances beyond their control.

Students in good academic standing earn their degrees by meeting the requirements of their specific degree curriculum as well as general university requirements. Students should confer with their advisers on matters related to curriculum.

Students are expected to satisfy the credit-hour requirements of their chosen curriculum. Basic military science credit hours are in addition to the credit hours specified in the curricula. A maximum of six credit hours of advanced military science courses may be applied toward the baccalaureate degree.

Undergraduate Residency Requirement

To be eligible to receive a Lehigh baccalaureate degree, the candidate must have completed either a minimum of 90 credit hours in residence, or all of the last 30 credit hours at the University or in residency programs.

Five-Year, Two-Bachelor-Degree Programs

The university’s five-year, two-degree programs enable a student to receive two bachelor degrees upon completion of five years of study.

The civil engineering and earth and environmental sciences program that affords two bachelor degrees, and the electrical engineering and engineering physics two-degree program are examples of programs in the College of Engineering and Applied Science.

Some five-year, two-degree programs appear in the description of courses under Arts-Engineering and Five-Year Programs in Section V. It is possible to arrange for a dual bachelor degree program even after studying at Lehigh for some time. Engineering students, for example, who decide at any stage of study that they wish to meet the requirements for both the bachelor of arts and bachelor of science degree may complete the combined requirements in five years if the decision is made before the third year.

Second degree candidates—A student entering Lehigh to obtain a second bachelor’s degree, or those Lehigh students who wish to declare a second major in another college, or both a B.A. and a B.S. degree within the College of Arts and Sciences must have a minimum of 30 additional credit hours beyond the first degree credit-hour requirements in order to qualify for the second degree. All of the 30 additional credit hours must be taken at Lehigh or in Lehigh residency programs. All special second degree programs must be approved by the dean of the college in which the degree is to be offered and the Standing of Students Committee.

Advisement

Every undergraduate is assigned a faculty adviser. Undeclared majors in the College of Business and Economics are assigned to the undergraduate adviser and a student mentor. Until the major is declared, assistance is also available through the dean’s office of the college in which the student is enrolled. When the major has been chosen, a faculty member from the major department will act as the academic adviser.

This adviser is one of the most valuable resources in the educational process, not only to assist in making academic selections to match the student’s particular background, interests, and future objectives, but also to identify program options, to work out an academic pace, and to develop career planning strategies. The adviser will help to identify other resources and support systems available at the university, such as The Learning Center, the counseling service, and the Office of Career Services.

Guide to Academic Rules and Regulations

The university has adopted over the years numerous rules and regulations. Some of the principal rules and regulations are given here so that currently enrolled and potential undergraduates and graduate students will be apprised of what is expected of them, and what they can expect of the university.

This section concerns academic regulations. Additional regulations can be found in the Lehigh Handbook, and there is a comprehensive statement of all policy in the publication Rules and Procedures of the Faculty. All students are given a Handbook at the beginning of the fall semester; Rules and Procedures is available on Lehigh’s website.

Eligibility for Degree

In order to be graduated, a candidate for a baccalaureate degree must achieve a minimum cumulative average of 2.00.

To be eligible for a degree, a student must not only have completed all of the scholastic requirements for the degree, but also must have paid all university fees, and in addition all bills for the rental of rooms in the residence halls or in other university housing facilities. Payment also must have been made for damage to university property or equipment, or for any other indebtedness for scholarship loans or for loans from trust funds administered by the university.

Responsibility for meeting academic requirements.

Each student is responsible for his or her progress toward meeting specific requirements for graduation. Academic advisers and department chairs are available to assist the student. It is strongly recommended that the student specifically consult with his or her adviser prior to the senior year to ascertain eligibility for the degree for which he or she desires to qualify and to determine that all program and hours requirements are met.
Grades in the range of A through D–, P, and Cr may be credited toward baccalaureate degrees within the limits of program requirements. Grades of F, N, X, Z, W, WP, and WF cannot be credited toward the degree. Grades of W and WP do not count as hours attempted.

Courses in which grades of D+, D, D–, F, W, WF, N, X, or Z are recorded do not meet prerequisite requirements. The grade N (grade) may be used to indicate that one or more course requirements (e.g., course report) have not been completed. It is the obligation of the student to explain to the satisfaction of the instructor that there are extenuating circumstances (e.g., illness or emergency) that justify the use of the N grade. If the instructor feels the N grade is justified, he or she assigns a grade of N supplemented by a parenthetical letter grade, (e.g., N©).

In such cases, the instructor calculates the parenthetical grade by assigning an F (or zero score) for any incomplete work unless he or she has informed the class in writing at the beginning of the course of a substitute method for determining the default grade. In each case in which an N grade is given, the course instructor shall provide written notification to the department chairperson stating the name of the student receiving the grade, the reason for the incomplete work, the work to be done for the removal of the N grade and the grade for the work already completed. A student who incurs an N grade in any course is required to complete the work for the course by the fifth day of instruction in the next regular semester. The N grade will be converted into the parenthetical grade after the tenth day of instruction in the next regular semester following receipt of the N grade unless the instructor has previously changed the grade using the removal-of-incomplete procedure. The parenthetical grade will be dropped from the transcript after the assignment of the course grade.

In no case shall the grade N be used to report absence from a final examination when all other course requirements have been met. N grades do not count as hours attempted and are not used in computations of cumulative averages.

The grade X (grade) is used to indicate absence from the final examination when all other course requirements have been met. The grade in parentheses is determined by including in the grade calculation an F (or zero score) for the missing final exam. The X grade may be removed by a make-up examination if the absence was for good cause (e.g., illness or other emergency). To be eligible for the make-up exam, the student must file a petition and the petition must be approved by the Committee on the Standing of Students. If the student fails to petition, or if the petition is not granted, or if the student fails to appear for the scheduled make-up examination, then the X grade will be converted into the parenthetical grade after the first scheduled make-up examination following the receipt of the X grade. If the petition is granted and the final examination is taken, the X grade will be changed by the instructor using the make-up examination procedures and the parenthetical grade will be dropped from the transcript. Where valid reasons exist for not taking the make-up examination at the scheduled time, the student may petition for a later examination with a fee. A student’s grade that was originally assigned an N, X, or Z grade when converted or computed will be noted with an ‘©’ asterisk prefix.
The notation of NR (not reported) is temporarily placed in a student record when due to circumstances, no grade was reported by the instructor by the established deadline.

The grade Z (grade) is used to indicate both absence from the final examination and incompleteness of one or more course requirements. The instructor calculates the parenthesis grade using an F (or zero score) for the final examination and either an F (or zero score) or the substitute method of calculation as described above for the incomplete work.

The Z grade may be removed by the procedures presented in the previous paragraph for removing the X grade. If this results in an N grade because the course work is still incomplete, the provisional Incomplete (N grade) above shall apply, except that in no case shall the deadline for completion of the work be later than the last day of classes in the first full semester in residence (except summer) following receipt of the Z grade.

A Z grade is that is still outstanding after the tenth day of instruction in the next academic-year semester following receipt of the Z grade will be converted into the parenthetical grade. The parenthetical grade will be dropped from the transcript.

**Scholastic Averages and Probation**

Scholastic requirements for undergraduate students are expressed in terms of the cumulative grade point average (GPA)—the weighted average of all grades received in residence or at institutions specifically approved for grade transfer. The cumulative GPA is computed at the end of each semester and the second summer session.

Following are the cumulative GPA requirements for good standing:

- freshmen 1st semester 0 to 21 credits earned: 1.70
- sophomores 22 to 51: 1.80
- juniors and seniors more than 52: 2.00

For computational purposes students who have completed 22 or fewer earned hours shall be required to achieve a 1.70 cumulative grade point average. Students who have completed 23 but fewer than 53 earned hours at the end of the most recent graded term shall be required to achieve a 1.80 cumulative grade point average.

Students who have completed 53 earned hours at the end of the most recent graded term shall be required to achieve a 2.00 cumulative grade point average. Other undergraduates including all General College Division, Lehigh Valley Association of Independent College cross registered students, high school scholars and R.O.T.C. students will be required to achieve a 2.00 cumulative grade point average—minimum average required for graduation—to remain in good academic standing.

Any undergraduate student who achieves a 1.69 or lower cumulative grade point average in a given term is eligible to be reviewed by and may be placed on probation or dropped for poor scholarship at the discretion of the Committee on the Standing of Students.

Students who do not meet the above requirements will be placed on scholastic probation. Students who, regardless of their cumulative average, have failed more than eight hours of coursework in any semester are also placed on scholastic probation.

While there is no specific credit hour requirement for good standing, certain categories of students (e.g., those on financial aid and those playing intercollegiate athletics) will be expected to maintain whatever hours are required for eligibility.

**Removal from probation.** Students are removed from probation at such time as they meet the standards listed above, effective at the end of any semester or the second summer session.

**Dropped for poor scholarship.** A student who makes a 2.2 GPA or better in the probationary semester but fails to meet the standards stipulated is continued on probation for another semester. A student who makes less than a 2.2 GPA in the probationary semester and fails to meet the standards stipulated above, is dropped for poor scholarship.

If a student goes on scholastic probation for a second (although not necessarily consecutive) term, a review by the Committee on the Standing of Students will determine whether the student will continue on scholastic probation or be dropped for poor scholarship.

**Withdrawal From a Course.** A student dropping a course within the first ten days of the semester (five dayscover summer sessions) will have no record of the course on the transcript. A student dropping all courses for which he or she is registered is considered to be withdrawing from the university and the policy is noted below. A student who drops a course with the approval of his/her advisor and section instructor after the tenth day of instruction and before the end of the eleventh week of instruction will have a grade of “W” assigned to the course. A student who drops a course with the approval of his/her advisor and section instructor after the eleventh week of instruction and before the end of classes receives a “WP” or “WF” at the discretion of the instructor. A “WF” is considered to be a failing grade.

An Add/Drop form signed by the student’s advisor must be submitted to the registrar’s office, before the deadlines noted above, to be official.

**University Withdrawal.** A student withdrawing from the university (dropping all courses during a given term) must submit the withdrawal form to the dean of students office. Withdrawal after registration day and during the first 11 weeks of instruction will be noted on the academic transcript by assigning a grade of “W” to all courses. A withdrawal after the eleventh week of instruction and before the end of classes will have the grade of “WP” or “WF” assigned for each course at the discretion of the instructor. The date of the withdrawal will be noted on the academic transcript for a withdrawal at any time during the term.

A student who reduces his or her course load below the minimum required for standing as a full-time student, but does not withdraw from the university, becomes a part-time student for the rest of that semester. Some areas affected by part-time status are financial aid, athletic eligibility, veterans affairs, immigration status, insurance and loan deferments.

**Release of Final Grades.** Grades for undergraduate students are available from the registrar as soon as possible following the deadline for reporting of grades on line using the secure access facility. Undergraduates students who would like a grade report must submit the request in writing to the Registrar’s Office each term. Instructors...
may develop their own policies for release of unofficial reports of academic progress to individual students, or to their advisors, deans, or financial aid officers, on a need-to-know basis, including early release of unofficial final course grades. Any such policies must respect the rights of students to privacy.

**Repeating of courses.** If a course is repeated, the final grade received upon repetition of the course is counted in the cumulative average. The original grade and credit hours received will be dropped from the cumulative average. However, a student who fails a repeated course after receiving a passing grade the first time will have the original grade deleted from his or her average, but will retain credit for the course toward graduation.

A grade that was originally received in a course may not be changed by repeating the course under the pass-fail option. Students repeating a course that has been graded C or better may not overload (greater than eighteen credits) during that term. For deletion of a grade from the cumulative average after repeating a course, a student must (a) file the deletion form with the registrar's Office; and (b) repeat the identical course with a final grade at Lehigh.

**Pass-Fail Systems for Undergraduates**

**Student Option System.** The pass-fail grading option is intended to encourage students to take challenging courses outside the major field that otherwise might be avoided for fear of lowering grade-point averages. Students are not permitted to take courses numbered below 100 and over 400 using the optional pass/fail grading system and should avoid wasting this option on unsuitable courses, such as courses having no college-level prerequisite or corequisite. The restrictions on the use of the system are listed below.

A student may register for no more than one course pass-fail numbered above 100 and below 400 in any one semester. Students should check the pass/fail restrictions for specific courses noted in section V of the catalog. He or she may take a maximum of six courses pass-fail per undergraduate career if the student is on a four-year program, or a maximum of eight courses per undergraduate career with a five-year, two-degree program. If a student changes a course after the first ten days of instruction from pass-fail grading to regular grading, as provided below, that course shall still count toward the maximum number of courses taken pass-fail during the student's undergraduate career.

Each college faculty shall decide under what conditions and which courses or categories of courses throughout the university may be taken for pass-fail credit by students registered in that college, except for courses designated specifically for pass-fail grading. Each college shall keep the educational policy committee advised of changes in its rules.

A student designates the course(s) to be taken pass-fail normally at preregistration but not later than the fifteenth day of instruction in a regular semester or the fifth day of instruction in any summer session. Prior to this deadline, the student may transfer from pass-fail to regular grading, or vice-versa, without penalty. The courses designated for pass-fail grading by the student require the written acknowledgment of the academic adviser.

Since the instructor giving the course is not officially notified which students are taking the course pass-fail, a regular letter grade is reported to the Registrar for the pass-fail students. The Registrar then records "P" for reported letter grades from A through D–, and "F" for a reported letter grade of F.

Under this system, the student surrenders his or her equity to letter grades of A through D–, except as specified below. A grade of P applies to the student's graduation requirements but is not used in the computation of the cumulative average; whereas an F grade is included in the cumulative grade point average.

If a student changes his or her program such that a course previously taken for pass-fail grading is not allowed for pass-fail grading in the new program, the student must submit a petition to the Committee on the Standing of Students requesting acceptance by the new program of the pass-fail grading for that course, or substitution of the original letter grade submitted by the instructor for the pass-fail grade, or the substitution of another course for the course taken pass-fail. The recommendation of the adviser must accompany the petition.

**Transfer Credit**

Transfer of credit from other institutions is the responsibility of the Registrar. Any students planning to take work at other institutions in the United States or elsewhere should initially check with the Registrar on policies and procedures. Full time students may not be concurrently enrolled at any other institution, except for the LVAIC Consortium cross registered courses, without the advanced approval of the Committee on Standing of Students. Transfer of grades from institutions other than the LVAIC System is not possible.

- Pass/Fail credit/non-credit courses are not acceptable for transfer.
- Courses taken at a two year or four year institution where a grade lower than a "C" has been earned will not transfer. ("C-" or below will not transfer)
- Transfer courses may not be used to delete a prior grade from your cumulative grade point average at Lehigh University. Transfer grades are NOT calculated in the Lehigh GPA.
- No student may receive more credit at Lehigh than was granted on the other institution’s transcript. Courses taken on the quarter system will have credit granted on a 3–2 ratio, no partial credit will be awarded. The student will receive credit equivalent to the number of credits indicated on the transcript, up to the number of credits for the equivalent course at Lehigh. The registrar has the final authority for the amount of credit awarded toward a Lehigh degree.
- No credit will be granted for a course in which the student has already received credit for its equivalent at Lehigh.
- No credit will be granted for continuing education units courses, courses taken on-line, January or intercession courses, correspondence, independent study or any course less than 5 weeks and/or 15 contact hours per credit without the advanced approval of a petition to the Standing of Students Committee.
- Courses taken while in high school may require additional documentation. All questions should be directed to the registrar.
- Courses must be taken at an institution that is accredited by one of the six regional associations.
Course Auditing
A student who is in good academic standing and has not failed any courses in the previous term may be admitted as an auditor in not more than one course, which shall be outside the curriculum requirements. Application for such admission is by petition approved by the departmental chair and the Standing of Students Committee. In no case shall a student who has attended a course as an auditor be given an anticipatory examination for credit or register for the same course in the future. A student completing a course in this manner will have the course and the notation AU indicated on the permanent record. A student rostered on an audit basis may be withdrawn from the course with a grade of W for poor attendance.

Review-Consultation-Study Period
The Review-Consultation-Study (RCS) period is intended to provide a few days for informal academic work between the end of the formal instruction period and the beginning of the final examinations. It is expected that students will use this period to consolidate their command of the material in their courses. Faculty members make themselves available to their students at announced times during this period. No quiz or exam may be given during the last five class days before final examination period begins.

Graduation Honors
Beginning with all new degree seeking students in the Fall of 2004 or any students graduating in the Spring of 2008, degrees with honors are awarded by vote of the university faculty to those students who have attained an average of not less than 3.40 in a minimum of 90 credit hours in residence at Lehigh University or in programs approved by the faculty to have grades and credit accepted toward the undergraduate degree. Degrees with high honors are awarded by vote of the university faculty to those students who have attained an average of not less than 3.60 in a minimum of 90 credit hours in residence at Lehigh University or in programs approved by the faculty to have grades and credit accepted toward the undergraduate degree. Degrees with highest honors are awarded by vote of the university faculty to those students who have attained an average of not less than 3.80 in a minimum of 90 credit hours in residence at Lehigh University or in programs approved by the faculty to have grades and credit accepted toward the undergraduate degree.

For the purposes of graduation honors calculations, courses taken more than once at Lehigh will only have the most recent grade used in the calculation. Courses taken under the cross-registration policy of the LVAIC, the Washington Semester and the Urban Studies semester program will be used. Students who spend part of their career at another institution, or are transfer admits to degree programs and that are appropriate to be considered for transfer to Lehigh, or in provisionally approved study abroad programs.

Department Honors
Many departments offer honors work adapted to its curriculum for students who wish to demonstrate unusual academic ability and interest in exploring a chosen field through independent study and research. The precise nature of the program for each student is determined by the academic major department, but may include: unscheduled work or independent study, participation in graduate (400-level) courses, and an honors thesis or project.

Qualified candidates should inform their academic advisors by the end of the junior year of their intention to work for departmental honors. The adviser will give the college and the registrar names of seniors working for departmental honors in particular majors. Names of those students attaining departmental honors are published in the commencement program. Sophomores may apply for acceptance into the Eckardt College Scholars Program, which offers unique opportunities for those qualified to develop their critical faculties and intellectual interests.

Honor Societies
There are at least 18 honor and course societies. The three best-known are:

Phi Beta Kappa. The oldest honor society in the United States is represented at Lehigh by the Beta chapter of the Commonwealth of Pennsylvania, the 27th oldest chapter in the nation. The chapter’s council considers for invitation into its membership those students in each of Lehigh’s three undergraduate colleges who satisfy the following profile:

• At least 60 credit hours of coursework completed at Lehigh
• A minimum cumulative GPA of 3.75
• A minimum of 8 credit hours in the natural sciences (including a lab)
• A minimum of 8 credit hours in the social sciences
• A minimum of 8 credit hours in the humanities, especially textual analysis beyond first-year English (the council typically does not recognize some courses that carry Humanities credit at Lehigh, such as Public Speaking, Stage Design, one-credit Music lessons, etc.)
• Calculus or advanced mathematics that requires calculus as a prerequisite
• Two years of college-level foreign language study or its equivalent (may be satisfied by four years [9-12] of high school study with excellent grades; or by a proficiency exam administered by the Department of Modern Languages and Literature)
• No disciplinary violations sufficient to warrant probation, suspension, or expulsion

Please note: Satisfaction of this profile guarantees consideration by the Phi Beta Kappa council; it does not guarantee election to Phi Beta Kappa. Any undergraduate who has questions about any of the items in this profile should contact Prof. Scott Gordon, Executive Secretary of Lehigh’s chapter. Office phone: 610-758-3320; e-mail: spgg4@lehigh.edu
Beta Gamma Sigma. Election to membership in Beta Gamma Sigma is the highest scholastic honor that a student in business administration can achieve. Beta Gamma Sigma is the only national honorary scholarship society in the field of business administration recognized by the American Assembly of Collegiate Schools of Business.

Tau Beta Pi. Tau Beta Pi recognizes high achievement in all engineering curricula. The national Tau Beta Pi was founded at Lehigh in 1885. A bronze marker in front of Williams Hall commemorates this event.

Among course societies are the following: Alpha Pi Mu, for those in industrial engineering; Beta Alpha Psi, accounting; Chi Epsilon, civil engineering;Eta Kappa Nu, electrical engineering; Lambda Mu Sigma, marketing; Omicron Delta Epsilon, economics; Omicron Delta Kappa, leadership; Order of the Omegas, leadership in Greek activities; Phi Alpha Theta, history; Phi Beta Delta, international; Phi Eta Sigma, freshman scholastic excellence; Pi Tau Sigma, mechanical engineering;Psi Chi, psychology; Sigma Tau Delta, English; and Sigma Xi, research.

Eckardt Scholars Program

The Eckardt Scholars Program is a university-wide honors program designed for students who show outstanding academic promise or unusual creativity. It is a highly selective program, restricted to a small number of especially qualified students, some of whom are enrolled at the time of admission to the university and the rest as first-semester sophomores. Entering freshmen may join the program at the invitation of the Eckardt Scholars Advisory Council. Applications from sophomores are evaluated by the Advisory Council on the basis of their academic records and written statements of educational goals, and recommendations from two faculty members. The Program allows students to engage in scholarly work of an advanced nature. Participants are obliged to obtain the same number of credits as other members of their colleges, including at least two Eckardt Scholars Seminars, and pursue departmental or interdisciplinary majors. With the exception of students in some disciplines, they are released from distribution requirements and, if necessary, modifications may be made in major requirements. Responsibility for the student’s over-all program lies with the director who cooperates closely with the major adviser. In the final two years, the student receives up to twelve credits for work with a faculty member, leading to a senior project of substantial dimensions. This can take whatever form is appropriate to the nature of the subject. Seniors present accounts of their projects at the annual Eckardt Scholars graduation dinner and are eligible for the George B. Lemmon Prize, which is presented annually to members whose academic performance has been outstanding. The award of Eckardt Scholars graduation honors is subject to the recommendation of the program director (Prof. Ian Duffy, 340 Maginnes Hall) and the chair in the major field.

In addition to the academic privileges of the program, Eckardt Scholars are offered a variety of extracurricular opportunities. These include invitations to meet visiting speakers, informal meetings with faculty members, dinners, lectures, plays, musical events, and other cultural activities in the Lehigh Valley and nearby cities. For a listing of courses and Advisory Council members, see the Eckardt Scholars Program entry, section V.

College of Arts and Sciences

Anne S. Melzer, dean; Stephen H. Curciiffe, associate dean; Michael L. Raposa, associate dean; Pam Pepper, associate dean

Under the name “School of General Literature,” the College of Arts and Sciences was a part of the original plan of the University. Although its aims have remained constant over the years, the means employed to achieve those aims have been adapted to the changing times. The main purpose of the undergraduate programs in the College is to prepare each student for the exercise of individual responsibility in the affairs of mature life. We seek to prepare students for life-long commitment to the public trust of a privileged education. The College faculty recognizes three distinguishing characteristics of an educated person: the ability to think and communicate in a disciplined manner, the ability and willingness to make discerning judgments, and the capacity to apply one’s creative imagination. The well-educated person accepts that continuous learning is the basis for making agile adaptations in one’s contributions to enterprise, family, and community in response to changing circumstances and that making such well-adapted contributions is the true path to personal growth and fulfillment. In order to achieve the College’s purpose, the College faculty shares with the student facts and ideas and guides the student in transforming the raw material of facts and ideas into knowledge and understanding. Students in the College develop new habits of mind that characterize the liberal arts education, such as testing assumptions, questioning authority, respecting evidence, and probing the unknown with the curiosity and an open mind. Those habits prepare our graduates to thrive in an uncertain world. We also expect students to discipline their use of time and to master the fundamentals of rational discourse and scholarly inquiry. The basic elements of the Arts and Sciences education remain what they have been for generations of liberal arts students—comprehensive study of the broad domains of knowledge and the development of expertise in one domain.

The College of Arts and Sciences offers several curricular options:

- A four-year arts and sciences curriculum leading to a bachelor of arts or bachelor of science degree in designated fields
- A five-year arts-engineering curriculum leading to a bachelor’s degree from the College of Arts and Sciences and a bachelor of science degree in a specific field from the College of Engineering and Applied Science
- Double degree programs within the college and in conjunction with the other two undergraduate colleges.
- Teacher preparation
- A five-year program leading to a bachelor’s degree from the College of Arts and Sciences and a master’s degree in Education from the College of Education

Specific requirements for many of the degree programs described in this section may be found in Section V.
Major Degree Programs in the College

Bachelor of Arts and Bachelor of Science Degree Programs

Two distinct bachelor-degree programs are offered by the College, each distinguished mainly by the proportion of courses taken in the major field. For the Bachelor of Arts degree the student takes a comparatively smaller number of courses to fulfill the major requirements plus a selection of courses in various fields outside the major. For the more professionally oriented Bachelor of Science degree, offered by the College in designated disciplines, the student takes a more extensive concentration in the major field, along with a proportionally smaller number of courses outside the major. Except for this distinction, the same basic requirements must be met for both degree programs (including the minimum number of 121 hours for graduation and the minimum average in the major of 2.0). No more than six hours of military science may be applied toward either degree.

Bachelor of Arts Degree

Humanities: architectural history, architecture, art, art history, Asian studies, classical civilization, classics, design arts, English, modern languages and literature (French, German and Spanish), music, music composition, philosophy, religion studies, Russian studies, theatre
Social Sciences: Africana studies, American studies, anthropology, cognitive science, economics, environmental studies, global studies, history, international relations, journalism, journalism/science writing, political science, psychology, STS (science, technology and society), sociology/social psychology, sociology and anthropology, urban studies

Mathematics and Natural Science: Applied life science, astronomy, behavioral neuroscience, biology, chemistry, computer science, earth and environmental science, mathematics, molecular biology, physics

BA degrees in predental science, premedical science, or preoptometry science are available to students who are admitted to certain combined degree programs (see Health Professions Programs).

Bachelor of Science Degree

Applied life science, astrophysics, behavioral neuroscience, biochemistry, biology, chemistry, computer science, earth and environmental science, mathematics, molecular biology, pharmaceutical chemistry, physics, psychology, statistics

General Plan of Undergraduate Study

Students in the College are required to choose – usually by the end of the sophomore year – a major field and to complete a program of courses, selected in consultation with the student’s adviser, to provide the breadth that is the mark of a liberal education. For most students, the credits earned for the major and those earned for the distribution requirements are not enough to meet the graduation requirement of 121, and students take free elective courses in areas of interest to earn the remaining credits. Three schemes of courses – one in the student’s area of concentration (the major-field requirements), a second set drawn from certain designated disciplines (the distribution requirements representing the minimum set), and a third set without constraints (the free electives) – make up the educational program in the College.

Major Field of Concentration

By majoring in a specific discipline, a student establishes a foundation of knowledge in that field, learns to frame its particular kind of questions, and starts to apply its traditional body of knowledge. By submitting to increasingly challenging and complex exercises in a distinct discipline over several semesters under the guidance of mature practitioners, the student can start to feel the rewards of intellectual mastery of a subject. The student thus experiences the gratification of developing expertise and intellectual sophistication.

Along with introductory courses in the discipline, the minimum number of credits for the major is 30. The student must maintain a minimum grade-point average of 2.0 in the major field.

Standard major sequences. When a student chooses one of the standard majors, a faculty member from the department or program offering the major becomes a student’s major adviser and assists the student in constructing a program of study. In all cases, the final responsibility for meeting both major and non-major requirements rests with the student.

Special interdisciplinary majors. In addition to the standard major programs, specially structured interdisciplinary major sequences between majors are possible. For example, a student interested in a professional school of urban or regional planning might wish to structure a special major consisting primarily of courses in political science and economics or in economics and social relations.

Any student may, with the aid of faculty members chosen from the disciplines involved, devise an interdisciplinary major program to include not less than thirty credits of related course work, of which at least fifteen credits must consist of advanced courses. The major advisers and the dean of the college must approve the program.

Multiple majors and Double degrees. A student who wishes to fulfill the requirements for more than one major program has two options. A double major is a single BA degree with two majors (some students complete triple majors). A student pursues a double major by declaring both majors. Typically, double majors can be completed in four years, but sequencing of courses and time conflicts with required courses can introduce delays. No more than three courses may overlap two majors. A double degree program is a combined BA and BS program. The BA is in the College of Arts and Sciences, and the BS may be in any one of the three undergraduate colleges. A student pursues a double degree by declaring the first program and then petitioning the standing of students committee for permission to pursue the second degree program. A special balance sheet and a major declaration for the second degree must accompany the petition to pursue a second degree. The double-degree student must satisfy major and distribution requirements for both degrees and earn a minimum of 30 additional credits beyond those required for the first degree. All of the 30 additional credits must be taken at Lehigh or in Lehigh residency programs. The requirement of 30 additional credits typically makes the double degree program a five-year program. There is no limit on the number of overlapping courses between two degrees, but there must be at least 30 credits of non-overlapping coursework in each degree program. For administrative purposes, students who take two degrees or two majors must designate one as the primary major or primary degree.
Distribution Requirements
Whatever expertise in a single discipline an undergraduate may achieve, in the course of a lifetime, curiosity lures most of us beyond the confines of a single chosen specialty. Furthermore, in a swiftly changing world, careers are being rapidly redefined, and only a person of broad intellectual orientation can intelligently consider where one may be most useful to our society and find most personal gratification. Many of the basic modes of thought and work in various fields are being reformulated, often producing surprising influences in the public and private spheres. In this world—to devise for oneself a satisfying professional life and to be a responsible citizen—one needs some awareness of the concepts and methods specific not to one field only but to a variety of disciplines.

The distribution requirements are the four domains of learning in which the College faculty requires students to develop an introductory level of expertise through encountering the body of knowledge that each discipline has gathered, the kinds of phenomena it describes and manipulates, and the types of problems it addresses. Specified numbers of credits are required in each of the four domains: the mathematical sciences, the natural sciences, the social sciences, and the arts and humanities.

Distribution Requirements for the B.A. and the B.S.
A. Arts 1, Choices and Decisions 1 credit (first semester at Lehigh)
B. College Seminar/First-Year Class 1-4 credits (one course during the first year)
C. English Composition 6 credits (two courses during the first year)

Students and advisers should monitor closely the progress toward completion of requirements D through G. Courses taken to satisfy a major program may be used to satisfy distribution requirements in only one distribution area.

D. Mathematical Sciences 3 credits
Chosen from mathematics or designated courses from philosophy or computer science
E. Natural Sciences 8 credits
Chosen from those designated in: astronomy, biological anthropology, biosciences, chemistry, earth and environmental sciences, physics, and neuroscience. At least one science course must also include the associated laboratory.
F. Social Sciences 8 credits
Chosen from those designated in: anthropology, classics, economics, political science, history, international relations, journalism, psychology, social psychology, social relations, sociology, STS, and urban studies.
G. Arts and Humanities 8 credits
Chosen from those designated in: architecture, art, classics, history, modern languages and literature, English, music, philosophy, religion studies, and theatre.

Total required for graduation: 121 credits
A student’s program, including the choice of distribution requirements, is not official until approved by the adviser.

Junior-Year Writing Certification
The faculty of the College of Arts and Sciences holds that writing is an essential tool for learning and that writing well is indispensable for performing responsibly in a profession and in one’s life as a citizen. Beyond the two writing courses required in the first year, students in the College are encouraged to take courses that provide continued practice in writing throughout their years at Lehigh. In particular each student in the College must complete at least one “writing-intensive” course—normally during the junior year—and receive writing certification from the instructor. Some major programs require that the writing-intensive course must be taken in the major field; others, that it be taken in a specific department outside the major; still others, that it may be chosen freely from writing-intensive courses offered by any department in the College. Courses that satisfy the writing-intensive requirement may also be used to fulfill major or distribution requirements.

Foreign Language Study
Students planning to pursue graduate study toward a doctorate are reminded that most graduate schools require doctoral candidates to demonstrate a reading knowledge of one or two foreign languages. Proficiency in foreign languages is advantageous for careers in law, government, journalism, commerce, industry and other fields.

Internships
Many departments and programs offer optional internship courses, and some require an internship as part of a major program. Students should consult with the department offering the internship course for information about how the internships are arranged. The University faculty has established three important criteria that must be met by all internships: 80 hours of work are required for each credit awarded, no credit can be awarded for an internship ex post facto, and the student must register for the internship course during the same term that the internship work is actually conducted. Students should be sure to pre-arrange all internship experiences with the appropriate department. Internship credits cannot be awarded for work experiences without a distinct educational component. A memorandum of understanding circulated among the employer, student, and departmental internship course director helps to promote a common understanding of the educational and work objectives of the internship. Students are advised that not all work experiences advertised as “internships” warrant academic credit, even though they may be otherwise worthwhile.

IPD and LEO
Two multidisciplinary, non-degree-granting University programs offer students special integrated learning opportunities. LEO, the Lehigh Earth Observatory, engages students and faculty from all four of Lehigh’s colleges. Students from economics, political science, Earth and environmental science, civil and environmental engineering, history, art and architecture, and education are among those who have staffed LEO projects. LEO activities emphasize communication and information sharing across the disciplines. The range of projects includes water-quality monitoring on the Lehigh River, the development of a geographic information system for the Lehigh River watershed, operating a seismic
station and a network of weather-monitoring stations, and collaborative work with the Nature Conservancy and the Wildlands Conservancy. The LEO program director is Prof. Dork Sahagian (Earth and Environmental Sciences). The Integrated Product, Process, and Project Development (IPD) Program integrates the three fundamental pillars of successful product design and commercialization: design arts, engineering, and business. Student teams produce technical and feasibility studies, design mock-ups, develop working prototypes, and prepare business plans for real clients. IPD emphasizes a solid grasp of engineering science, industrial design, business fundamentals, good communication skills, a superior understanding of the design and manufacturing process, and an appreciation of multidisciplinary teamwork. The IPD program director is Prof. John Ochs (Mechanical Engineering).

**Minor Programs in the College**

Certain departments, divisions, and programs in the College of Arts and Sciences afford an opportunity to minor in an additional field of concentration other than the major field.

A minor consists of at least 15 credits; the specific content is determined by the department, division, or program concerned. A minor is optional and, if successfully completed, will be shown on the university transcript in the same manner as the major field. A 2.0 minimum grade-point average is required for courses in the minor. Because of this requirement, no course in the minor program may be taken with Pass/Fail grading. No more than one course may be double-counted toward a major and a minor, and no more than one course may overlap between two minors.

It is the responsibility of students desiring a minor to initiate it no later than the beginning of the junior year by filing a minor program with the department, division, or program where it is offered. The student's minor adviser maintains appropriate records.

Minors in the College of Arts and Sciences departments and programs are available for degree candidates in other colleges within the university, with approval of their college adviser.

The following are established minors in the College of Arts and Sciences. Program descriptions may be found in the alphabetical listing of Section V. Some minor-program descriptions are collected within departmental descriptions, or located elsewhere, as indicated by parentheses. Students in the College of Arts and Sciences may also complete a minor in Business through the Business College or an Engineering minor through the College of Engineering.

**Actuarial Science (Mathematics)**
**African Studies**
**American Literature (English)**
**Anthropology (Sociology and Anthropology)**
**Art (Art and Architecture)**
**Art/Architecture History (Art and Architecture)**
**Asian Studies**
**Astronomy**
**Biology (Biological Sciences)**
**British Literature (English)**
**Business**
**Chemistry**
**Chinese (Modern Languages and Literature)**
**Classical Civilization (Classical Studies)**
**Classics (Classical Studies)**
**Cognitive Science**
**Communication (Journalism and Communication)**
**Computer Science**
**Design Arts**
**Earth and Environmental Sciences**
**Economics**
**Education (Education Minor, this section)**
**Engineering**
**Environmental Studies**
**French (Modern Languages and Literature)**
**German (Modern Languages and Literature)**
**Graphic Communication (Art and Architecture)**
**Health and Human Development (Health Professions Programs, this section)**
**History**
**Humanities Minor in Ethics**
**Humanities Minor in Medieval Studies**
**International Relations**
**Japanese**
**Jewish Studies**
**Journalism (Journalism and Communication)**
**Latin American Studies**
**Mathematics, Applied (Mathematics)**
**Mathematics, Pure (Mathematics)**
**Military Science**
**Molecular Biology (Biological Sciences)**
**Museum Studies (Art and Architecture)**
**Music**
**Music Industry**
**Peace Studies**
**Philosophy**
**Physics**
**Political Science**
**Probability and Statistics (Mathematics)**
**Psychology**
**Public Administration (Political Science)**
**Public Relations (Journalism and Communication)**
**Religion Studies**
**Russian (Modern Languages and Literature)**
**Russian Studies**
**Science, Technology and Society**
**Science Writing (Journalism and Communication)**
**Social Relations (Sociology and Anthropology)**
**Sociology (Sociology and Anthropology)**
**Social Psychology (Sociology and Anthropology)**
**Spanish (Modern Languages and Literature)**
**Studio Art (Art and Architecture)**
**Theatre**
**Urban Studies**
**Women's Studies**
**Writing (English)**

**College Seminar/First-Year Class (FYC) Program**

During the fall or spring semester of the first year, every student in the College of Arts and Sciences is required to enroll in a College Seminar or First-Year Class (FYC) taught by a member of the faculty. With ten to 20 students per class, these college seminars and special classes provide an intimate and supportive environment that facilitates the transition to university life. Students begin to develop many of the skills that serve as a framework for their future scholarly work—how to read closely, think critically, write clearly, learn cooperatively, speak persuasively, and solve problems creatively.
Courses in this program are an excellent way to explore a subject that may be new, or to enter more deeply into an area of previous interest. Many of the topics are non-traditional or interdisciplinary subjects of special interest to the professor.

Whatever the topic, FYCs involve considerable effort on the part of students. Some classes emphasize reading assignments, papers, and oral presentations; others include tests, laboratory work, or fieldwork.

**Pre-Law Programs**

The university has a strong pre-law tradition. In keeping with the policy of the Association of American Law Schools, the university does not have a prescribed pre-law program.

Lehigh students have been successful in attaining entrance into law schools from diverse curricula in all three of the undergraduate colleges. Illustrative courses in the arts and sciences include constitutional law, civil rights and civil liberties, law and order, and issues in contemporary political philosophy. Correspondingly, there are courses such as Introduction to law and legal environment of Business in the College of Business and Economics. That college also offers basic accounting courses that are often recommended as part of an undergraduate's pre-law preparation.

In addition to formal academic instruction, Lehigh provides other opportunities for learning about law and careers in law. The annual Tresolini Lecture series brings nationally recognized speakers to campus for extended interactions with faculty and students. Tresolini lecturers have included present and past U.S. and state Supreme Court justices and renowned legal scholars and practitioners. Lehigh also provides opportunities for gaining academic credit in several off-campus programs which provide practical experience in law and public affairs. Counseling is available to prospective pre-law students on a continuous basis from freshman orientation through the law school application process in the senior year. The pre-professional adviser in Career Services coordinates these pre-law counseling services.

**Health Professions Programs**

Schools of medicine, dentistry, optometry, podiatry, and veterinary medicine stress the importance of a strong liberal arts education as well as prescribed studies in the sciences. Although most pre-health students will choose a major in a pure or applied science, as long as candidates have the essential courses in biology, chemistry, physics, and mathematics, they may major in any of the three undergraduate colleges.

A health professions advisory committee, which includes a pre-professional advisor and faculty members from the sciences, provide career and academic counseling and work closely with students from freshman orientation through the entire process of applying to professional schools. Students are urged to consult with the pre-professional advisor in Career Services as early as possible in their academic career. Students interested in other allied health fields may also obtain information to aid them in planning their courses with their academic advisers.

**Combined-Degree Program in Medicine**

In cooperation with Drexel University College of Medicine the university offers an accelerated program that enables selected students to earn both the bachelors of arts degree in premedical science and the M.D. degree after seven years of study at the two institutions. The program was initiated in 1974, and approximately ten students matriculate each year.

The program includes three academic years at Lehigh during which time credit hours are earned toward the 121 credits required for the baccalaureate degree. The next four years are spent in the regular program of medical education in Philadelphia. After successfully completing the one year at the medical school, students will have acquired necessary additional credit hours for the baccalaureate degree.

During the pre-professional years at Lehigh, students are expected to make satisfactory progress in academic areas as well as in the more subtle task of personal growth in those attributes ultimately needed as a physician. Drexel University College of Medicine receives student grades and monitors student progress through feedback from Lehigh. Students are expected to maintain an overall GPA of 3.45 or better (A=4.0) and a minimum GPA of 3.25 in the prerequisite sciences and receive no grades in any course less than a “C”. Credentials again will be processed through the medical school’s Admissions Committee prior to extending a final definitive acceptance. This program also requires that students take the Medical College Admissions Test. The results will be evaluated by the committee prior to final acceptances. It is expected that the three numbered scores be 9 or better on the 1-15 scale or a total of 30 on any given exam with no score less than a 7 or an M.

The medical college reserves the right to withdraw an offer of acceptance if academic or personal concerns cause the college to question a student’s academic or personal maturation.

Application for admission to the program is made through Lehigh Office of Admissions. Criteria for admission includes minimum combined SAT scores of 1360, scholastic achievement, maturity, and motivation for medicine. SAT II scores are required in mathematics, English composition, and chemistry. Completed applications are reviewed by the Office of Admissions, and a pool of students chosen for interview at Drexel University College of Medicine.

Interviews are not required at Lehigh, but students are encouraged to make arrangements to come to campus to have an interview and to become better acquainted with Lehigh and the special features of the program.

Application deadline is December 1.

**Required Science and Math Courses**

Chemistry: CHM 25, 26 and CHM 31 OR CHM 75, 76; CHM 51, 53, 52, 58

Biology: BIOS 41, 42; BIOS 115, 116; BIOS 120

Physics: PHY 10, 12, 13, 22

Math: MATH 21, 22 or MATH 51, 52 plus one additional approved math course

**Required Non-Science Courses**

**Choices and Decisions**

Freshman Seminar

English Comp & Lit (two semesters)

Humanities (3 courses, 9-12 credits)

Social Sciences (3 courses, 9-12 credits)

Writing Intensive

Approved Electives: (12-16 credits)
Lehigh-Pool Scholars Premedical Education Program
Lehigh University and Lehigh Valley Hospital have established a unique premedical education program that emphasizes the link between academic and practitioner training.

Project-based, experiential learning is the driving educational philosophy behind the program. Highlights include: three years of combined biomedical research/internship experiences, guaranteed, paid summer research opportunities ($3,000 per summer) between the sophomore-junior and junior-senior years that will provide practical experience in biomedical settings to promote and accelerate skill development, joint faculty and physician advising, special courses in modern medical economics, business practices, and ethics, travel to major professional society meetings to present research and learn about state-of-the-art developments, a lecture/dinner series that will include special, individual sessions with distinguished speakers.

This is a highly competitive program open to a limited number of outstanding, strongly motivated students.

Combined-Degree Program in Dentistry
The university, in cooperation with the School of Dental Medicine at the University of Pennsylvania, offers an accelerated program that enables selected students to earn a combined baccalaureate and doctor of medicine degree after a minimum of seven years of study at the two institutions.

The program includes three academic years during which time credit hours are earned toward the baccalaureate degree. The next four years are spent in the regular program of dental education in Philadelphia.

During the first three years at Lehigh, students are expected to make satisfactory progress in the academic areas as well as in the areas of personal growth, developing those attributed ultimately needed to become a dentist. Students must maintain a minimum overall and science GPA of 3.2 throughout the three years at Lehigh and are required to take the Dental Admissions Test with a minimum of 16 in all subject areas.

The dental school reserves the right to withdraw an acceptance if academic or personal concerns cause the college to question a student's ability to function as a dentist. The dental school also reserves the right to require that students spend additional time at Lehigh if the school feels that this is necessary to insure the student's academic or personal maturation.

Application to the program occurs when a student applies to Lehigh. Students for admission into the program. Students must maintain a minimum overall and science GPA of 3.2 throughout the three years at Lehigh and are required to take the Dental Admissions Test with a minimum of 16 in all subject areas.

The dental school reserves the right to withdraw an acceptance if academic or personal concerns cause the college to question a student's ability to function as a dentist. The dental school also reserves the right to require that students spend additional time at Lehigh if the school feels that this is necessary to insure the student's academic or personal maturation.

Application to the program occurs when a student applies to Lehigh University. The dental school takes action on the applicant in the spring of an academic year. Final decisions are forwarded to Lehigh University about March 20. The applicant is notified of joint acceptance by Lehigh University. Admission is based on SAT scores (a minimum combined score of 1180, 92 high school grade point average, and ranked in the top 10% of the high school graduating class. Or as a first- or second-year Lehigh student, a minimum overall 3.2 GPA in undergraduate coursework and in all prerequisite math and science courses completed at the time of application with no grade below a C. A committee comprised of representatives from both institutions selects the students for admission into the program.

Students will spend three years at Lehigh during which time credit hours are earned toward the baccalaureate degree. Upon maintaining a minimum 3.2 GPA in the math and science prerequisites, attaining total science scores of 320 or above on the Optometry Admissions Test (OAT), and passing reasonable personal interview standards, these students will be admitted to the SUNY College of Optometry at the completion of their third year at Lehigh. All science and math prerequisite courses must be satisfied with a C or higher. Students must submit a formal application, transcripts, and recommendations at this time. After successfully completing all first-year coursework at the college of optometry, a BA degree in behavioral neuroscience will be granted by Lehigh.

The optometry school reserves the right to withdraw an acceptance if academic or personal concerns cause the school to question a student's ability to function as an optometrist.

Application for admission to the program for incoming students is made through Lehigh Office of Admissions. Application deadline is January 1. For curriculum information, consult with the pre-professional advisor in Career Services.

Health and Human Development Minor
The minor in health and human development, located primarily within the College of Arts and Sciences, is an interdisciplinary program designed to provide insight into the social scientific aspects of health issues through the human life cycle. While this minor program is open to anyone in the three undergraduate colleges, it may be of particular interest to students preparing for careers in any aspect of health care, social work, and child or adult development.
The program is administered through the Program in Health and Human Development, an interdisciplinary group of faculty members who have research interests in this area. Current research studies cover all aspects of the life cycle, including the health dimensions of both normal and abnormal child development, reproductive health issues, adult life crises such as illness and loss, and dimensions of aging. Students are able to serve as research assistants in some of these studies.

The minor consists of a minimum of 16 credit hours chosen in consultation with the program director, Donna Kosteva, in the Office of Career Services.

Required courses (8 credit hours)
- SSP 160 Medicine and Society (4) and
- PSYC 107 Child Development (4) or
- PSYC/SSP 109 Adulthood and Aging (4)

Elective courses chosen from two different disciplines:
- ANTH 321 Anthropology of Physical and Mental Health (4)
- PHIL 116 Bioethics (4)
- PSYC 107 Child Development (4)
- PSYC/SSP 109 Adulthood and Aging (4)
- PSYC 305 Abnormal Psychology (4)
- PSYC 351 Cognitive Development in Childhood (4)
- PSYC 361 Personality & Social Development in Childhood (4)
- PSYC 363 Personality and Social Development in Adulthood (4)
- SSP 152 Alcohol, Science & Society (4)
- SSP 160 Medicine and Society (4)
- SSP 162 AIDS and Society (4)
- SSP 366 Sociology of Aging (4)
- SSP 341/WS 341 Women and Health (4)

**Education Minor**

The education minor helps undergraduates explore career options in school teaching or other professional careers with elementary, secondary, or special education students. The minor may accelerate entry into a teaching career because appropriate credits from the minor may be applied toward completion of teacher certification credits for those admitted to Lehigh’s graduate-level Teacher Intern Program.

The minor offers a systematic background of professional education experiences, coordinating practicum activities with theory courses designed to provide a foundation for future educational studies. Its focus is exploratory.

The experiences of the minor are intended to enrich an individual's understanding of education as a central intellectual activity of our culture and to provide self-understanding of one’s own potential as an educator.

An undergraduate may take these courses with the approval of the adviser and minimum GPA of 2.75. Completion of the minor does not assure admission to the Teacher Intern Program to become a certified professional.

The program coordinator is Professor Lynn Columba, College of Education, Mountaintop Campus, Iacocca Hall, 111 Research Drive.

Fifteen credit hours are required for the education minor as follows:
- EDUC 491 Development, Classroom Management, and Assessment
- TBTE 314 Seminar in Elementary and Secondary Education (3)
- TBTE 394 Special Topics in: (subtitle) (3)
- TBTE XXX Elective-College of Education course (3)
- TBTE XXX Elective-College of Education course (3)

**The Five-Year B.A. or B.S./M.Ed. Combined Degree and Teacher Certification Program**

The College of Arts and Sciences and the College of Education offer a five-year degree program that is designed to allow students to earn both a bachelor’s degree and a master’s degree in five years instead of the traditional six.

The combined degree program leads to either a B.A. or B.S. degree in an academic discipline, and an M.Ed. degree in either elementary or secondary education. In addition, an Instructional I teaching certificate from the Pennsylvania Department of Education is also earned. These certification areas are:

- Elementary Education
  - Secondary Education:
  - Biology
  - Chemistry
  - Citizenship Education
  - Earth and Space Science
  - English
  - Environmental Education
  - French
  - German
  - Mathematics
  - Physics
  - Social Sciences
  - Social Studies
  - Spanish

Freshman, sophomores and juniors with a minimum overall GPA of 2.75 may apply to the program. Those accepted will begin education courses in the second semester of sophomore year (junior year for those admitted later).

Criteria for admission to the program include:
- A demonstrable commitment to learning and intellectual growth
- An expressed interest in teaching as a career
- Previous experience in working with young people; this can be gained in the summers of freshman and sophomore years

In the fall semester of senior year, students must complete an application for admission to the graduate College of Education (elementary or secondary education) in order to continue in the program and complete the master’s degree/Instructional I teacher certification portion of the program.

For information students should contact Professor Lynn Columba, College of Education, Mountaintop Campus, Iacocca Hall, 111 Research Drive.
College of Business and Economics

Tom Hyclak, interim dean; Joan B. DeSalvatore, associate dean, director of undergraduate programs; Kathleen A. Teilder, associate dean, director of graduate programs; Kenneth P. Sinclair, chair, department of accounting; James Dearden, chair, department of economics; Richard J. Kish, chair, Perella Department of Finance; Susan A. Sherer, chair, department of management; K. Sivakumar, chair, department of marketing; Shin-Yi Chou, director, Ph.D. program; Robert J. Thornton, director, master of science in economics; John W. Paul, director, master of science in accounting; Michael Kolchin, director, MBA and Professional Education.

The College of Business and Economics offers the bachelor of science degree in business and economics. In the dynamic global environment of the 21st Century, today's business students face unprecedented challenges. Lehigh's College of Business and Economics prepares them to meet these challenges and to succeed. The mission of Lehigh University's College of Business and Economics is to provide an intellectual and professional learning environment that advances knowledge through research and scholarship and that develops future leaders through experiential learning, rigorous analysis and the discipline of a strong work ethic – the hallmarks of a Lehigh University business education.

The College of Business and Economics consists of five departments: accounting, economics, Perella Department of Finance, management and marketing. Its programs, accredited by the AACSB International – The Association to Advance Collegiate Schools of Business – provide students with a solid foundation in business and economics principles. In addition to the traditional undergraduate majors of accounting, economics, finance and marketing, the College offers innovative programs and courses that respond to today's unique business requirements, including:

The Business Information Systems major that answers a recognized need in the business world. As businesses seek to make themselves more productive and competitive, they have become more reliant on information technology. Students with a good understanding of information systems can help businesses enhance their use of this technology.

The Supply Chain Management major is another response to the complex environment facing business graduates. This undergraduate major gives students solid exposure to supply management, logistics, business-to-business marketing and operations management.

The College of Business and Economics has joined with the College of Engineering to offer two cross-college programs. These programs, Integrated Business and Engineering (IBE) and Computer Science and Business (CSB) are described in full in the following "Crossing Boundaries" section.

All minors offered by the College of Arts and Sciences are available to CBE undergraduate students. The engineering minor offered by the College of Engineering is also available to all CBE undergraduates.

Crossing Boundaries

A major strength of the College of Business and Economics is its ability to develop programs by partnering across academic disciplines within the College, across the colleges within the University and with the business community. Students are able to cross traditional boundaries and take advantage of all that the College of Business and Economics and other colleges of the University have to offer. The partnerships built with alumni and the business community afford students the opportunity for internships in their areas of interest.

As the needs in the marketplace change, the ingredients necessary for success must reflect these new requirements. From courses in e-commerce to supply chain management and joint degree programs, the College of Business and Economics provides today’s undergraduate students with the skills necessary to become tomorrow’s business leaders.

Entrepreneurship Minor

The program aims to prepare students from all undergraduate colleges at Lehigh with the skill sets, attitudes, and understanding of the processes to realize their entrepreneurial goals in either an emerging or established company setting. The program is designed to be generally accessible to students from all disciplines with an emphasis upon innovation, the entrepreneurial process, and cross-functional integration. The minor can be added to any undergraduate degree at the university.

Integrated Real Estate Minor

Integrated real estate @Lehigh (ire@l) is a three or four year course of study designed to complement a wide range of majors, from art and architecture to civil engineering to environmental science to finance to marketing to economics. The mission of the ire@l program is to prepare the next generation of real estate leaders. Students completing the ire@l program will earn a minor in real estate.

Career Placement

The undergraduate programs in the College of Business and Economics provide the students with a strong foundation in business and economic principles necessary for success in business. Upon graduation, the majority of students from the College of Business and Economics enter business in many different professional positions including accounting, investment banking, advertising, marketing, management consulting and information systems. Further professional studies in law, graduate business schools or specialized graduate education in economics, operations research, or other related fields are additional options open to graduates.

Variety of Options

While preparing students for a career in business and economics, we recognize the importance of a well-rounded individual. At Lehigh, this important exposure to science, language and the arts and humanities is accomplished by distribution requirements, within which the student has wide choice. Students have a minimum of 52 free electives, 48 of which must be taken outside the College of Business and Economics.

The bachelor of science in business and economics may also lead to admission into the master of business administration program at Lehigh or another institution after graduates have at least 2-3 years of work experience.
In addition, the college also offers the following graduate degrees: doctor of philosophy, master of business administration and educational leadership, master of science in accounting and information analysis, master of science in economics, master of science in health and bio-pharmaceutical economics and master of science in analytical finance. These are described in Section IV.

Computer Science and Business Program
The College of Business and Economics and the Computer Science and Engineering department in the P.C. Rossin College of Engineering and Applied Science jointly offer the Computer Science and Business (CSB) program. The mission of the program is to provide rigorous computer science education integrated with in-depth business training that prepares high quality undergraduate students with diverse backgrounds for lifelong learning and to assume positions of leadership in the business community. This 135 credit hour degree integrates technology skills in software development with a solid background in business and economics. Deep immersion in both of these areas distinguishes CSB from programs offered by other universities. At the same time it is well balanced with approximately one third of the courses in liberal arts, one-third in computer science, and one-third in business.

After four years the program leads to a degree in Computer Science and Business, which is jointly awarded by the College of Business and Economics and the P.C. Rossin College of Engineering and Applied Science. Graduates of the program will be ideal candidates for placement within large consulting firms, small consulting teams, and startup companies. This program provides students with the background needed to become the CIO's, decision makers, and general managers of information age corporations.

While honors-like in quality and rigor, the CSB program is open to any student wishing to accept the challenges it offers. Students may matriculate at Lehigh specifically into CSB or enter the program at a later point. Transferring into CSB after freshman year, however, may require students to take additional credits to graduate.

The co-directors of the CSB program are James A. Hall, Peter E. Bennett Chair in Business and Economics (jah0@lehigh.edu) and Edwin Kay, Professor of Computer Science and Engineering (ejk0@lehigh.edu). For additional information see Section V of this catalog or visit the CSB web site at: www2.lehigh.edu/page.asp?page=distinctiveprograms

Integrated Business and Engineering Honors Program
The Integrated Business and Engineering Program (IBE) is offered jointly by the College of Business and Economics and the P.C. Rossin College of Engineering and Applied Science. The mission of the Integrated Business and Engineering Honors program is to produce graduates with a unique set of skills and competencies: In addition to the mastery of the concepts and procedures taught in individual courses in each college, the IBE Honors Program develops competencies that require an integrated knowledge from both engineering and business. This program recognizes the need for today's leaders in business and industry to have a sound foundation in both commerce and technology.

After four years and a minimum of 137 credits, students will receive a single Bachelor of Science Degree in Business and Engineering. The program meets the accreditation standards of AACSB International. Students are required to maintain a minimum GPA of 3.25 in order to remain in the program.

Students in the IBE Honors Program can major in any area of business or engineering that Lehigh offers. After freshman year, each student will elect a major in either the College of Business and Economics or the P.C. Rossin College of Engineering and Applied Science. Students wanting to major in an area of business can select from: accounting, business information systems, economics, finance, marketing, management or supply chain management.

Admission to the Integrated Business and Engineering Honors Program is highly selective, with annual admission limited to approximately 50 students. The University’s Office of Admissions (610-758-3100) can explain the procedure for applying to the program.

It is possible that a small number of exceptional students may be admitted to the program following the completion of their freshman year. Admission at this point would be highly competitive and based upon freshman year GPA, faculty recommendations, and space availability.

The co-directors of the IBE Honors Program are Stephen G. Buell, Professor of Finance and Business Information Systems (sgh20@lehigh.edu) and Robert H. Storer, Professor of Industrial and Manufacturing Systems Engineering (rhs2@lehigh.edu). For additional information, see the IBE Honors Program entry in Section V of this catalog or visit the IBE web site at www.lehigh.edu/inibep/inibep.html.

Centers and Institutes
The college also oversees research and scholarship in a number of centers and institutes, where graduate and undergraduate students work closely with faculty members. These include: Iacocca Institute, Martinvale Center for the Study of Private Enterprise, Murray H. Goodman Center for Real Estate Studies, Philip Rauch Center for Business Communications, Value Chain Research Institute, Financial Services Laboratory, and Small Business Development Center.
Bachelor of Science in Business and Economics

The College of Business and Economics at Lehigh University prepares students to become business and community leaders in a broad range of organizations. Our undergraduate students acquire the knowledge and skills needed to excel in business. Overall, we expect our graduates to be able to successfully solve complex, unstructured business problems.

For the bachelor of science degree in business and economics, 124 credit hours are required. A writing requirement, which is included within the required 124 credit hours, is also a part of the college curriculum.

Planning Courses of Study

First year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1 Composition and Literature I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 21 Calculus I (4)</td>
<td></td>
</tr>
<tr>
<td>MATH 75/76 Calculus I — Parts A &amp; B (2 each)</td>
<td></td>
</tr>
<tr>
<td>BUS 1 Introduction to Business</td>
<td>3</td>
</tr>
</tbody>
</table>

Excel competency must be completed before ACCT 151 and ECO 145.

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 151 Introduction to Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 152 Introduction to Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BUS 111 Management Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECO 129 Money, Banking and Financial Markets</td>
<td>3</td>
</tr>
<tr>
<td>ECO 145 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>ECO 146 Applied Microeconomic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MGT 186 Supply Chain Operations Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN 225 Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>LAW 201 Legal Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>MKT 211 Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MGT 243 Management of Organizations</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 301 Business Management Policies</td>
<td>3</td>
</tr>
</tbody>
</table>

Major Programs (15 credits - 21 credits)

Before the end of the first semester of the junior year, students select a major consisting of sequential or related courses in one of the following major programs: accounting, business economics, business information systems, economics, finance, management, marketing and supply chain management. A GPA of 2.0 or higher in the major program is required for graduation.

Double Majors

Students in the College of Business & Economics may pursue a double major within the CBE according to the following guidelines. Students must declare a single major prior to declaring a second major, and must complete an application including a statement of rationale for pursuing the second major. Students planning to pursue more than one major within the CBE must meet a pre-requisite GPA of 2.0 or higher.

Distribution Requirements (15 credits)

Students are required to take six (6) credits of humanities (HU), six (6) credits of social science (SS), and three (3) credits of science (NS) for a total of 15 credits of distribution requirements. Students should refer to the department in the catalog to determine which course offerings may be taken to satisfy these requirements.

Electives (52-58 credits) - depending on major

Students will earn 52-58 credits of “free” electives. A minimum of 48 credits are to be taken outside the College of Business and Economics.

In the College of Business and Economics, the pass-fail option is available for elective courses only. A student desiring Lehigh credit for a course taken at another institution must complete a transfer credit form and obtain approval from the appropriate Lehigh academic department in advance.

Business Minor

The purpose of the business minor program is to enable non-CBE students to pursue a course of business studies that will enable them to supplement their major studies and make them more marketable. The overall learning objective of the program is to provide non-CBE students with the knowledge and skills with which to make more informed business decisions.

Courses offered in the business minor program are not open to students currently in the CBE nor may these classes count as substitutes for CBE core classes should a student later decide to transfer into the CBE.

Program of Studies: The business minor consists of 14 credit hours. These courses are integrated across the entire program and must be taken in sequence. These 14 credit hours plus the prerequisite consist of the following courses:

Required prerequisite course:

- **ECO 1 — Principles of Economics** (4 credit hours). ECO 1 can be taken in either the freshman or sophomore year and must be completed prior to entering the business minor program.

Required courses:

- **BUS 125 — Behavioral Skills Workshop** (1 credit hour. Fall.) Prerequisite: ECO 1
- **BUS 126 — Information Analysis and Financial Decision Making I** (3 credit hours. Fall.) Co-requisite: BUS 125.
- **BUS 127 — Information Analysis and Financial Decision Making II** (3 credit hours. Spring.) Prerequisite: BUS 126.
- **BUS 225 — Developing, Producing, and Marketing Products and Services I** (3 credit hours. Fall.) Prerequisite: BUS 127.
- **BUS 226 — Developing, Producing, and Marketing Products and Services II** (3 credit hours. Spring.) Prerequisite: BUS 225.
- **BUS 326 — Business Strategy** (1 credit hour. Spring.)

Recommended courses:

- Probability Theory and Statistics (e.g., ECO 145, MATH 12, IE 111, PSYC 110, etc.)
- An Integrated Learning Experience (e.g., ME/BUS 211, MGT 311, or internship)
The courses required in the business minor program will be offered in a lock step sequence requiring completion of each course in the sequence before being able to continue with the next course. That is, students must first complete BUS 126 before taking BUS 127, BUS 127 before taking BUS 225, and BUS 225 before taking BUS 266. BUS 125 and BUS 326 are to be taken in conjunction with BUS 126 and BUS 226, respectively.

Program admission requirements: Each spring, 80 students will be accepted into the business minor program for the following fall. Application into the program will be made by students and submitted to the program director by the first Monday in March. An admissions committee comprised of the business minor program director, associate dean for the undergraduate CBE program, and the business minor curriculum committee will make admission decisions based on G.P.A., experience, and interest in pursuing business opportunities upon graduation from Lehigh (to be evaluated on the basis of a written essay). Students will be notified of admissions decisions prior to registration for the fall semester. Entrance into business minor classes will be controlled by restricted overrides by the director of business minor program. The Director of the Business Minor program is Geraldo M. Vasconcellos, Allen DuBois Distinguished Professor of Finance & Economics (gmv0@lehigh.edu).

Integrated Real Estate @t Lehigh Program
Integrated real estate @t Lehigh (ire@l) is a three or four year course of study designed to complement a wide range of majors, from art and architecture to civil engineering to environmental science to finance to marketing to economics. The mission of the ire@l program is to prepare the next generation of real estate leaders. Students completing the ire@l program will earn a minor in real estate.

Required Courses comprising the minor include:
- IPRE 001 Introductory Seminar in Real Estate (3 credit hours)
- IPRE 002 Field Laboratory (2 credit hours)
- IPRE 301 Case Studies in Real Estate Value Creation (3 Credit Hours)
- IPRE 302 Summer IPRE Internship (0 - 1 credit hour)
- Bus 347 Practicum in Real Estate I (2 credit hours)
- Bus 348 Practicum in Real Estate II (2 credit hours)

Recommended Courses:
- IPRE 101 Real Estate Practicum Clerkship I (1 credit hour)
- IPRE 102 Real Estate Practicum Clerkship II (1 credit hour)

The director of the Goodman Center for Real Estate Studies and the ire@l program is Associate Professor Stephen Thode (ire@lehigh.edu).

Entrepreneurship Minor
The purpose of the entrepreneurship minor is to enable students to supplement their major with knowledge and skills that increase their ability to realize their entrepreneurial goal and/or make them more marketable upon graduation. It will also work to create an environment and campus center of gravity that fosters an entrepreneurial spirit and mindset among students, and also serve as a focus for community building among entrepreneurial students, faculty, and alumni. This minor is available for students at Lehigh University.

Program of Studies: The entrepreneurship minor consists of 12 credit hours, plus the pre-requisite course, as follows:

Required pre-requisite course:
- ECO 1: Principles of Economics (4 credit hours)

ECO 1 must be completed prior to entering the entrepreneurship minor program.

Required Courses:
- ENTP 101: Entrepreneurship I (3 credit hours) Pre-requisite: ECO 1.
- ENTP 201: Entrepreneurship and Enterprise (3 credit hours) Pre-requisite: ENTP 101 or permission of minor program director.
- One of the following ILE options (3 credit hours)
- ENTP 311: Entrepreneurship Practicum (3)
- IBE 395: Capstone Projects 1 (3)
- MGT 311: LUMAC Management Assistance Counseling (3) Or other independent experiential project approved by the minor program director.
- ENTP 312: Launching Entrepreneurial Ventures (3 credit hours) Pre-requisite: Junior standing, ENTP 311, or equivalent ILE option, or permission or minor program director.

Recommended Additional Courses:
- ACCT 108 or 151/152
- LAW 201 and 202
- MGT 306
- MKT 211 and 319
- SCM 309
- Excel Competency Course/Exam

Students must complete the minor sequence with an average GPA of at least 2.0 in those courses in order to qualify for the minor. Courses in the Entrepreneurship minor cannot be used towards either the Engineering minor or the Business minor. Minor Program Director: Graham Mitchell.

Additional Minors
Additional minors are also available to CBE students within the following areas: BIS Applications; BIS Technology; ECO International Economics; ECO Public Policy. All minors offered by the College of Arts and Sciences are available to CBE undergraduate students. The engineering minor offered by the College of Engineering is also available to all CBE undergraduates.
College of Education

The university's College of Education offers opportunities for advanced study in the field of education. For information, see Graduate Study in Education, Section IV, or College of Education, Section V.

P.C. Rossin College of Engineering and Applied Science

David Wu, dean
John P. Coulter, associate dean for graduate studies and research
Gerard P. Lennon, associate dean for undergraduate studies

The P.C. Rossin College of Engineering and Applied Science offers the bachelor of science degree in 15 programs, combining a strong background in sciences and mathematics with requirements in humanities and social sciences. Students in college programs learn principles they can apply immediately in professional work; those who plan on further academic experience can design a curriculum centering on interests they will pursue in graduate school.

The Mission of the college is to prepare undergraduate and graduate students to be critical thinkers, problem solvers, innovators, leaders and life-long learners in a global society and to create an environment where students pursue cutting-edge research in engineering and engineering science.

Major Programs

The P.C. Rossin College of Engineering and Applied Science includes seven departments and offers undergraduate and graduate degree programs at the bachelor, master, and doctor of philosophy levels.

The undergraduate degree programs leading to the bachelor of science degree are:
- Applied sciences
- Bioengineering
- Chemical engineering*
- Chemistry
- Civil engineering*
- Computer engineering*
- Computer science**
- Electrical engineering*
- Engineering mechanics
- Environmental engineering
- Industrial engineering*
- Information and systems engineering
- Integrated business and engineering
- Materials science and engineering*
- Mechanical engineering*

*Accredited by the Engineering Accreditation Commission of ABET, Inc.

**Computing Accreditation Commission of ABET.

Programs in chemistry and physics have been approved by the faculty program review committee in these disciplines.

Information about each of these programs may be found under alphabetical listings in Section V.

Each of the curricula includes course requirements in the physical sciences, mathematics, engineering, and the advanced engineering or science course work essential for the particular degree. In addition, each curriculum requires study in humanities and social sciences (HSS).

Declaration and Change of Curriculum

In the second semester of the freshman year, at registration for the sophomore year, students usually indicate their choice of curriculum. However, since the sophomore year programs for several curricula are very much alike, it is possible to transfer from one curriculum to another as late as the end of the sophomore year. This is done by filing a new declaration of major form. There are instances where such a transfer may require one or two courses to be taken during a summer session at Lehigh or elsewhere.

Undergraduates with interests in such topical areas as environmental biotechnology or aerospace engineering may pursue their interests through electives provided in each of the curricula. Effective preparation for graduate study in such specialties consists of basic programs in engineering and science, along with electives especially chosen for the field of interest. Such electives are chosen from among all the offerings of the university and are usually taken during the senior year.

Free Electives

The college, through its advisers, is prepared to help students to use the credit hours of "free electives" that, along with other electives in the curriculum, may be used to develop a program of personal interest. Free electives may be satisfied by taking regular course offerings or up to six credit hours from Mus 21-79, or up to six credit hours from Jour 1-8, or up to six credit hours of advanced ROTC courses.

Qualified juniors in the college planning to continue their formal education in graduate school are urged to take advantage of the flexibility in their programs and design their senior-year "free elective" opportunities in a manner that provides an effective foundation for a graduate program. Students who plan their programs in this manner can, upon recommendation of the department and petition to the Associate Dean, apply six to twelve credit hours of their total undergraduate credit hours toward graduate-level courses.

Recommended Freshman Year In Engineering and Applied Science

A recommended outline of courses for the freshman year, which satisfies requirements for all students in the college, is shown below. For schedules of the courses required in the following three years, refer to Section V.

Freshman year, first semester (14-15 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1</td>
<td>Composition and Literature (3)</td>
<td></td>
</tr>
<tr>
<td>CHM 25</td>
<td>Introductory Chemical Principles and Laboratory (4)</td>
<td></td>
</tr>
<tr>
<td>PHY 11, 12</td>
<td>Introductory Physics I and Laboratory (5)</td>
<td></td>
</tr>
<tr>
<td>MATH 21</td>
<td>Calculus I (4)</td>
<td></td>
</tr>
<tr>
<td>ENGR 1</td>
<td>Engineering Computations (3) or</td>
<td></td>
</tr>
<tr>
<td>ENGR 5</td>
<td>Introduction to Engineering Practice (3)</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives (6-7 credits)

Each of the curricula includes course requirements in the physical sciences, mathematics, engineering, and the advanced engineering or science course work essential for the particular degree. In addition, each curriculum requires study in humanities and social sciences (HSS).
Engineering and Applied Sciences. The purpose of the minor cannot be taken by students in the College of Economics only. The courses that comprise the minor are available to students in the Colleges of Arts and Sciences and Business and Engineering. The minor in engineering is available to students in the College of Arts and Sciences (HSS). Specific requirements may be found under the heading Minor Programs in the College.

Minors in Humanities/Social Sciences (HSS)

**Requirements for all Accredited Engineering Majors**

**Basic Requirement: English and Economics.** (Three courses totaling a minimum of ten credit hours): Students must complete English 1 or 3, English 2, 5, or 11 and Economics 1. Students with advanced placements in English 1 usually take English 11 to complete the English requirements.

**Advanced Requirement: Breadth and Depth.** 13 credits in courses designated as HU (humanities) or SS (social science), not including one-credit courses, with the following restrictions:

1. At least eight credits must be in a common discipline and from the same department or program. At least three of these credits must be at the 100-level or above, or at the intermediate level or above for a single modern foreign language.

2. At least three credits in a discipline different from, and not cross-listed with, the discipline employed to satisfy the concentration requirement above.

3. At least three credits must be designated as HU.

4. HSS Credit is not given for a first elementary-level modern foreign language course (e.g. Spanish 1) until after the second elementary-level course (e.g. Spanish 2) is completed satisfactorily.

5. None of the courses taken to satisfy the HSS requirement can be taken Pass/Fail.

**Minors in Humanities/Social Sciences**

For greater emphasis in a particular area, a student may choose to complete a minor in Humanities and Social Sciences (HSS). Specific requirements may be found under the heading Minor Programs in the College. Because students must fulfill the HSS requirements, this will result in taking as many as seven HSS courses. Therefore, a student electing a minor must use personal (free) electives. Each curriculum in the college contains a minimum of two such free electives.

Written permission to pursue a minor in HSS must be obtained from the sponsoring department, and the student’s academic advisor, and filed with the registrar. A student successfully completing a HSS minor will receive recognition of this accomplishment on his or her transcript.

**Minor in Engineering**

The minor in engineering is available to students in the Colleges of Arts and Sciences and Business and Economics only. The courses that comprise the minor cannot be taken by students in the College of Engineering and Applied Sciences. The purpose of the minor is to educate non-engineering students concerning engineering methodology, specifically how engineers solve problems, how they design, manufacture, and analyze, and how factors such as economics, safety, environmental issues affect the process. The program will not result in an engineering education, but an education about engineering. Note that all the courses in the minor are “integrated”; none are specific to an engineering discipline.

The minor has two prerequisites, a mathematics course (Math 51 or equivalent) and a physics course (Physics 5 or equivalent). There are 2 required courses in the minor, and an additional 3 elective courses must also be taken. Contact engrminor@lehigh.edu or the Associate Dean’s office of the PC, Rossin College of Engineering and Applied Science for details.

**Technical Minors**

Minors are offered in technical or scientific specialties that are not normally included within the standard curricula. Each minor program contains at least 15 credit hours of technical and/or scientific courses.

The student interested in a technical minor should contact the associate chair of the department in which the minor is desired for specific requirements. A student successfully completing a technical minor will receive recognition of this accomplishment on his or her transcript.

Currently, the following technical minors are offered by these departments:

**Technical Minor**

- Aerospace engineering
- Biotechnology
- Chemical engineering
- Computer science
- Environmental engineering
- Manufacturing systems
- Materials science
- Nanotechnology
- Polymer science

**Department**

- Mechanical Engineering
- Chemical Engineering
- Computer Science & Engineering
- Civil & Environmental Engineering
- Industrial & Systems Engineering
- Materials Science & Engineering
- Materials Science & Engineering
- Center for Polymer Science Engineering & Engineering

**Minors Offered by the College of Business & Economics for Engineering Undergraduates**

The College of Business and Economics offers a minor in Business for students in the College of Arts and Sciences and Engineering and Applied Science to provide students with knowledge and skills to allow them to make informed business decisions. A sequential sequence of courses is designed to integrate such traditional topics as accounting, finance, marketing, and management.

The second minor offered by the College of Business and Economics is Entrepreneurship. The courses in the minor treat subjects such as intellectual property, creativity and innovation, venture capital, positioning of products and services, and understanding the entrepreneurial mindset.

---

**Freshman year, second semester (14-15 credits)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 2</td>
<td>Composition and Literature: Fiction, Drama, Poetry</td>
<td>3</td>
</tr>
<tr>
<td>PHY 11, 12</td>
<td>Introductory Physics I and Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>CHM 25</td>
<td>Introductory Chemical Principles and Lab</td>
<td>4</td>
</tr>
<tr>
<td>MATH 22</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 1</td>
<td>Engineering Computations</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 5</td>
<td>Introduction to Engineering Practice</td>
<td>3</td>
</tr>
</tbody>
</table>

**Humanities/Social Sciences (HSS) Requirement for all Accredited Engineering Majors**

**Basic Requirement: English and Economics.** (Three courses totaling a minimum of ten credit hours):

Students must complete English 1 or 3, English 2, 5, or 11 and Economics 1. Students with advanced placements in English 1 usually take English 11 to complete the English requirements.

**Advanced Requirement: Breadth and Depth.** 13 credits in courses designated as HU (humanities) or SS (social science), not including one-credit courses, with the following restrictions:

1. At least eight credits must be in a common discipline and from the same department or program. At least three of these credits must be at the 100-level or above, or at the intermediate level or above for a single modern foreign language.

2. At least three credits in a discipline different from, and not cross-listed with, the discipline employed to satisfy the concentration requirement above.

3. At least three credits must be designated as HU.

4. HSS Credit is not given for a first elementary-level modern foreign language course (e.g. Spanish 1) until after the second elementary-level course (e.g. Spanish 2) is completed satisfactorily.

5. None of the courses taken to satisfy the HSS requirement can be taken Pass/Fail.

**Minors in Humanities/Social Sciences**

For greater emphasis in a particular area, a student may choose to complete a minor in Humanities and Social Sciences (HSS). Specific requirements may be found under the heading Minor Programs in the College. Because students must fulfill the HSS requirements, this will result in taking as many as seven HSS courses. Therefore, a student electing a minor must use personal (free) electives. Each curriculum in the college contains a minimum of two such free electives.

Written permission to pursue a minor in HSS must be obtained from the sponsoring department, and the student’s academic advisor, and filed with the registrar. A student successfully completing a HSS minor will receive recognition of this accomplishment on his or her transcript.

**Technical Minor**

**Department**

- Aerospace engineering
- Biotechnology
- Chemical engineering
- Computer science
- Environmental engineering
- Manufacturing systems
- Materials science
- Nanotechnology
- Polymer science

**Center for Polymer Science Engineering & Engineering**

**Minors Offered by the College of Business & Economics for Engineering Undergraduates**

The College of Business and Economics offers a minor in Business for students in the College of Arts and Sciences and Engineering and Applied Science to provide students with knowledge and skills to allow them to make informed business decisions. A sequential sequence of courses is designed to integrate such traditional topics as accounting, finance, marketing, and management.

The second minor offered by the College of Business and Economics is Entrepreneurship. The courses in the minor treat subjects such as intellectual property, creativity and innovation, venture capital, positioning of products and services, and understanding the entrepreneurial mindset.
Music Option
Music and Engineering is not a major in itself. However, Lehigh attracts many engineering and science students who wish to continue their active involvement in music and the music department. For those students who are interested in pursuing this option, music can be taken as a second degree or minor.

Cooperative Education (Co-Op)
Co-Op is a selective program available for undergraduates in the P.C. Rossin College of Engineering and Applied Science; the program provides eight months of paid, full-time work experience, bridging the gap between engineering theory and application and allowing students to graduate within a four year time-frame. Because of the rigorous academic schedule, the program is selective.

The Co-Op schedule provides for interviews and selection by the companies in the spring semester of the sophomore year. Those students selected attend Lehigh for the second semester coursework of the junior year. The Co-Op experience is completed with a second work rotation the following summer (mid-May through August). Students earn 3 free elective credits per successful work assignment for a total of 6 free elective credits.

Integrated Business and Engineering Honors Program
The Integrated Business and Engineering Honors Program (IBE) is offered jointly by the P.C. Rossin College of Engineering and Applied Science and the College of Business and Economics. The program recognizes the need for today’s leaders in business and industry to have a sound foundation in both commerce and technology.

After four years and a minimum of 137 credits, students will receive a single Bachelor of Science Degree in Integrated Business and Engineering. The program meets the accreditation standards of the American Assembly of Collegiate Schools of Business. Students are expected to maintain a minimum GPA of 3.25 in order to remain in the program.

A second option is the five-year dual degree program. This option allows students to obtain a second Bachelor of Science degree in engineering by completing course work in the engineering field chosen by the student as their IBE major. Students enrolled in the four-year IBE Honors Program and in satisfactory standing are able to transfer to a dual-degree at any time, and stay within the honors program cohort. The additional time necessary to complete the second degree will depend on the curriculum selected, and the number of advanced placement credits. The number of additional credit hours will typically be in the range of 27 to 30.

Students in the IBE Honors Program can major in nearly any area of engineering or business that Lehigh offers. After their freshman year, each student will elect a major in either the P.C. Rossin College of Engineering and Applied Science or the College of Business and Economics.

Admission to the Integrated Business and Engineering Program is highly selective, with annual admission limited to approximately 45 students. The University’s Office of Admissions can explain the procedure for applying to the program.

It is possible that a small number of exceptional students may be admitted to the program following the completion of their freshman year. Admission at this point would be highly competitive and based upon freshman year GPA, faculty recommendations, and space availability.

The Co-Directors of the IBE Honors Program are Robert H. Storer, Professor of Industrial and Systems Engineering (rhs2@lehigh.edu) and Stephen G. Buell, Professor of Finance (ugh2@lehigh.edu). For additional information, see the IBE Honors Program entry in Section V of this catalog or visit the IBE web site at www.lehigh.edu/inibep/inibep.html.

Centers and Institutes
Faculty and students in the college also have research and scholarship activities in a number of centers and institutes, where graduate and undergraduate students work closely with faculty members. These include: Center for Advanced Technology for Large Structural Systems, Biopharmaceutical Technology Institute, Chemical Process Modeling and Control Center, Emulsion Polymers Institute, Energy Research Center, Enterprise Systems Center, Fritz Laboratory, Sherman Fairchild Center for Solid-State Studies, Polymer Science and Engineering Center, Structural Stability Research Council, Council on Tall Buildings and Urban Habitat, Center for Manufacturing Systems Engineering, Ben Franklin Technology Partners, Manufacturers Resource Center, Center for Advanced Materials and Nanotechnology, and Center for Optical Technologies.

Special Undergraduate Academic Opportunities
The academic programs in the colleges are supplemented by five-year, two-degree programs as well as opportunities for advanced, foreign, and experiential study.

Arts-Engineering Option
The curriculum in arts-engineering is designed for students wanting a professional education in a field of engineering and also the opportunity to study a second field.

Arts-engineers fulfill all requirements for the professional engineering degree for which they are working. However, the first three years of science and engineering courses are scheduled over four years for the arts-engineer. During this period the arts-engineer is a student in the College of Arts and Science pursuing a bachelor of arts or bachelor of science major program.

In many instances it may be advisable to take the two degrees at the end of the fifth year. Arts-engineers working towards the bachelor of science in biology, computer science, environmental science, geological sciences, geophysics, molecular biology, and statistics are advised to pay special attention to the engineering humanities and social science requirements, which must be met in time for the student to qualify for the B.S. in engineering.

Arts-engineers have the same opportunities for multiple
majors and special interdisciplinary majors as are available to students working for the baccalaureate (B.S. or B.A. degree only) in the College of Arts and Sciences. Additional information may be obtained by contacting Prof. Daniel Zeroka, 496 Seeley Mudd Building.

Bachelor/Master Degree Programs

Of increasing interest to undergraduates are the two-degree programs that may lead to both a bachelor and a master's degree in five years. Because Lehigh's well-established graduate programs are closely integrated with the undergraduate programs, it is possible to consider programs leading to the arts/master of business administration degree and the engineering/master of science in material science, among others. The fifth-year program in the School of Education enables those receiving a B.A. or B.S. degree to accomplish professional teacher training and serve as salaried interns in public schools. After the completion of one year of full-time teaching, secondary teachers can receive the master of arts and elementary teachers can receive master of education degrees.

Many other five-year, graduate-level combination programs exist, and students are advised to consult with their adviser in planning such programs. All students receiving masters degrees must be registered as full-time degree graduate students for at least one full term.

Interdisciplinary Programs

The university's interdisciplinary programs are designed to cross the boundaries between colleges to accommodate new and developing fields as well as the interests of students. They include such programs as the following:

Africana Studies. A program offering a minor is available to students interested in exploring various aspects of the African American experience. Courses covering African American art, history, literature, music, and society are offered. The program is complemented with a lecture, film, and arts series that highlights the richness and diversity of black culture.

Applied Life Sciences. The Applied Life Sciences program offers options for talented students seeking non-traditional careers at the interface of life science and other fields. It is designed to provide a flexible curricular design for students interested in social science, humanities, and business applications of the bioscience revolution, as well as those who wish to work at the intersections among the natural sciences. The program is a Liberal Arts complement to the Bioengineering program that provides an opportunity to combine traditional Engineering disciplines with the life sciences.

Environmental Studies. The Environmental Studies program will provide broad exposure to the range of issues confronting the human condition, cultural and historical perspectives on how society has evolved to its present state, and insights into the range of possible corresponding methodological approached and solutions to the global environmental questions humanity confronts. This program complements existing Environmental Sciences as well as the program in Environmental Engineering.

Science, Technology and Society Program (STS). Faculty from all three colleges explore the interrelationships between science and technological advancement and the quality of human life in the popular STS program.

Office of International Students and Scholars

"The development of future leaders in our global society is first among Lehigh's purposes."

– Lehigh University Mission Statement

32 Sayre Drive, Coxe Hall, Bethlehem, PA, 18015-3123; (610) 758-4859. Fax (610) 758-5156. E-mail: intnl@lehigh.edu. www.lehigh.edu/intnl

Lehigh fosters an environment that welcomes and encourages the international exchange of students and scholars, and that integrates their global experience into the academic and cultural community. The Office of International Students and Scholars (OISS) is a university-wide resource for students and scholars from abroad, and for U.S. students and faculty who are interested in the global focus. Its mission is to provide support services for international students and scholars to ensure maximum opportunities for them to achieve their goals; be a resource to the faculty, staff and administration on issues related to international students and scholars, cross-cultural communication and diversity; support the University's efforts to internationalize the campus; and create an environment where the Lehigh community is exposed to a multitude of cultures, traditions and viewpoints by presenting internationally-focused academic, cultural and social programming.

Office of International Students and Scholars

Gisela Nansteel, 32 Sayre Drive, Coxe Hall, Bethlehem, PA, 18015-3123; (610) 758-4859. Fax (610) 758-5156. E-mail: gmn0@lehigh.edu. www.lehigh.edu/intnl

OISS serves the unique needs of foreign nationals who come to Lehigh as students, scholars, faculty and staff members, and their families. More than 700 people from over 65 nations currently live, work and study on our campus. OISS offers advising on immigration, visa, and personal matters. The office acts as a liaison with other offices and departments on campus, and with national and international agencies.

Services

A variety of cross-cultural programs are initiated by the OISS, including a combined undergraduate and graduate orientation, spouse conversation groups, seminars on immigration matters, international tax advising, Thanksgiving Dinner, the International Bazaar, monthly social programs, and The International Update Newsletter. Lehigh is a member institution of Phi Beta Delta, international honorary society.

The year for international students and scholars at Lehigh begins with the International Orientation. Orientation takes place in conjunction with other programs offered by the undergraduate admissions office and/or graduate departments, starting immediately before the university-wide orientation at the beginning of each semester. Orientation is strongly recommended for all new international students and scholars. Issues discussed include filing for a social security number, opening a banking account, health insurance, and adjustment to university life at Lehigh and to the United States. International Orientation is a time to become accustomed to life in America, and to meet other foreign students. Each person will receive a Guidebook for International Students and Scholars.
Additional Special Services for International Students

Career Services: Advising and special workshops for careers for international students are provided.

Food Service: For undergraduate students on the meal plan, menu meets the international dietary needs of the students. There is a stir-fry bar and balanced meals for vegetarian diets.

Health Center: Fully staffed medical personnel meet both the physical and personal needs of all students. The Counseling Center has special services for international students.

Immigration/Visa Advising: Complete service is provided by OISS.

Learning Center: Free tutors are provided in writing, math and science.

National Clubs: Home country clubs from all regions of the world are established on campus. They form an important part of the cross-cultural dimension of the campus, providing social events, films, and international dialogue.

Phi Beta Delta, International Honor Society: Lehigh's Beta Pi chapter of Phi Beta Delta, the international honorary society with chapters across the U.S. and overseas, is an important international organization on campus. The purpose of the society is to honor those involved in high academic achievement and service in the international dimension, and to foster international exchange on campus. The honor society has three categories of membership: international students who have demonstrated high scholastic achievement at Lehigh; U.S. students who have demonstrated high scholastic achievement in the pursuit of international studies including study abroad; faculty and staff distinguished in international endeavors. Gisela M. Nansteel, Chapter Coordinator.

Religious Services: Services for all the major religions are on campus or nearby, including Muslim, Christian, Jewish, Hindu and Buddhist.

Global Union:

Bill Hunter, Director, Iacocca Institute, Iacocca Hall, Bethlehem, PA 18015-3123, (610) 758-4505. E-mail: wdh3@lehigh.edu. www.lehigh.edu/inglobal/

The Global Union is a collaboration of more than 25 student clubs and organizations that promote global awareness and cultural understanding within the Lehigh community. There are more than 600 members of the Global Union from over 30 countries, including two-thirds from the United States.

Located on the second floor of Coxe Hall, the Global Union hosts panel discussions on world issues, International Education Week, dinners and cultural festivals, musical performances, and a language exchange program. All events at the Global Union are open to the Lehigh community.

The lounge also has a TV/VCR, satellite dish, stereo, comfortable couches and a microwave, and can be used for meetings, quiet study or film presentations.

For more information regarding the Global Union, check our website at www.lehigh.edu/inglobal/

Lehigh University/United Nations Partnership

Bill Hunter, Lehigh Representative to the United Nations, Iacocca Institute, Iacocca Hall, Bethlehem, PA 18015-3123, (610) 758-4505; Email: wdh3@lehigh.edu. www.lehigh.edu/~inunited

Lehigh University is one of only six universities in the world to be certified as a Non-governmental Organization affiliated with the United Nations (UN) Department of Public Information. Through this partnership, Lehigh students, staff, and faculty attend private briefings with ambassadors and UN officials, take private tours of UN headquarters, and attend conferences, workshops and symposia at the UN. Lehigh also hosts an Ambassadorial Speaker Series on campus, and places one intern per semester at the UN.

For more information about the Lehigh University/United Nations Partnership, check out our website at: www.lehigh.edu/~inunited

Study Abroad Office

“Lehigh University recommends international study. We support programs that offer rigorous academic environments, immersion in host cultures, and opportunities for personal growth. Students should return to Lehigh with an enhanced ability to appreciate global concerns.”

- Study Abroad Mission Statement

Erica Smith Caloiero, Director; Katie McCleary, Study Abroad Advisor. Coxe Hall, 32 Sayre Drive, Bethlehem, PA 18015; (610) 758-3351; Fax (610) 758-5156; email studyabroad@lehigh.edu www.lehigh.edu/studyabroad

Semester/Year:
The Study Abroad office maintains a list of more than 60 approved semester and yearlong programs of academic study in over 40 countries. The programs are regularly evaluated and monitored by faculty in order to ensure high academic quality and immersion in host cultures. Students attending these programs receive Lehigh credit.

The Study Abroad Office conducts extensive advising activities, guiding students through the process of identifying programs that fit personal and academic goals, consulting with Lehigh faculty to obtain course approval, applying, and other aspects of study abroad. Group and individual advising sessions take place every week. The Office provides mandatory pre-departure orientation meetings for all students going abroad, and continuous registration at Lehigh. A comprehensive web site with information on all aspects of participation is maintained by the Office: www.lehigh.edu/studyabroad.

Lehigh University maintains formal exchange agreements with universities in Australia, Belgium, Mexico, the United Kingdom, France, Hong Kong and Japan. Students are selected through faculty interviews for these programs.

Summer Programs: Lehigh offers several faculty-led summer and winter (break) study abroad programs. The number of programs and academic offerings varies, so students are advised to consult the web: www.lehigh.edu/studyabroad. Past programs have included: Business & History in Belgium; Business in Prague; Architecture in Paris; Art History & Religion in Rome & Florence; Art & Architecture in Vicenza; Internships & Language in Shanghai; Sustainable Development in
Other scholarship opportunities are available; see the MLL offers limited merit scholarships. Contact MLL, The Department of Modern Languages and Literature The English as a Second Language Program (ESL) offers academic and summer courses for undergraduates and graduate students and their families. In addition, academic support is provided for ESL students through the ELLC language lab, conversation groups, and language enrichment courses.

Requirements: Good standing, and a minimum GPA of at least 3.0 or a GPA of 3.0 in the last two regular full-time semesters of study at Lehigh. Any student with less than this and who believes for good reason that there are extenuating circumstances may appeal to the committee on the standing of students for an exception to this rule before leaving to study abroad.

Applications: Students who receive Lehigh academic credit for a study abroad program must submit an application through the Study Abroad Office. Applicants are required to consult with academic advisors, have courses approved by departments, and in some cases request recommendations by faculty.

Academic Credit: Academic credit is given for programs approved by Lehigh faculty only. Students must receive a ‘C’ or better for credit to transfer. Grades earned on semester and year programs do not count in the student’s GPA.

Foreign Language: Students are encouraged to study in the language of their program country, which typically requires four semesters of college-level language study. Lehigh also has approved programs where students may learn the host language while taking other courses in English.

Academic Support: Both undergraduate and graduate students may select from a variety of supplemental ESL credit courses in conversation, accent reduction, reading, and writing offered throughout the year. (Refer to English as a Second Language course offerings.)

Intensive ESL (Non-credit) Program. The StepUp Program provides an intensive academic ESL experience for both enrolled Lehigh students and for other students preparing to enter a U.S. university or who need professional English skills. StepUp enhances English skills in academic reading and writing and formal academic language, and provides an orientation to American university culture. For more information, view our website at www.lehigh.edu/~inesl/StepUp

English Language Learning Center (ELLC). The ESL Program offers English language study through the use of interactive ESL software and tutoring. Call the ELLC Office or view the ELLC program on our website.

International Multimedia Resource Center

Johanna Brams, Instructional Technology Specialist, 473 Maginnes; (610) 758-6134, 6295.

The International Multimedia Resource Center, located in Maginnes Hall, provides a diversity of services ranging from multimedia to telecommunications. Under the auspices of Information Resources, working directly with Media Production and the Media Center, in collaboration with the College of Arts and Sciences, and Modern Languages and Literature, the IMRC maintains a multimedia computing center (470 Maginnes Hall) that broadcasts international, historical, and cultural events on our wide screen television. As a resource center, the IMRC supports the efforts of faculty and staff in the design, construction and application of either original or off-the-shelf multimedia presentations and projects. New CD ROM based immersive software programs enhance language learning. Student-centered web-research projects occur through partnerships with various faculty members throughout the year. Web utiliza-
tion, research and design workshops are held regularly, focusing on diverse software web, desktop and design applications. An extensive collection of international audio, video and multimedia programs is maintained. Moreover, the IMRC sponsors business, university, and international broadcasting, as well as teleconferencing events through satellite and videoconferencing technologies. The IMRC also maintains the two broadcast video channels at Lehigh: the Academic Channel (Channel 21; including international news (SCOLA), student produced programming, academic programs and labs, sports and special events, etc.) and the Movie Channel (Channel 22; popular, independent, and foreign movies programmed by a student-elected committee). As a 'Window to the World,' the World View Room shows or hosts daily scheduled international and cultural programs, films and teleconferences; as well as being open for news watching all day long. Comfortably furnished, the World View Room accommodates 25 – 35 people. A new 51 inch flat screen television supports regular viewing, as well as films, satellite downlinks and newly added permanently installed DVD and VHS technologies. Newly added is our refurbished (five-meter dish) digital link, which facilitates PBS, ALS and The Business Channel teleconferencing.

Experiential Learning

The accommodation of student interest extends beyond regular departmental offerings. Hands-on experiences in learning enrich classroom instruction. Each of the three colleges offers a number of such experiences to undergraduates. Among them:

The Philadelphia Urban Semester. Undergraduates in all fields of study can earn 16 Lehigh credit hours by spending a semester studying in the nation’s fourth-largest metropolis. They live, work, and study with other students from two dozen other institutions, supervised by faculty of the Great Lakes Colleges Association. This consortium of such leading Midwestern institutions as DePauw, Kenyon, Oberlin, and Wooster is a recognized leader in providing extra-mural academic programs both here and abroad.

The curriculum consists of two four-credit seminars and an eight-credit internship. All students are enrolled in a core "Seminar on the City" which introduces them to the field of urban affairs and to Philadelphia. The second seminar is elected from a half-dozen more specialized urban topics; recent choices available have included "Folklore in Philadelphia," "Art in the City" (which met each week at a different site), and "Justice." Internships involve working four days weekly in a public or private placement which tests the student's aptitude in a variety of practical ways while enhancing appreciation of city life.

The Washington Semester. Opportunity is available each year for six juniors or seniors to spend a term studying in Washington, D.C., in cooperation with American University. Lehigh University is a member with 180 other colleges and universities.

Students enroll at Lehigh but spend the semester in residence at American University with the students from other participating colleges.

The curriculum consists of national-government seminars, an internship, and a written research project. Besides the national government program, the student may choose other program offerings such as economic policy seminar, journalism, public administration, foreign policy seminar and justice seminar.

Inspection trips. The location of the university in the center of industrial activities of various types affords unusual opportunities for visits to manufacturing plants. Inspection trips to individual plants are a required part of specific courses in various engineering curricula. Written reports may be required. These trips are generally held during the senior year and involve an average expense of $25 to $50.

Credit by Examination

Upon petition and presentation of evidence that he or she has qualified for it, a student already enrolled at Lehigh may be permitted by the standing of students committee to take a special examination for credit towards graduation. Special examinations are granted only for extraordinary reasons and upon petition. There must be adequate supporting evidence of sufficient cause accompanying each petition. There is a fee for all special examinations.

Students taking a special exam after matriculation at Lehigh will have the grade and credits assigned to their permanent Lehigh record. Special exam credit will be counted as in residence credit and the grade will be used in all grade point average calculations. No special exam will be granted in a course that the student has already taken (except senior reexaminations) for credit or on an audit basis, or in a course in which the student has already completed more advanced work at Lehigh.

Preparation for Graduate Work

Students planning to continue in graduate programs should take advantage of the flexibility in many undergraduate programs to design an upper-division curriculum that meets requirements in the anticipated graduate program. The policies of the colleges provides as much flexibility as possible for students who wish to change to new but related fields of study after the baccalaureate degree. Students should consult with their previous program adviser and the department representative of the new field to establish an academic program that will remedy any deficiencies in background.

Graduate Courses. Qualified undergraduates may petition the graduate committee to register for 400-level courses if they are certified by the course instructor and the department chairperson concerned.

Guidelines for Undergraduates to take Graduate Level Courses

1. No undergraduate student may take a 400-level course during a term where the student's total credits are greater than 18 (including audits).
2. All students receiving a graduate degree must be enrolled one full semester or summer as a regular student prior to the awarding of a graduate degree.
3. An undergraduate student may use no more than 12 credits taken as an undergraduate toward a graduate degree. These courses must be at the 300 and 400 level and beyond all undergraduate degree requirements.
4. Students should have achieved junior standing and a grade point average of 3.0 to take 400 level courses.
5. Students must petition the Graduate and Research and the Standing of Students for a possible exception to theses standards.

Apprentice Teaching

The apprentice teaching program is designed to benefit juniors and seniors who wish to learn about teaching under the guidance of an experienced teacher.

Apprentices often do a limited amount of supervised lecturing or leading of discussions, assist in making up and evaluating written assignments, and are available for individual consultation with students.

To participate in the apprentice teaching program a student must:

1. Have an over-all cumulative grade point average of 2.80 or better;
2. Have a cumulative grade point average of at least 3.3 and have completed at least two courses in the major field in which apprentice teaching is done;
3. Have previously taken for credit the course or its equivalent in which the apprentice teaching will be done.

A student may register for apprentice teaching only once each semester, only once in a given course, and only twice during a college career.

To register for apprentice teaching each student-teacher partnership will submit an apprentice teaching agreement, indicating the duties and obligations for approval to the department chair and the dean of the student’s college in which the course is taken. This form must be submitted to the registrar before the first day of classes in the semester. To complete the course, the apprentice teachers must submit a written report of their experience to the supervising teacher, who will forward it to the Office of the Provost.

Curricular Flexibility

Choice is a regular part of university life, and encompasses the determination of a college and major, the selection of courses each term, and the development of life goals and career options.

Many of these choices are academic in nature. The undergraduate curricula are flexible, designed to accommodate the changing interests and needs of students. Boundaries between colleges are as fluid as possible to provide many options in an educational program. For instance, students may take a bachelor of science (B.S.) degree in the College of Business and Economics or the College of Engineering and Applied Science with a minor in journalism in the College of Arts and Sciences. There are five-year programs for which degrees are awarded in two colleges.

Transfers between undergraduate colleges is permitted but only after the freshman year. Students considering such a transfer must confer with their advisers to begin the process.

Academic offerings of the various departments are described in Section V. To provide additional flexibility and encourage student initiative and depth of investigation, the university has developed academic alternatives including the following:

Provisional Courses. Departments may introduce provisional courses temporarily within a semester, either experimentally or as a response to a contemporary social or scientific issue. If successful, a course may become part of the regular curriculum. Such courses, identified with a 95, 96, 97 or 98 number (preceded by a 1, 2, or 3 indicating level) may sometimes take provisional courses numbered above 100 on a pass/fail basis.

Independent Study. Juniors and seniors of ability who wish to concentrate in their chosen field can substitute no more than four or six credit hours of independent, unscheduled work each semester for an equal number of credit hours of elective work required for graduation. Students, in collaboration with the major adviser, with the advice of the departmental chairperson and consent of the college dean, may structure such a project for study in any curriculum and most major study sequences.

Pass/Fail Option. Students have the opportunity to study in areas without concern for possible poor grades by electing a pass/fail option. Intended to encourage exploration at the upper division level outside the major field, this option is open to those who are sophomores and above, in good standing, who have declared a major. Courses numbered below 100 will not be eligible for pass/fail. The pass/fail option may not be used for major or minor subject credit toward graduation or for distribution requirements. Consultation with the adviser is required.

LVAIC Cross-Registration

Currently enrolled full-time degree seeking undergraduate students in good academic standing who have achieved sophomore status may register for up to two courses per term that cannot be scheduled at the home institution at any one of the member institutions (Allentown College of St. Francis de Sales, Cedar Crest College, Lafayette College, Moravian College, and Muhlenberg College). The student must obtain the appropriate approvals of his or her own adviser and the host institution registrar. The courses must be in the normal academic load and not produce an overload. Graduate students and courses (courses numbered 400 and above) are not eligible for cross registration.

All grades of courses taken through the LVAIC cross registration process will be accepted by the home institution and entered on the permanent record, and such grades will be used in computing the grade point average. Credits taken through the cross-registration process will be calculated as in residence. The number of credit hours assigned to a course is the responsibility of the home institution registrar.

Students may not repeat a course at another LVAIC member institution in which they expect to have a Lehigh cumulative grade point average adjustment.

Lehigh University students are not permitted to cross-register for courses in all January intersession programs, the evening program at Muhlenberg College, all weekend courses at Cedar Crest College, or the Access program at Allentown College. All independent study, tutorial music lessons or groups, correspondence, and on line courses are prohibited from cross-registration without prior approval of the Lehigh University standing of students Committee.
Summer Session
Lehigh students must have been registered full time in the prior spring semester to be eligible to cross-register for a summer term. A maximum of two courses per session, and 12 credit hours over the course of the entire summer may be rostered. Students may not cross-register for a course being offered at Lehigh during the summer term.

Undergraduate Leave of Absence
Each student is expected to complete the baccalaureate degree by attending Lehigh for four consecutive academic years. Once a student that has matriculated at Lehigh chooses to deviate from this attendance pattern a revised degree plan, coordinated with his or her adviser and associate dean, must be submitted with a request for a leave by completing a petition to the SOS Committee for an Academic Leave of Absence. Petitions are available from the Registrar's Office or the Dean of Students. The form must be signed by the student's faculty adviser, associate dean of the college and the completed form must be submitted prior to the start of any subsequent enrollment at another college or university.

Current Lehigh University students are prohibited from concurrent enrollment at any other college or university. Courses taken concurrently will not be eligible to apply towards a Lehigh degree. An exception is made for cross registration at another LVAIC institution.

Special opportunity programs like the American University Internship, Hope College Urban Semester and the Institute for Shipboard Education (affiliated with another university) have limited access to Lehigh University students. For procedures concerning application for these programs please see the Associate Dean of Students for Academic Support.

Students can not assume that a leave will be granted to study at another college or university (this policy does not apply for study abroad through the auspices of Lehigh Abroad or LVAIC programs). The program of study and reason for the leave must be approved by the SOS committee.

If unapproved leaves are taken, students are declared as non returning and must apply for readmission to the University through the SOS committee if they wish to re-enroll. Courses taken at another college or university while on an unapproved leave will not be permitted to transfer toward a Lehigh University baccalaureate degree.

In addition, students taking an unauthorized leave of absence must be aware that their eligibility for student aid is jeopardized. Any student who is uncertain about attending a future fall or spring term at Lehigh University is urged to discuss the matter with the Dean of Students Office or the Registrar prior to taking any action to withdraw or attend another college or university.

Students may take courses at another institution during a summer term without requesting an academic leave of absence. Check with the Registrar's Office for limitations and processes for transfer course approval.

The General College Division
The General College Division supplements the mission of the established undergraduate curricula. The division provides an opportunity for persons not planning to qualify for a degree to pursue work of a general or specialized nature that their preparation and interests make desirable; provides a trial period for those who wish to become candidates for baccalaureate or graduate degrees, but whose preparation does not satisfy the entrance requirements for the established curricula; and provides an opportunity for qualified students to continue their education without being committed to a restricted or specialized program of studies. Courses taken in the General College Division may not be submitted to meet the requirements for a graduate degree.

For admission to the General College Division, the student must submit a special, simplified application to the undergraduate admissions office; the application must be submitted at least one month prior to the start of the semester in which the student hopes to enroll. The applicant must show maturity, seriousness of purpose and evidence of ability to pursue with profit the program of studies he or she desires. The student must have the established prerequisites for courses in which he or she wishes to enroll, and may register for courses up to and including those at the 300-level.

There is no established curriculum for the General College Division. Each student works on a program outlined to meet his or her special needs. Each program must be approved by the registrar, director of the division. Students must obtain permission of the instructor for courses in which they want to enroll. Students in the division are not permitted to take courses using the optional pass/fail grading system, or cross register for courses in LVAIC.

Students in the division, as non-degree candidates, do not meet the eligibility criteria for federal student aid, under Title IV, including Federal Pell Grants and Federal Stafford Student Loans. Similarly, institutional financial aid also is limited to degree candidates.

Students in the division are not candidates for degrees and must maintain a minimum 2.00 grade point average. A student may transfer to regular matriculated undergraduate status in any of the colleges only upon petition to, and with the approval of, the Committee on the Standing of Students. Transfer to the graduate school is possible only through the normal graduate admission process.

With the exception above, students in the General College Division are subject to the same rules and regulations as students of the university. They pay the tuition and fees established for regularly matriculated students.
IV. Graduate Study and Research

Graduate Study

Lehigh began awarding graduate degrees in 1882. The first recipient, T.H. Harcastle, of the Class of 1880, wrote his thesis on Alexander Pope, entitled "The Rights of Man, and read it aloud at commencement in June 1882.

The first Ph.D. was granted in 1893 to Joseph W. Richards, Class of 1886. Richards, who had a background in metallurgy and electrochemistry, taught at Lehigh until his death in 1921.

Women were admitted to the graduate program in 1918 when the faculty and the board of trustees agreed to grant the degrees of M.A. and M.S. to women, provided they attended classes in the late afternoon and on Saturdays "so that the general character of campus life shall not be affected." Three women received graduate degrees in 1921, the first women to complete graduate work at Lehigh. In 1929, the rule was changed, and women were admitted on much the same basis as men.

In 1936, the Graduate School was established to administer the graduate program. The Ph.D., which was temporarily discontinued in 1894, was reinstated in nine departments: chemistry, chemical engineering, civil engineering, geology, history, mathematics, mechanical engineering, metallurgical engineering, and physics. Tomlinson Fort, professor of mathematics, was selected in 1938 as the first dean of the Graduate School.

In 1995, graduate programs were decentralized and are now administered by the four colleges of the university, as described below.

College of Arts and Sciences

Anne S. Meltzer, dean

The College of Arts and Sciences offers graduate degrees in the humanities, social sciences, mathematics, and natural sciences. The master of arts, master of science, and the doctor of philosophy degrees are given in most of the traditional academic departments and in some interdisciplinary programs.

Advanced degrees may be obtained in the departments of biological sciences, chemistry, English, earth and environmental sciences, history, mathematics, physics, political science, psychology, and sociology. In addition, interdisciplinary degrees are available in American studies, photonics, and polymer science and engineering.

Although degree requirements vary from department to department, most require a combination of formal coursework and independent research. Students work closely with a faculty adviser in formulating and carrying out their research programs. Students interested in an interdisciplinary approach are admitted to a traditional department but formulate a program of study and research which draws on faculty and facilities in other areas of the college or the university.

Outstanding candidates may qualify for financial support in the form of assistantships as teaching assistants, graduate or research assistants, and scholarships or fellowships.

Information on the various degree programs appears under the departmental listings in Section V; the Interdisciplinary Graduate Study and Research part of this Section; or can be obtained from the Office of Research and Graduate Programs, College of Arts and Sciences, 9 West Packer Ave., Bethlehem, PA. 18015

College of Business and Economics

Tom Hyclak, interim dean

Michael Kolchin, director, MBA program and Professional Education

The College of Business and Economics offers the master of science degree in accounting and information analysis; master of science degree in economics; master of science degree in health and bio-pharmaceutical economics; master of business administration with concentrations in finance, marketing, information systems management, entrepreneurship through the vSeries program; international business and supply chain management; and the doctor of philosophy degree in business and economics. Three joint degrees are also offered. The College of Business and Economics and the P.C. Rossin College of Engineering and Applied Science offer the MBA Engineering. Students in this program will have the opportunity to concentrate in both a business area and an engineering area during their Master's studies. The College of Education and the College of Business and Economics offer a joint masters degree in MBA/Educational Leadership. This degree will develop skills in business disciplines as well as preparing educators for roles in school administration. The College of Business and Economics and the P.C. Rossin College of Engineering offer a master's degree in analytical finance. This degree provides a strong education in advanced finance and quantitative financial analysis tools. Students will be prepared to create innovative solutions for real financial problems using state of the art analytical techniques and computing technology.

There are five departments in the college: Accounting, Economics, Perella Department of Finance, Management, and Marketing. Course descriptions can be found listed under business and economics graduate courses in Section V. More information about the various degree programs appears below. The college publishes a packet describing its graduate programs, which may be obtained by contacting the College of Business and Economics, Graduate Programs Office, Rauch Business Center, 621 Taylor Street, Bethlehem, Pa. 18015, 610-758-5280.

College of Education

Sally A. White, Ph.D., Dean, and Professor

Ward M. Cates, Ph.D., Interim Associate Dean, and Professor

The College of Education (COE) is a nationally recognized graduate college and since 1999 U.S. News and World Report Best Graduate Schools of Education has ranked COE in the top 50. In addition, national and international associations recognize the accomplishments of the faculty and students by awarding honors for dissertations, young scholar awards and senior faculty are appointed as Fellows of national organizations. The depth of our research funding is broad, and currently, we have grants from the National Science Foundation, U.S. Department of Education, National Institute of Health,
National Institute of Mental Health, DeWitt Wallace Trust, and The Andrew Mellon Foundation.

The College of Education offers a master of arts in education, a master of education, a master of science in education, the educational specialist, a joint master in business administration/master of education, post-baccaulaureate certificates in various concentrations, the doctor of education, and the doctor of philosophy. A total of 452 students were involved in advanced study during the 2005-2006 academic year. More information about these programs can be found in Section IV under Graduate Degrees in Education.

There are six academic programs within the college including: Counseling Psychology, Educational Leadership, School Psychology, Special Education, Teaching, Learning and Technology and Transcultural, Comparative, and International. The focus of these programs is to prepare students for leadership roles in groundbreaking, cross-disciplinary inquiry that shapes educational practices nationally and internationally. While COE does prepare individuals for leadership roles in school systems, we also prepare individuals for a variety of positions in business and industry, healthcare, private practice, and community based organizations. We embrace the philosophy that a top quality education should provide the instruction, resources, and experience necessary to create a new type of educator; one who understands the nature of learning, social equity and cultural diversity, values collaboration and teamwork, and embraces societal challenges.

In addition to the six core programs, there are three other units within COE:

**The Office of International Programs**

The Office of International Programs is committed to promoting global awareness and transcultural understanding to educators worldwide. The programs provide professional development and degree opportunities for teachers and school administrators using innovative technologies, evocative teaching strategies and current research. It challenges learners to appreciate the complexities of schooling in the midst of globalization.

**The Center for Promoting Research to Practice**

Our mission is to generate new knowledge that will truly impact the lives of individuals with disabilities. The primary objective of Center is to create a living laboratory that establishes partnerships with schools, parents and families, and community service providers to enhance the use of best practices for individuals with disabilities.

**Centennial School**

The College of Education operates the Centennial School, a laboratory facility for children with emotional/behavior disorders, that has both an elementary and a secondary component. Centennial School provides research opportunities as well as practical experience for advanced students in counseling, educational leadership, school psychology, and special education.

Information on the various degree programs appears under the departmental listings in Section V, can be obtained by contacting the College of Education, 111 Research Dr., Bethlehem, PA 18015, 610-758-3241, or our website: www.lehigh.edu/~ineduc/CollEd.html.

---

**P.C. Rossin College of Engineering and Applied Science**

David Wu, Iacocca professor and dean
John P. Coulter, associate dean of graduate studies and research

There are seven academic departments within the P.C. Rossin College of Engineering and Applied Science: chemical engineering, civil and environmental engineering, computer science and engineering, electrical and computer engineering, industrial and systems engineering, materials science and engineering, and mechanical engineering and mechanics. Master of science and doctor of philosophy degrees are available in each of these departments, as well as in computational and engineering mechanics, environmental engineering, computer engineering, structural engineering, and polymer science and engineering. In addition, master of science programs are provided in analytical finance, photonics, quality engineering, information and systems engineering, management science, and wireless and networking engineering. Master of engineering degrees are offered in chemical engineering, civil engineering, electrical engineering, environmental engineering, industrial engineering, materials science and mechanical engineering. In co-operation with the College of Business and Economics, students can also pursue a Master of Business Administration and Engineering (MBA&E) degree. A certificate program is available in the area of nanomaterials.

Graduate study in the P.C. Rossin College of Engineering and Applied Science is most often related to the college’s extensive research activity, and graduate students are expected to engage in analytical or experimental research as part of their programs of study. This activity involves students in the process of creating new knowledge under the direction of the college’s distinguished faculty and brings them into contact with some of the most modern and advanced experimental techniques. Many college research programs are supported by contracts, fellowships, and grants from industry and from federal, state, and local governments. This funding not only provides financial support for outstanding students but also allows them to deal with some of the more complex and pressing problems facing our society in the 21st century.

Many faculty members and graduate students in the P.C. Rossin College of Engineering and Applied Science are associated with interdisciplinary research centers and institutes as well as with their own departments. The opportunity for interdisciplinary study allows them to cross departmental lines in specific technological areas and to work with faculty and graduate students from other departments. Centers and institutes currently perform research in the areas of biotechnology, health sciences, thermoloidics, materials, energy, environmental sciences, surfaces and coatings, solid-state studies, optical technologies, structural and geotechnical studies, high-rise habitats, emulsion polymers, metal forming, robotics, computer-integrated manufacturing, value chain science, nanotechnology, and design and management innovation. Extensive research in many of these areas is also conducted within academic departments.

Further information on the graduate programs appears under the departmental listings in Chapter V and in the Interdisciplinary Graduate Study and Research section of
Chapter IV. Students can also contact the Office of Graduate Studies and Research, P.C. Rossin College of Engineering and Applied Science, 19 Memorial Drive West, Bethlehem, PA 18015.

Admission to Graduate Study

A graduate of an accredited college or university may be considered for admission to graduate study. The decision to admit a student rests with the applicant’s major department and stands for one year following the first semester for which admission was offered. If more than one year elapses, the prospective student’s department reserves the right to reconsider the original offer. Students wishing to pursue an interdisciplinary degree may, in some cases, apply to the program directly.

Applications for admission may be obtained on-line at the university’s graduate website or by writing to the department to which admission is sought, or writing to the office of the dean of the prospective college.

An applicant may enter the graduate program as a student in the following categories: regular, associate, or non-degree. Except for qualified Lehigh undergraduates, only those who have been admitted officially by the graduate program office of an appropriate college or by a department in one of the categories above may register for graduate courses or take them for credit.

Regular Graduate Students. Only regular graduate students are candidates for graduate degrees. Application for admission as a regular graduate student must be filed by July 15 for the following fall semester or by Dec. 1 for the spring semester. Regular applications for the summer sessions are accepted until April 30. Certain departments or programs have earlier deadlines. Applicants should consult their respective departments or their dean’s office. In order to be considered for admission as a regular graduate student, the applicant must satisfy at least one of the following conditions: have a undergraduate G.P.A. of at least 2.75 out of 4.00 (note: College of Education GPA minimum is 3.0); have an average of at least 3.00 for the last two semesters of undergraduate study; have a graduate grade-point average of at least 3.00 for a minimum of twelve credit hours of graduate work completed at other institutions; or have successfully satisfied the probationary conditions as an associate graduate student (discussed below). Satisfying one of these conditions is necessary but may not be sufficient condition for admission as a regular graduate student.

Foreign graduate students are required to take the Test of English as a Foreign Language and achieve a minimum score of 550 on the paper-pencil test or 213 on the computer-scored test. Note: For any student who has taken the new Internet-based TOEFL or iBT (released in September 2005) which contains a speaking section, please contact either your department or the ESL Department (nesl@lehigh.edu) for the minimum required scores for admission to your program. The TOEFL test may be waived if a student has obtained a degree from an English-only university in an English-speaking country.

Individual departments may evaluate their candidates for admission according to higher standards and additional criteria. Students seeking admission to Professional Certification Programs may have to meet additional requirements to comply with Pennsylvania Department of Education Regulations. Departments should be consulted for information regarding required examinations for admission. For example, candidates for the M.B.A. program are required to take the Graduate Management Admissions Test (GMAT). This does not include MBA & Engineering students in the College of Engineering and Applied Science who may substitute the Graduate Record Exam if required by the Engineering Department. In some cases the GRE subjects tests are required.

Admission of a student to graduate standing is executed through the Office of Graduate Studies in each college or the respective dean’s office. Credentials for admission to counseling psychology and school psychology programs and to the doctoral programs in special education are acted upon only once a year. Completed applications accompanied by requests for financial aid must be submitted by January 15 for admission in the following fall semester. Applications received after this deadline, for programs with early deadlines, will be dealt with on a space-available basis.

Associate Graduate Students. Associate graduate student status may be offered to applicants who apply but fail to qualify for regular graduate student status. Only associate student applications will be considered during the late admissions period between the end of the regular admission period and the first day of classes. Applicants for associate status may submit unofficial rather than official transcripts; letters of recommendation are not required at that time. The Registrar will require an official final transcript, however, before grades are released. Certain departments or programs have earlier deadlines and more stringent requirements. Applicants should consult their respective departments.

Associate graduate students who are admitted during the late admission period and who clearly qualify for admission as regular graduate students may petition for regular status after classes begin if all credentials are in order. There is no late application fee. Individual departments may have more stringent requirements.

Other associate graduate students must meet the following condition before they may petition for regular status: completion of the first nine credit hours of courses numbered 300 or higher with at most one grade of below B-.

Students receiving a grade lower than a C- will be dropped from the program. Students should note that individual departments may impose more rigorous probationary standards. When the probationary period of nine credit hours is completed successfully, associate graduate students must petition for regular student status in order to continue. This requires the submission of regular admission documents not already on file. Courses completed during a successful probationary period may count toward a graduate degree if they are part of an approved program.

Non-Degree-Seeking Students. Students who do not wish to enter a degree program may seek admission with non-degree status. In this case, the prospective student completes an abbreviated application form (available from the appropriate college). The admissions criteria for non-degree graduate students are: 1) a bachelor’s degree from an approved institution with an overall grade point average of at least 3.0; (applicants with undergraduate GPAs below 3.0 may be admitted with the approval of the department in which they wish to take courses); or 2) evidence that the applicant is presently a student in good standing in an appropriate graduate program at an
approved institution; or 3) evidence that the applicant has received an appropriate graduate or other advanced degree from an approved institution. 4) International students are required to demonstrate English language skills equal to those required of degree-seeking students. All international applicants whose native language is not English must take the TOEFL (Test of English as a Foreign Language). A minimum score of 550 (or 213 on the computer scored test) is required for admission. Note: For any student who has taken the new Internet-based TOEFL or iBT (released in September 2005) which contains a speaking section, please contact either your department or the ESL Department (inest@lehigh.edu) for the minimum required scores for admission to your program. This TOEFL requirement may be waived if the international applicant has obtained a degree from an English-only university in an English-speaking country. Admission decisions for non-degree students are made by the dean of the appropriate college or other responsible official designated by him/her for this purpose. The signature of the designated official on the application and registration forms confers admission to the non-degree graduate student status. Informal transcripts will be accepted for initial admission, but formal transcripts must be on record before the student can receive any transcript or grade report from the university or enroll for additional courses. Non-degree students may take no more than twelve hours of graduate study at Lehigh. Any transcript or other record from the university will clearly indicate the student status as non-degree. Students in a non-degree status are not eligible for financial aid.

Graduate Course Auditing: With the permission of the departmental chair, graduate students can be admitted to a course as auditors. This course will not count for credit towards any graduate degree, and may not subsequently be taken for credit. In no case shall a student who has attended a course as an auditor be given an anticipatory examination for credit or register for the same course in the future. A student completing a course in this manner will have the course and the notation “AU” indicated on the permanent record. A student rostered on an audit basis may be withdrawn from the course with a grade of “W” for poor attendance.

Lehigh University Undergraduates. A Lehigh undergraduate with a 3.0 cumulative grade point average who has achieved Junior standing may take any 400-level course for which he or she is qualified. The qualifications are defined by the department and are certified by the course instructor and department chairperson through petition to the graduate and research committee. For additional information on constraints on undergraduates taking graduate level courses please see Section III Curricular Flexibility. 1. No undergraduate student may take a 400-level course during a term where the student’s total credits are greater than 18 (including audits) 2. All students receiving a graduate degree must be enrolled one full semester or summer as a regular graduate student 3. An undergraduate student may use no more than 12 credits taken as an undergraduate toward a graduate degree. These courses must be at the 300 and 400 level and beyond all undergraduate degree requirements.

Undergraduates at Lehigh who are within a few hours of meeting the requirements for a baccalaureate degree may, with the special approval of the graduate and research committee, enroll for 12 credit hours of study for graduate credit. Lehigh undergraduates may apply course credits taken in the undergraduate program toward a graduate degree under the following conditions: (a) the course credits are not submitted as part of the requirement for an undergraduate degree; and (b) courses for possible graduate credit are approved in advance by the course instructor, department chairperson, and the dean of the college. The student must receive a grade of B+ or better.

Readmission. A student who has not been registered in a Lehigh graduate program for one year must petition for readmission. Petitions approved by the student’s major department must be forwarded to the registrar’s office.

International Students and Scholars. International applicants must hold an American bachelor’s degree or an equivalent foreign degree requiring at least 16 years of primary, secondary, and university education. International applicants must submit all documents required for regular graduate student status, as explained above. Brochures for international applicants may be requested from individual departments.

Registration

Requirements. All graduate students using Lehigh University resources must be registered. No graduate student may register for more than 16 credits per semester. University employees may register for, at most, two courses per semester with appropriate approval. The maximum registration in a summer session is two concurrent courses and no more than 14 summer credits.

Full-time Status. In order to maintain full-time enrollment status, a graduate student must ordinarily register for a minimum of nine credits each semester. Identification as a full-time student is important for three purposes: (1) eligibility for financial aid, (2) compliance with visa requirements for international students, and (3) for university and national graduate enrollment data.

After fulfillment of degree credit-hour requirements and in some other circumstances, full-time status may be maintained with fewer than nine credits of registration, provided that the student is, in fact, continuing a program of full-time study and research. In such cases, the status must be certified on the Graduate Full Time Certification request form, first by the department and then by the appropriate college.

Registration Procedure. Registration is scheduled for a two-week period at a time designated on the university calendar. Graduate registration for new students is held during the week preceding the start of classes. Students should check with their departments for registration and semester class schedules. Graduate students may register using the on-line system after consultation with their adviser, or complete registration forms available in their departments. A course adviser will discuss course selections with students and provide the registration PIN or sign registration forms upon approval.

Late Registration Penalties. Registration after the designated period during the prior term for continuing full-time graduate students or between the second and tenth day of class during the fall and spring semesters, and the second and fifth day of class during the summer sessions
Graduate Credit and Grades
Course grades are defined as for undergraduates except that, at a minimum, no grade lower than C- may be counted toward a graduate degree and pass-fail registration is not allowed for graduate students. No regularly admitted student who receives more than four grades below a B- in courses numbered 200 or higher is allowed to continue registration as a graduate student. Individual degree programs may have higher standards.

The N grade is defined as for undergraduates except that graduate students have a calendar year to remove course incomplete grades unless an earlier deadline is specified by the instructor. Graduate student incomplete course grades that are not removed remain as N grades on the student's record. Thesis or research project N grades may remain beyond one year until the work is completed.

The X grade is defined as for undergraduates except that to be eligible for a make-up examination a graduate student must file a petition and the petition must be approved by the graduate and research committee.

The Z grade is defined as for undergraduates except that graduate students have a calendar year to complete coursework following a Z grade unless an earlier completion deadline is specified by the instructor. Graduate student incomplete course grades that are not removed remain on the record of graduate students. All petitions for exceptions are sent to the graduate and research committee.

A student's grade that was originally assigned an N, X or Z grade when converted or computed will be noted with an '*' asterisk prefix.

Withdrawal from a Course. A student dropping a course within the first ten days of the semester (five days for summer sessions) will have no record of the course on the transcript. A student dropping all courses for which he or she is registered is considered to be withdrawing from the university and the policy is noted below. A student who drops a course after the tenth day of instruction and before the end of the eleventh week of instruction will have a grade of "W" assigned to the course. A student who drops a course after the eleventh week of instruction and before the end of classes receives a "WP" or "WF" at the discretion of the instructor. A "WF" is considered to be a failing grade. An Add/Drop form signed by the student's adviser must be submitted to the registrar's office before the deadlines noted to be official.

University Withdrawal. A student withdrawing from the university (dropping all courses during a given term) must submit the Drop/Add form signed by the adviser to the registrar's office. Withdrawal after registration day and during the first eleven weeks of instruction will be noted on the academic transcript by assigning a grade of "W" to all courses. Withdrawal after the eleventh week of instruction and before the end of classes will have the grade of "WP" or "WF" assigned for each course at the discretion of the instructor. The date of the withdrawal will be noted on the academic transcript for a withdrawal at any time during the term.

Graduate Student Scholastic Requirements. The guidelines state the minimum requirements for all graduate students. Individual degree programs may have higher standards.

Associate and Non-Degree Students: will be placed on probation when they receive their first grade below a "B-", and will be dropped for poor scholarship at the end of a term when the student is assigned either two "C"s, "C-" OR "C+" grades or one grade below "C-".

If an associate student is assigned two grades below a "B-" in the same term the student is eligible to be dropped without any term on probation.

Once on probation, students remain on probation until they are granted regular status or graduate. Students who are eligible to be granted regular status but fail to apply by the regular student deadline will be evaluated according to the regular student criteria.

Regular Students: will be placed on probation at the end of the term in which they are assigned their fourth grade below a "B-" in courses numbered 200 or above; will be dropped for poor scholarship at the end of any term in which they are assigned their fifth grade below a "B-".

Once regular students are placed on probation they will remain on probation until they receive their degrees.

Readmission: graduate students who have been dropped for poor scholarship are ineligible to enroll for the next regular term. After one term away they may petition for readmission. The department and the dean's office must approve the petition. The student will be readmitted on probation and may be dropped again with any additional grades below a "B-".

Graduation
Degree Registration. A student must be registered in the semester in which the degree is conferred. If a student is registered before the registration deadline is specified by the department chairperson (except for the College of Education), and the facilities services office before it is submitted to the registrar at least three days prior to graduation.
Tuition and Fees

Tuition Payment. Graduate students who register at least six weeks prior to the start of classes will receive a tuition bill at their home address. Included with the tuition bill will be information about the various payment options that are available. Students that register less than six weeks prior to the start of classes will most likely not receive a tuition bill prior to the start of classes. To remain in good standing, tuition charges must be paid prior to the start of classes even if the student has not received a tuition bill because of his/her late registration for classes. Students can review their current account balance on-line at www.lehigh.edu/inburs/index.htm. Additional information on payment options is available on the Bursar's Office web site at www.lehigh.edu/inburs/ or by calling the Bursar’s Office.

Tuition Refunds. A student in good standing who formally withdraws from a course before 60% of the semester has been completed is eligible for a tuition refund. Academic fees, such as the Technology Fee, are non-refundable after the first day of classes. The refund schedule for student withdrawals and course adjustments is as follows.

Tuition Refunds

The tuition refund for a student who withdraws or drops a course(s) is calculated on a daily basis according to the Federal Refund Calculation Guidelines. No refunds for tuition can be made for one-week workshops after the first day of class.

Students should note that the first calendar week begins with the first day of classes at the university.

Tuition and Fees for 2006-2007 per credit hour

College of Arts & Sciences $990
College of Business & Economics $630
College of Education, and for full-time elementary and secondary teachers and administrators enrolled in the other three colleges $510
College of Engineering & Applied Science $990

Special Programs

MBA & Engineering $760
MBA/Educational Leadership $570
Technology Fee
All full-time (9 credit hours or more, or certified full-time) graduate students are assessed the Technology Fee at $100 per semester
Audit charge per course – same as credit charge in the appropriate college
Maintenance of candidacy – same as a one-credit charge in the appropriate college
Master's candidate registration fee – same as a one-credit charge in the appropriate college

Living Accommodations. The university maintains a graduate student housing complex in the Saucon Valley that has 135 living units. This complex, Saucon Village Apartments, provides units generally on a yearly lease basis. For the 2006-2007 period beginning in September, the following are the monthly rents exclusive of utilities:

Efficiency apartment $455
One-bedroom apartment $535
Small two-bedroom apartment $570
Two-bedroom apartment w/o AC $585
Two-bedroom apartment w/AC $600
Three-bedroom apartment $610

Other Fees

Application fee $65
(for graduate admission consideration)
Non-degree application (engineering, education, business) Late preregistration $50
 assigned to full-time graduate students who do not select their full class load during the designated period each term)
Late registration $50
(for completing registration after announced date)
Late application for degree $25
Late payment (after announced date) $100
Returned check fine $20
Identification card (replacement) $10
Thesis, microfilming $35
Dissertation, microfilming $60
Supervision fee, College of Education (per 3 credits)
Intern courses require a special supervision fee which varies from $100 to $250. Inquire at your department.

Financial Aid

Financial aid is ordinarily available only for regular, full-time graduate students. Teaching assistantships, research assistantships, graduate assistantships, fellowships, and scholarships are academic awards made by individual academic departments. Several graduate assistantships unrelated to a particular area of study can be obtained by applying to administrative offices. International students are also encouraged to apply for funding to outside sponsoring agencies and/or home governments. Finally, please note that all student loan programs, and the Federal Work-Study program, are administered by the Office of Financial Aid located at 218 W. Packer Avenue. (Please read the section, below, on loans and work-study.)

Academic Awards. Requests for fellowships, scholarships, research assistantships, teaching assistantships, and graduate assistantships to begin in the fall semester must be filed with academic departments no later than January 15. Generally, a special committee formed by department faculty selects the recipients of these awards based upon merit; students are not required to submit a financial statement.

In addition to their stipends, graduate students holding half-time teaching appointments generally receive tuition remission. Fellowship holders also receive a stipend and tuition award. Scholarship recipients are awarded tuition. Research assistants receive a stipend for research services, but their tuition is commonly paid directly by research projects.

Teaching Assistants and Graduate Assistants. Teaching assistant and graduate assistant (TA/GA) are technical terms used to describe specific types of Lehigh University graduate students. The duties of TAs and GAs are generally set by the departments or offices that appoint them, but certain conditions must be satisfied before a student can be classified as a teaching assistant or a graduate assistant. These include:

• Each TA/GA must be a regular full-time resident Lehigh graduate student, which normally requires registration for at least nine credit hours per semester.
• A TA/GA is a half-time position and each TA/GA provides services to Lehigh University of up to twenty hours per week. Quarter-time and eighth-time TA/GA appointments are possible for full-time resident graduate students, with stipends and tuition remission appropriately reduced.

• Each TA/GA must be paid a specific stipend, which is set for the academic year by the dean of the appropriate college after consultation with the Director of Budget.

• Qualified TAs/GAs receive tuition remission for at most ten credit hours in a regular semester. No TA/GA may register for more than ten credit hours. A student who is a TA/GA during the preceding academic year is entitled to at most three hours of thesis, research, or dissertation registration (not course credit) in the following summer without payment of tuition.

• Each TA/GA is appointed by a process which begins with a formal letter of appointment issued by the appropriate department chairperson. The appointment letter specifies standard university conditions including stipend level, time of arrival, length of service, and the requirement of satisfactory academic progress and performance of duties. Each department chairperson submits written notification of TA/GA appointments to the appropriate college dean or vice president.

The graduate and research committee endorsed academic guidelines for new teaching assistants which exceed minimum admission requirements. Each TA should satisfy one of the following: have a G.P.A. of 3.0 or better in the undergraduate major field of study; have a G.P.A. of 3.5 in the senior year major field; rank in the 85th percentile or higher on the Graduate Record Exam or other standardized test; or have a G.P.A. of 3.5 in at least twelve hours of graduate work in the major field. Exceptions to these guidelines shall be made only with the approval of the appropriate dean.

In addition, each teaching assistant must make normal progress toward a graduate degree. The definition of normal progress may vary among departments, but the criteria for satisfactory progress are established by the department faculty and the graduate and research committee. Teaching assistants who fail to satisfy these criteria are ineligible for reappointment.

In addition to a minimum passing TOEFL score, Teaching Assistants whose native language is not English must have on record with the ETS Program a SPEAK score of 230+ (TSE 55+) in order to work with Lehigh undergraduates in academic settings (i.e., classrooms, recitations, labs, office hours, etc.). Those whose SPEAK score is 200-225 (or TSE 50) may also be appointed as TAs, but they are required to attend ESL courses at Lehigh until their SPEAK score is at least 230 or until they no longer have a TA position. A comprehensibility score of 195 (or TSE ? 45) or below eliminates an international graduate student from being appointed as a TA.

The SPEAK is given at announced times throughout the academic year. Contact the ESL Program (ext. 86099) for details and for information concerning ESL courses. The TSE is given by ETS several times each year throughout the world.

Tuition remission for qualified TAs/GAs is authorized by the appropriate dean or vice president as part of the registration process. Each college dean or appropriate vice president will be provided tuition remission accounts against which TA/GA remissions will be charged. The accounts will be budgeted at an amount equal to the nine hour TA/GA tuition rate times the approved number of TA/GA positions and will be included in the annual operating budget. The budgets shall not be exceeded. If additional TA/GA positions are desired on a temporary basis, the account executive must provide for the transfer of budget support to the remission account. These budgets are to be used exclusively for tuition remission for authorized TA/GA positions.

There are a limited number of summer TA/GA appointments. These TA/GAs employees must receive the same monthly stipend as academic year TAs/GAs and devote up to twenty hours per week their TA/GA responsibilities. A summer TA/GA registers for a maximum of three credit hours in each summer session of appointment and receive tuition remission for that registration.

Other Graduate Assistantships. Graduate students may apply directly to administrative offices for graduate assistantships unrelated to their areas of study. The availability of these assistantships is based upon the needs of the individual departments. GAs are appointed regularly by the office of the vice provost for student affairs, the dean of students office, the university counseling service, and by career services.

Loans and Work-study Awards. Graduate students may apply for the federally funded Stafford and Perkins loans, Lehigh University Tuition Loans (UTL), and Federal Work-Study through the Office of Financial Aid located at 218 W. Packer Avenue. These funds are awarded on the basis of demonstrated need using the Free Application for Federal Student Aid. In addition, the University requires a university application (Graduate Student Financial Aid Application) and a copy of the most recent (2005) federal tax return and W-2. Applications for loans cannot be processed, and funds cannot be disbursed, until the FAFSA, and attending forms, are received and reviewed. Because Stafford loans are financed through commercial lenders, their availability is virtually assured if a student qualifies. There is, however, only limited availability of Federal Perkins loans, Work-Study, and University Tuition Loans.

Special Concerns Regarding the Processing of Federal Stafford Loans for Graduate Students. Eligibility for student loans is based on: (1) the number of credits to be taken, (2) the amount of financial aid received, and (3) the calculated financial need. Any change to the number of credits to be taken, or the amount of aid received may affect loan eligibility. To avoid problems with your loan application, it is important that you notify the Office of Financial Aid of any changes in your enrollment or in the amount of aid received. Unfortunately, students frequently change the number of rostered credit hours, or receive Graduate School aid, after their loan application has already been processed. When either of these things happen, a student’s eligibility may change dramatically.

Literature on student loan programs is available through the Financial Aid office or the website (www.lehigh.edu/finaid).
Degree Information

The following degrees are offered by the university: the master’s degree, the doctor of philosophy, the doctor of education, and the doctor of arts.

Master’s Degree

Candidates for the master’s degree have six years in which to complete their programs. Students should confer with their advisers to be certain that specific department and program course requirements are met. The following requirements must be satisfied by master’s candidates in all departments.

Program for the Master’s Degree. A student’s program must include: not less than 30 credit hours of graduate work; not less than 18 credits of 400-level coursework (research or thesis registration counts as part of the 400-level coursework requirement); not less than 18 credits of coursework in the major of which 15 credits must be at the 400 level. All coursework for the master’s degree must be taken under at least two instructors and must be approved by Lehigh University. With the approval of the appropriate dean, a maximum of nine credits may be transferred to a Lehigh master’s program of 30 credits. For a master’s program of more than 30 credits, students should contact the associate dean of their college. A petition is submitted, with course descriptions and transcript, as well as departmental recommendation. Course grades of B or better are required.

A student must complete the form, “Program for Master’s Degree,” setting forth the courses proposed to satisfy the degree requirements. This form should be approved by the department and then submitted to the registrar as soon as possible after 15 credit hours toward the degree have been completed. Approval of the program by the registrar signifies that the student has formally been admitted to candidacy for the master’s degree.

Thesis and Comprehensive Exam. Candidates may be required to submit a thesis or a report based on a research course of at least three credit hours, or to pass a comprehensive examination given by the major department. The department will specify which of these requirements apply and may require both. If required, the thesis or report shall not count for more than six credit hours, and thesis registration is limited to a maximum of six credit hours. University procedures must be followed if the thesis or research project involves human subjects. One unbound copy of the thesis, approved by the thesis adviser and the department chair, must be delivered to the registrar’s office at least three weeks before the degree is conferred. A binding and microfilming fee must be paid to the bursar, and the bursar’s receipt presented with the completed thesis. Guidelines stipulating the form of the thesis are available in the registrar’s office.

A non-thesis option exists for certain programs in the Colleges. Students should check with their departments regarding that option.

Doctor of Philosophy

Time and Registration Requirements. A candidate for the doctor of philosophy degree ordinarily is expected to devote at least three academic years to graduate work. In no case is the degree awarded to someone who has spent less than two full academic years of graduate work. All post-baccalaureate work toward the doctorate must be completed within ten years. A student beginning doctoral coursework after an elapsed period of at least one semester after the master’s degree has been conferred is granted seven years in which to complete the doctoral program.

Doctoral students whose graduate study is carried out entirely at Lehigh University must register for a minimum of 72 credits beyond the Bachelor’s degree. However, resident students who during their entire doctoral program, including the semester of graduation, have paid full tuition continuously (normally a minimum of 9 credits per academic semester) will have satisfied the tuition requirements for the doctoral degree upon completion of all other requirements. Students who have earned a Master’s degree at another university must register for a minimum of 48 credits. These requirements include registration for research or dissertation credits. Students participating in approved dual-degree doctoral programs involving external institutions may transfer up to 25% of their total required doctoral program research credits to Lehigh for work that was performed at the external partner institution. Approval of such programs is required by the dean of the relevant Lehigh college.

Full-time students working toward the doctorate normally register for a minimum of nine credits each semester. If the minimum degree registration requirement of 72 or 48 credits is attained prior to formal admission to doctoral candidacy, continued registration of at least three credits per semester is necessary. Full-time student status must be certified on the graduate registration form.

Students seeking to receive both a master’s degree and a doctoral degree must complete a minimum of 72 graduate credits at Lehigh and must meet the requirements of both degrees.

After admission to doctoral candidacy, a student must maintain candidacy by registering at least two times each calendar year (in each academic semester or in one academic semester and one summer session). After completion of the minimum registration requirement plus any additional requirements of the student’s department or program, registration is permitted for ‘Maintenance of Candidacy.’ The tuition charge is for one credit-hour. Full-time status again must be certified on the graduate registration form.

Concentrated Learning Requirement. Each doctoral degree candidate must satisfy Lehigh’s concentrated learning requirement. This requirement is intended to ensure that doctoral students spend a period of concentrated study and intellectual association with other scholars. Two semesters of full-time Lehigh graduate study or 18 credit hours of Lehigh graduate study, either on or off campus, within a fifteen-month period must be completed.

Individual departments may impose additional stipulations. Candidates should check with their advisers to be certain that they have satisfied their concentrated learning requirements.

Language Requirements. Language requirements for the Ph.D. are the option of and in the jurisdiction of the candidate’s department. Since proficiency in a language is not a university requirement, each department decides which languages, if any, constitute part of the doctoral program.
Qualifiers. Many departments require students who wish to enroll in doctoral programs to pass qualifying examinations. Since these examinations vary among departments, students should ask their advisers or department chairpersons for more detailed information. If a qualifying examination is not used, students should find out how and when eligibility to pursue doctoral studies is determined.

Admission to Candidacy. With the help of an academic adviser, the student names the faculty members of the doctoral committee, a special committee formed to guide the student through the doctoral program. The committee is responsible for assisting the student in formulating a course of study, satisfying specific departmental requirements, submitting a suitable dissertation proposal, overseeing progress in research, and evaluating the completed dissertation. At least four faculty are appointed to the committee; one must be a member of an outside department. Committee membership must be approved by the university's graduate and research committee.

A doctoral student should apply for candidacy no later than one year after completion of the master's degree or its equivalent and after passing qualifying examinations if they are required by the major department. The prospective Ph.D. candidate must submit to the doctoral committee a written program proposal that includes a discussion of proposed dissertation research. Upon receiving approval of the proposal, the candidate submits the proposal, signed by the committee members, to the appropriate dean for action by the graduate and research committee. The dean will advise the student of the committee's decision.

If the dissertation research involves human subjects, university procedures must be followed.

General Examinations. Examinations composed and administered by the members of the student's doctoral committee are designed to test the candidate's proficiency in a particular field of study. These examinations, which may be both written and oral, should be passed at least seven months before the degree is to be conferred. If a student fails the general examination, a second examination will be scheduled not earlier than five months after the first. If the results of the second examination are unsatisfactory, no additional examination is scheduled.

Dissertation and Defense. The Ph.D. candidate is required to write a dissertation prepared under the direction of a Lehigh University professor. The dissertation must treat a topic related to the candidate's specialty in the major subject, show the results of original research, provide evidence of high scholarship, and make a significant contribution to knowledge in the field.

Upon approval of the advising professor and, if required by the department secondary readers, the final draft of the dissertation is submitted to the appropriate dean for inspection by the date posted in the academic calendar. Upon its return, the student should distribute copies of the draft to the members of the doctoral committee for review and for suggestions for revision. The candidate then schedules a dissertation defense before the doctoral committee. Additional faculty members the department may add to the examining committee, and the general public. After the dissertation has been defended and revised accordingly, the student must submit the finished dissertation to the appropriate dean for review by the university's graduate and research committee no later than the date specified in the academic calendar for completion of all degree requirements. One unbound copy must be delivered to the dean's office. It must bear the original signatures of the special committee members. In addition, the candidate must pay a microfilming fee of $60 and present a bursar's receipt for the payment. Guidelines stipulating the standard form of the dissertation are available in the dean's office.

Doctor of Arts (D.A.)

The doctor of arts degree (D.A.) is offered to students preparing for careers in college teaching in the field of chemistry. The program requirements are similar to those for the Ph.D. with the following exceptions: (1) a broader distribution of graduate courses in the field, (2) a minor area of study for students interested in bidisciplinary preparation for two-year college teaching, (3) coursework and training in interpersonal awareness, (4) a supervised internship in college teaching, and (5) a research project appropriate to college teaching in the student's field of specialization.

Graduate Degrees in Business Administration and Economics

Candidates for admission to graduate study in the College of Business and Economics must provide the results obtained in either the Graduate Management Admissions Test (GMAT) for a degree in business administration, and the M.S. in Accounting and Information Analysis or the Graduate Record Examination general test (GRE) and the subject test in economics for degrees in economics. International students applying to any graduate programs in the College of Business and Economics are required to take the TOEFL for admission to the program.

Master of Business Administration

The Lehigh MBA provides a rich, integrated learning experience for students. Business issues are viewed and taught from the perspective of the firm as a whole rather than along departmental lines. Lehigh MBA curriculum is a fully integrated model which simulates a real world business environment in the classroom. The six core courses are interdisciplinary and taught by an eight-member faculty team. In the capstone experience, students are assigned to teams based on the number of years and types of work experience, disciplinary background and industry. These teams closely resemble interdisciplinary corporate teams where each person has a different and valuable set of knowledge, skills and experience. The teams perform a complete analysis of the assigned organization. Past projects have centered on Boeing, WalMart, merger of AOL and Time Warner, Citibank and Hershey Foods. The teams also compete in a simulation with teams from other MBA Programs.

Due to the compact and integrated core, students have increased flexibility to tailor the program to their individual needs. Students may select a concentration in finance, marketing, information systems management, international business, management of technology, entrepreneurship through the vSeries program, or supply chain management or pursue a broader experience by selecting courses from a variety of disciplines. Students may only have one concentration.
Effective oral and written communication skills and leadership ability have become increasingly important keys to success in business. Using case studies, group projects and a team approach to learning, Lehigh’s curriculum helps students experience the dynamics of group behavior within organizations and the methods used to motivate workers and resolve conflicts.

**Online MBA Program**

The Online Lehigh MBA is built on the premise of a shared community of learners, an active and challenging environment and a world class curriculum. Designed as a cohort-based program so that students can build relationships and network as they achieve success, the program begins with a four-day residency on campus at Lehigh. Online core classes include a mix of media including streaming video and Centra, our virtual classroom environment. Centra allows students to meet live with their faculty members and their classmates to share experiences, work on case solutions and listen to guest lecturers. At the end of year one, students re-adjourn for a second three-day residency culminating in their capstone presentations. During the second year of the program, students move into their desired area of concentration, either Supply Chain Management or Project Management.

**Certificates**

Students may also earn a certificate in entrepreneurship, project management, organizational leadership or supply chain management by completing 12 credit hours of coursework as defined in the certificate program.

**MBA Mission Statement.** To develop the knowledge, skills and abilities of managers through a comprehensive and integrated core curriculum with customized concentrated learning designed to meet the individual needs of students.

**Innovative Structure.** The MBA Program requires 36 credit hours. Full-time students can fulfill that requirement in 12 to 15 months. Online students complete the program in two years and most part-time students require three years. Students may select a concentration in finance, marketing, international business, information systems management, entrepreneurship through the vSeries program, supply chain management, or management of technology or pursue a broader experience by selecting courses in a variety of disciplines. Online students may choose a concentration in Supply Chain Management or Project Management.

**Prerequisites.** Students should have completed undergraduate courses in computer literacy, principles of microeconomics and macroeconomics, financial accounting and statistics before entering the MBA program. The statistics prerequisite may be fulfilled by having taken a class within the past 5 years and receiving a “B” or better, or by taking a proficiency exam. The Accounting prerequisite may be waived by taking GBUS 401, Financial Accounting for Managers and Investors at Lehigh or by taking a proficiency exam.

If a student has no previous background in financial accounting or statistics, he/she is encouraged to take a course in the subject area. If a student has previously taken coursework but has not achieved a grade of “B” or the course has exceeded the time limit, self-directed learning and a proficiency exam may be appropriate.

The prerequisites of financial accounting and statistics must be completed before enrolling in MBA 402 or MBA 403.

**Core Courses**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA 401</td>
<td>Introduction to the Organization and Its Environment (2)</td>
</tr>
<tr>
<td>MBA 402</td>
<td>Managing Financial and Physical Resources (4) Prerequisite: Financial Accounting</td>
</tr>
<tr>
<td>MBA 403</td>
<td>Managing Information (4) Prerequisites</td>
</tr>
<tr>
<td>MBA 404</td>
<td>Managing Products and Services (4)</td>
</tr>
<tr>
<td>MBA 405</td>
<td>Managing People (4)</td>
</tr>
<tr>
<td>MBA 406</td>
<td>Integrative Experience (3)</td>
</tr>
</tbody>
</table>

**Electives.** Students will take 15 credits of electives.

Students may design a concentration to best suit their career goals. Nine credit hours of approved electives are required for a concentration in information systems management, international business, and supply chain management. Concentrations in finance, marketing, management of technology, and entrepreneurship require twelve credit hours of approved electives.

To increase flexibility, students may also take up to six credit hours of electives outside of the College of Business and Economics (but within Lehigh University). All elective courses must be at the 400 level.

**Waiver Policy.** There are no waivers for courses in the MBA Program.

**GMAT Scores.** All applicants are required to take the Graduate Management Admissions Test (GMAT) administered by Pearson Vue. The computer-based exam is given during several weeks each month. To make an appointment to take the GMAT exam call 1-800-717-GMAT (4628) or register online at www.mba.com. Students taking the GMAT in the United States must submit the application and fee to Pearson Vue at least four weeks before the testing date. After the test, the results will be sent to the student and to the institutions designated within four weeks.

**Work Experience.** Students are required to have 2 years of full-time, professional work experience.

**International Students/TOEFL.** International students must have 16 years of formal education, including four years at the university level, to be considered for admission to Lehigh’s graduate programs. Applicants whose native language is not English are required to take the Test of English as a Foreign Language (TOEFL). For information, write or call the TOEFL Registration Office, PO. Box 6154, Princeton, N.J., 08541-6154 or at www.toefl.com.

**Flexible Class Scheduling.** Most classes are scheduled Monday through Thursday in late afternoons and evenings. Seminars are offered on Fridays and Saturdays. Part-time students may complete the entire program during evenings. Many students accelerate completion of the program by taking courses during the two six-week summer sessions.

Two-day seminars provide the opportunity to explore a single topic in depth. Business ethics, virtual communities and e-commerce, anatomy of entrepreneurship, intellectual property, performing a business audit and new venture organization are examples of some seminars. Each seminar counts as one credit of elective work.
Certificate Programs

Certificate in Corporate Entrepreneurship

Businesses often nurture the entrepreneurial spirit by forming New Ventures groups within their organizations. The members of these groups require a special blend of education to develop the skills of discovery, innovation and leadership that starting a new enterprise requires. This certificate program prepares students to successfully evaluate business opportunities within a corporate environment. A complete series of courses prepares them for all facets of entrepreneurship including venture capital, financial forecasting, target markets, intellectual property, performing a business audit and building a business plan.

Requirements
The certificate requires 12 credit hours of coursework with six credit hours of required coursework and six credit hours of electives.

Required Courses
Anatomy of Entrepreneurship: Start-Ups and Established Companies (1 cr.)
Market Opportunity: Targeting Strategies and Selling Tactics (1 cr.)
Performing a Business Enterprise Audit: Developing an Industry Perspective (1 cr.)
The New Venture Organization: Management Design and Governance (1 cr.)
Financial Forecasting: Developing Pro Forma Financial Statements (1 cr.)
Financing Start-Ups: Seeking Outside Venture Capital (1 cr.)

Elective Courses:
Business Plan I: Strategic Considerations (2 cr.)
Business Plan II: Operating Strategies and Implementation (2 cr.)

Intellectual Property: Management and Valuation (1 cr.)
Processes and Infrastructure: Creating Production and Delivery (1 cr.)
Establishing Credit Facilities: Asset-Based and Cash Flow Forecasting (1 cr.)
Developing Exit Strategies: Concepts and Approaches (1 cr.)
Integrative Experience/New Venture Internship (1-4 cr.)

Admission Requirements:
Students admitted to the certificate program will enter as non-degree students. Applicants are required to have a 3.0 undergraduate GPA from an accredited College or University and at least 2 years of full-time professional work experience.

Certificate in Supply Chain Management

Increasingly sophisticated information technology applications and the shift toward global economic activity have shaped a competitive environment that rewards creating value for customers while reducing cost and cycle time. Through in depth study of the organizations' value chain -logistics, operations, marketing, sales and service-the certificate in supply chain management demonstrates how these activities are linked both internally and externally. Internal linkages are explored in terms of the organizational structure and information systems and integrated with enterprise-wide procurement, managerial accounting and cash flow management activities. External linkages, increasingly through e-commerce with customers and suppliers, are shown in terms of market transactions and collaborative relationships. The certificate requires 12 credit hours of coursework

Required Courses
GBUS 450 Strategic Supply Management (3 cr.)
GBUS 453 Transportation and Logistics Management (3 cr.)
GBUS 464 Business to Business Marketing (3 cr.)

Elective Courses
GBUS 447 Negotiations (3 cr.)
GBUS 459 Survey of Project Management (3 cr.)

Or choose from the following seminars:
Price Productivity Improvement (1 cr.)
Cost and Performance Management (2 cr.)
Activity Based Costing (ABC) & Activity Based Management (ABM) (1 cr.)
Integrating Suppliers and Customers Into Key Supply Chain Processes (1 cr.)
Legal Aspects of Managing People, Products & Services (1 cr.)

Admission Requirements:
Students admitted to the certificate program will enter as non-degree students. Applicants are required to have a 3.0 undergraduate GPA from an accredited College or University and at least 2 years of full-time professional work experience.

Certificate in Project Management

A successful project is one that has been completed on time, remained at or under budget, met or exceeded its goals and satisfied the client/key stakeholders. Regardless of the size of the project or the organization, the plan-
Elective Seminars (6 credits required)
GBUS 459 Survey of Project Management (3)
GBUS 447 Negotiations (3)

Required Courses (6 credits)

Change and enhance their negotiation skills. Leadership skills, advanced technical information systems skills, consulting skills, advanced technical information systems skills, leadership, and globalization.

Admission Requirements:
Students admitted to the certificate program will enter as non-degree students. Applicants are required to have a 3.0 undergraduate GPA from an accredited College or University and at least 2 years of full-time professional work experience.

Master of Science in Accounting and Information Analysis
The Lehigh Master of Science in Accounting and Information Analysis degree program offers an outstanding opportunity to prepare for a career in today’s demanding field of accounting. Accounting professionals are engaged in a variety of services, including assurance services, business valuation, information resources, and consulting. Lehigh’s unique program recognizes the impact of technology on business processes and the value chain while paying respect to the time honored usefulness of accounting information.

The focus of the program is business solutions. Students learn how to use both information and technology to improve business processes and forge business solutions. Focal points include understanding the business framework, exposure to business subjects in complementary areas, advanced communications skills, strategic use of information, specialized accounting knowledge, consulting skills, advanced technical information systems skills, leadership, and globalization.

Designed to meet the accreditation requirements of AACSB, the Lehigh Master of Science in Accounting and Information Analysis curriculum is designed to be flexible so that students may choose either a general degree or one with a specialization. The concentrations include Consulting and Business Risk Management, Financial Services, and Strategic Cost Management.

Students are encouraged to obtain an internship during the summer prior to beginning the program. The internship will complement the chosen concentration and provide an excellent practical framework to enrich the academic coursework experience.

Non-Accounting Majors. High value is placed on employees who bring a broad background to their positions. Recognizing this fact, the M.S. in Accounting and Information Analysis program accommodates those students who do not have an accounting background. A Link Program, available in the summer prior to beginning the master’s degree, provides the requisite background for those students with an undergraduate business major. The courses in the Link Program include topics typically found in intermediate accounting, cost accounting, and other related accounting courses.

Mission Statement. Lehigh University’s Master of Science in Accounting and Information Analysis provides a broad business education and the specialized coursework for a professional career in accounting. Graduates aspire to leadership positions at top-tier organizations in fields that include public accounting, corporate accounting, financial services, consulting, and
information systems. Through this program, Lehigh continues a long tradition of providing accounting majors with the necessary educational prerequisites for licensure as certified public accountants within the United States and its territories. The program seeks only the best and the brightest: motivated, dedicated to their studies, not afraid of challenges, possessing confidence, self-discipline, and the ability to articulate their ideas orally and in writing. The program continually pursues the excellence necessary to meet the standards of only the highest-quality educational institutions.

**Innovative Approach.** A two semester, full-time 30 hour program, the Lehigh M.S. in Accounting and Information Analysis program provides the knowledge and skills required in a professional accounting career. With emphasis on business solutions, students learn how to use both information and technology to improve business processes.

**Prerequisites.** For business students without the accounting background, a Link Program is available in the summer prior to beginning the M.S. program. Candidates who do not have an undergraduate business degree will require two years to complete the Program. The first year is devoted to background courses, the second to graduate courses.

**Core Program.** Six required courses of the core program accommodate students entering the assurance practice of public accounting firms, as well as those desiring to customize their program of study.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACC 401</td>
<td>Professional Issues in Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MACC 412</td>
<td>Information Systems Auditing</td>
<td>3</td>
</tr>
<tr>
<td>MACC 413</td>
<td>The Corporate Financial Reporting</td>
<td>3</td>
</tr>
<tr>
<td>MACC 420</td>
<td>Consulting Process and Practice in Professional Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MACC 424</td>
<td>Corporate Governance and Business Risk</td>
<td>3</td>
</tr>
<tr>
<td>MACC 427</td>
<td>Analyzing Accounting Information for Mgmt and Business Solutions</td>
<td>3</td>
</tr>
</tbody>
</table>

**Electives.** Twelve elective credits (four courses) are required to complete the degree. Elective courses are available in the following disciplines: Accounting, Business Law, Economics, Finance, Industrial Engineering, Management, Marketing, Information Systems, and International Business.

**Concentrations.** Concentrations allow students to pursue one of three specializations: Consulting and Business Risk Management, Financial Services, and Strategic Cost Management.

**Concentration in Consulting and Business Risk Management.** Rapid technological innovation, emergence of virtual organizations, increasing global competition and higher customer expectations can lead to unexpected challenges and opportunities. The Consulting and Business Risk Management concentration is ideal for those students who are interested in pursuing a career with management consulting organizations, corporations with business risk management and corporate audit departments, and the consulting and assurance practices of national and regional public accounting firms. Students interested in developing their own consulting practice also benefit from this concentration.

Core courses: 18 credits

- Two of the following:
  - Total Quality Management 3
  - Managerial Economics 3
  - Advanced Teamwork and Leadership 3
- Electives (2) 6

Total: 30 credits

**Concentration in Financial Services.** Financial Services is a broad field that includes investment banking, securities, corporate finance and financial institutions such as banks and insurance companies. What is common to all of these areas is a shortage in the number of professionals who have an in-depth knowledge of accounting. Consequently, the opportunities for the graduate who has both financial and accounting skills are abundant. This concentration is ideal for students with a background in either finance or accounting.

Core Courses: 18 credits

- Financial Management 3
- Investments 3
- Financial Statements Analysis and Interpretation 3
- Elective (1) 3

Total: 30 credits

**Concentration in Strategic Cost Management.** Industry accountants spend the majority of their time within their companies as internal consultants or business analysts. The Strategic Cost Management concentration is ideal for those students seeking a career with industrial and manufacturing firms in the areas of strategic and advanced cost management. This concentration is also designed for students pursuing a career in consulting.

Core Courses: 18 credits

- Manufacturing Management 3
- Strategic Supply Management 3
- Electives (2) 6

Total: 30 credits

**Waiver Policy.** There are no waivers for courses in the M.S. in Accounting and Information Analysis Program.

**GMAT Scores.** All applicants are required to take the Graduate Management Admissions Test (GMAT) administered by Pearson Vue. Undergraduate students should take the exam in the junior year. The computer-based exam is given during several weeks each month. To make an appointment to take the GMAT exam call 1-800-717-GMAT (4628) or by registering online @www.mba.com.

Students taking the GMAT in the United States must submit the application and fee to Pearson Vue at least four weeks before the testing date. After the test, the results will be sent to the student and to the institutions designated within four weeks.

**Internships.** The work experience gained from internships provides a practical framework and enhances understanding of the course material. All students are encouraged to take one or more internships prior to beginning the program. Students should meet with the Program Director prior to the summer preceding the Fall semester start of the program to arrange an internship. The internship will be taken during the summer prior to the start of the program and will complement the student’s concentration, if any.
International Students/TOEFL. International students must have 16 years of formal education, including four years at the university level, to be considered for admission to Lehigh's graduate programs. Applicants whose native language is not English are required to take the Test of English as a Foreign Language (TOEFL). For information, contact the TOEFL Registration Office, P. O. Box 6154, Princeton, NJ 08541-6154 or at www.toefl.org.

Flexible Class Scheduling. Classes are scheduled Monday through Thursday during the day and evenings. An M.S. in Accounting and Information Analysis Program brochure and application for admission may be obtained by contacting the Graduate Programs Office or Dr. Jack W. Paul, Director–M.S. in Accounting and Information Analysis Program, Lehigh University, College of Business and Economics, 621 Taylor Street, Bethlehem, PA 18015. Prospective students may call (610) 758-5824 or send e-mail to incbe@lehigh.edu for additional information.

Master of Science in Health and Bio-Pharmaceutical Economics

The M.S. in Health and Bio-Pharmaceutical Economics is designed for students with undergraduate life science degrees. The government, health insurers, health care providers, biotechnology firms and pharmaceutical manufacturers have become increasingly interested in the cost effectiveness of new drugs and therapies. This course of study will develop the quantitative and analytical skills that, in combination with their science training, will prepare them to carry out sophisticated studies of the benefits and costs associated with new drugs, medical therapies and diagnostic procedures and to perform critical analyses in support of strategic marketing decisions and the management of risk and uncertainty in portfolios of R&D projects.

Prerequisites

Applicants should have completed at least two calculus courses, a course in statistics, and courses in both principles and intermediate economics. Applicants lacking one or more of these background courses may still be admitted to the program but courses taken to remedy background deficiencies will not count toward minimum credit hours for the master's degree.

Required Courses (21 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO 402</td>
<td>Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECO 412</td>
<td>Mathematical Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECO 415</td>
<td>Econometrics</td>
<td>3</td>
</tr>
<tr>
<td>ECO 425</td>
<td>BioPharmaceutical Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECO 447</td>
<td>Economic Analysis of Market Competition</td>
<td>3</td>
</tr>
<tr>
<td>ECO 455</td>
<td>Health Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECO 457</td>
<td>Cost-Benefit Analysis</td>
<td></td>
</tr>
</tbody>
</table>

In addition, students must take 9 credit hours of elective courses, selected in consultation with and approved by the MS advisor. A thesis is not required.

Admission

Prospective students must have an undergraduate degree with a major in the life sciences or a related field (such as chemistry, pre-med, chemical or bio-engineering, etc.). Applicants must submit scores from either GRE and GMAT. International students must also take the TOEFL exam. Applications for regular student status are due by July 15. Associate students may be admitted up to a completed application is received prior to two weeks before the start of classes.

Master of Science in Economics

The Master of Science program in Economics is available for students wishing to pursue graduate study in the areas of economics or economics and business. The program offers considerable flexibility with respect to the selection of courses as well as the ability to concentrate in a particular area of study. Students may pursue the degree on either a full-time or part-time basis. Recent graduates of the M.S. program have accepted employment with such firms as AT&T, Pennsylvania Power and Light, and with the Federal Reserve System. Other students have pursued the master’s degree as a stepping stone to the Ph.D. degree.

A minimum of 30 semester hours of course work is required.

As part of the 30 hours, the following courses must be taken:

- ECO 402 Managerial Economics (3)
- ECO 412 Mathematical Economics (3)
- ECO 415 Econometrics I (3)
- ECO 417 Advanced Macroeconomic Analysis (3)
- ECO 447 Economic Analysis of Market Competition (3)

Each student in the M.S. program is also encouraged to concentrate in one field of specialization within economics. (A listing of the fields currently offered is available through the M.S. director.) Students may also elect to write an M.S. thesis. The thesis is worth six hours of credit toward the degree and is particularly encouraged for those who may be considering the Ph.D. program.

Further information about the program may be obtained by contacting the Graduate Programs Office of the College of Business and Economics, 610-758-5280 or Dr. Robert J. Thornton, Director of the M.S. in Economics Program.

Doctor of Philosophy

The Ph.D. degree in business and economics is designed to provide advanced knowledge and the capacity to carry on independent research in various areas of business and economics. Holders of the Ph.D. are normally employed in academic positions in departments of economics or in schools of business administration, or in policy analysis and research positions in banks, business, government, and research organizations. Employment opportunities are excellent for graduates with this degree.

The Ph.D. program requires a minimum of 48 semester hours of study (including dissertation) beyond the master's degree or 72 hours of study beyond the bachelor's degree. Each student is expected to choose three major fields of specialized study. Economic theory must be included as one of the major fields. Each student must take the eight core courses in micro-economics, macro-economics, econometrics, mathematical economics, and economic history. Students must also take written and oral comprehensive examinations in their major fields.

The chairperson of the doctoral committee will help to arrange a plan of study suitable for each student's program and to prepare the student to pass the examinations.
Major fields of specialization normally available include economic theory, international economics, labor economics, managerial economics, money and banking, and public finance.

Under the guidance of a dissertation chairperson and committee formed after passing of the examinations, the candidate undertakes research culminating in an acceptable dissertation. The Ph.D. is awarded upon the successful completion of the doctoral dissertation and its oral defense.

For additional information or an application packet, please contact the Graduate Programs Office or Dr. Shin-Ye Chou, Adviser, Ph.D. Program, College of Business and Economics, Lehigh University, 621 Taylor Street, Bethlehem, PA 18015 or call (610) 758-5280.

Graduate Degrees in Education

Lehigh's College of Education offers only graduate degree programs. Students enrolled in the College of Education should check with their advisers for a list of regulations and requirements governing degree programs.

Financial assistance. Graduate assistantships and research assistantships are available in the college and in various administrative offices on campus. In addition, graduate students may be recommended for a limited number of fellowships and endowed scholarships, which are awarded by the college.

Lehigh's Centennial School, a laboratory school for children with emotional/behavior disorders, provides employment for some Lehigh education students.

Graduate assistantships may apply for teaching internships, which pay tuition plus salaries.

Master of Education (M.Ed.)

This degree is offered in the following professional specializations: elementary education, secondary education, special education, educational leadership, counseling and human services, global educational leadership, international counseling, and elementary and secondary school counseling. Degree requirements vary from program to program.

Master of Arts (M.A.)

The master of arts degree offered in the field of secondary education provides a major in education with an academic specialty. The student must take graduate work in education plus 12 credits of graduate work in an academic field. The academic fields that cooperate with the College of Education in offering this program include, among others: modern languages and literature, English, mathematics, political science, sociology, and physical and natural sciences.

Master of Science (M.S.)

The master of science degree is awarded in instructional technology (IT) and instructional design and development (ID&D). The IT masters focuses on enhancing the use of technology in teaching and learning in schools, while the ID&D masters is aimed at students who are actively seeking to become designers or developers of technology-based teaching/learning materials and will work to make the transition in competence from “student” to “professional” as quickly as possible. Masters students work on projects throughout their program and maintain and enhance their skills outside the class setting.

Master in Business Administration/Master of Education (MBA/M.Ed.)

The MBA and Master's of Education joint degree program offers students the opportunity to acquire a solid foundation in both business and education. Designed to increase the administrative skill required in today's educational systems, the MBA/M.Ed. provides a framework where excellent education and sound business practices can flourish. The MBA/M.Ed. will provide an additional option for students for business and students of educational leadership. The program will enhance the student's marketability in private and public sector education while providing students with an understanding of the cultures of both business and education.

Educational Specialist (Ed.S.)

Specialized post-master's degree programs for practitioners are available in school psychology.

Certification Programs and Post-baccalaureate Certificates

The college offers state certifications in various professional specialties and also offers post-baccalaureate certificate programs in Counseling in the Global School Community, Adapting Instruction for the Diverse Learner, English as a Second Language, and Global Leadership. These programs are 12 credits, focused concentratations taken by students enrolled in the international education program. In a joint program with the College of Business and Economics, students can complete a post-baccalaureate certificate in Project Management.

Doctor of Education (Ed.D.)

The doctor of education degree program provides specialized study in educational leadership. Successful professional experience is required for admission to candidacy for this degree in most programs. The requirements for the Ed.D. degree parallel those already stated for the Ph.D. degree with the following exceptions: language examinations are not required. The residence requirement for the Ed.D. is the same as that for the Ph.D.

Doctor of Philosophy (Ph.D.)

The College of Education also offers the Ph.D. degree to students enrolled in the fields of counseling psychology, learning sciences and technology, school psychology, and special education. The requirements for this degree are the same as those for the Ph.D. in the other colleges and as described in previous sections.

Graduate Studies Organizations

The Graduate and Research Committee

The graduate and research committee consists of twelve members representing the faculties of Lehigh's colleges: four from the College of Arts and Sciences; two from the College of Business and Economics; four from the P.C. Rossin College of Engineering and Applied Science; and two from the College of Education; plus the college deans, the registrar, the vice provost for research, the director of the office of research, two non-voting graduate student members, and a member of the student senate.
The committee formulates policies and regulations on graduate education, and it recommends policies and procedures for research-related activities. The committee interprets and applies faculty rules governing graduate students and degrees, including questions concerning student petitions and appeals.

**Graduate Student Council**

The graduate student council, comprised of one graduate student from each academic department, represents the graduate student community regarding graduate programs and graduate student life at Lehigh. It provides a forum for discussion with university officials and committees. Graduate students selected by the graduate student council are non-voting members of the graduate and research committee and the educational policy committee.

Besides functioning as a forum for discussion, the graduate student council maintains a graduate student center. The council plans social events and disseminates information in order to facilitate communication among graduate students.

**Interdisciplinary Graduate Study and Research**

In addition to offering graduate degrees within academic departments, Lehigh University offers interdisciplinary graduate degrees in the fields of American Studies, clinical chemistry, manufacturing systems engineering, pharmaceutical chemistry, photonics, polymer science and engineering, business administration and engineering, and business administration and educational leadership, and analytical finance.

Lehigh University also offers graduate certificate programs in certain specialized fields of study. Graduate certificates consist of a minimum of twelve credits, six of which must be at the 400-level. Students are admitted to certificate programs in the same way as to degree programs. More specific information on admission criteria and completion requirements are available from certificate program administrators.

In addition, Lehigh's interdisciplinary research centers and institutes address the research needs of government, industry, and society. Organized to recognize research efforts in interdisciplinary problem areas, they supplement the university's academic departments. Graduate students pursuing M.S. and Ph.D. degrees in academic departments as well as students enrolled in interdisciplinary degree programs may pursue research opportunities in the various centers.

A complete listing of research centers, institutes, and other research organizations appears following the section on interdisciplinary graduate programs.

**Financial Assistance.** Teaching assistantships and fellowships are provided by individual academic departments, while research assistantships are available through both academic departments and research centers. Students interested in research are encouraged to seek appointments with members of the faculty working in their area of special interest, with department chairpersons, or with center or institute directors.

**Graduate Certificates in Arts and Sciences**

- **Certificate in Cognitive Science**
  (For details see “Cognitive Science” in Section V)
- **Certificate in Stereotypes, Prejudice, Discrimination, and Intergroup Relation**
  (For details see “Psychology” in Section V)

**Interdisciplinary Graduate Programs**

Several interdisciplinary programs are offered to the Lehigh graduate student.

**American Studies**

A Master of Arts degree in American Studies is offered jointly by English, History, and other departments in the humanities and social sciences. Candidates for the master's degree must complete at least 30 credit hours. In addition to the Theory and Method course, students must choose two courses in American history and two courses in American literature and film from those offered by the history department and the English department. Students must also take one special topics seminar. The other four courses for the master's degree will be divided between thesis or "thesis paper" credits and American Studies courses not in history or literature/film. To fulfill the thesis requirement, students will write one longer thesis or two thesis papers that are aimed at conference presentation and/or publication.

**Analytical Finance**

This program provides students with a strong education in advanced finance and quantitative financial analysis tools to develop graduates who can create innovative solutions for real financial problems, using state of the art analytical techniques and computing technology. Students with undergraduate degrees in computer science, economics, engineering, finance, mathematics and the hard sciences should have the quantitative background needed for success in this field.

**Prerequisites**

Applicants must show basic competency in the following areas: finance, corporate finance, investments, financial accounting, economics, money and banking, statistics and calculus. These courses will not count toward the masters degree.

**Required Courses**

The 33 credit hour program is a joint venture of the College of Business and Economics, the P.C. Rossin College of Engineering and Applied Science and the College of Arts & Sciences. Required courses are as follows:

- **GBUS422** Derivatives and Risk Management (3) Summer
- **MATH 467** Financial Calculus I (3) Fall
- **GBUS 473** International Finance (3) Fall
- **IE 426** Optimization Models and Applications (3) Fall
- **ECO 415** Econometrics (3) Fall
- **IE 441** Financial Engineering Projects (3) Fall/Spring
- **MATH 468** Financial Calculus II (3) Spring
- **GBUS 421** Advanced Investments (3) Spring
- **IE 447** Stochastic Programming and Portfolio Analysis (3) Spring
ECO 424 Advanced Numerical Methods (3) Spring
STAT 410 Probability and Its Applications (3) Spring

Admissions. Students will apply through the Industrial and Systems Engineering Department in the P.C. Rossin College of Engineering and Applied Science, the Graduate Programs Office in the College of Business & Economics, or the Department of Mathematics in the College of Arts & Sciences. Students must take the GRE or GMAT. International students must have 16 years of schooling with four years at the University level to be considered for admission. Applicants whose native language is not English are required to take the Test of English as a Foreign Language (TOEFL). Since the first course, GBUS 422—Derivatives and Risk Management, is offered during the first summer session, students are encouraged to apply to the program by May 1.

Clinical Chemistry
The M.S. program in clinical chemistry is offered by the Department of Chemistry in cooperation with local hospitals. It is directed toward training clinical laboratory scientists to be active in hospital-based and industrial laboratories in both patient sample service and new product development. The program requires fulfillment of a clinical laboratory practicum as well as a research project at the M.S. level. The core requirements for the degree are:

CHM 371 Elements of Biochemistry I (3)
CHM 372 Elements of Biochemistry II (3)
CHM 332 Analytical Chemistry (3)
CHM 336 Clinical Chemistry (3)
CHM 358 Advanced Organic Chemistry (3)
CHM 437 Pathophysiological Chemistry (3)
CHM 421 Chemistry Research (1-4) Clinical Laboratory Practicum

Electives or courses that may be substituted, upon an approved petition, for core requirements in clinical chemistry can be drawn from those listed in the Ph.D. programs in molecular biology or pharmaceutical chemistry (see below).

Students may be admitted into this program from undergraduate majors in chemistry, biology, medical technology, or other areas of the biochemical life sciences. One semester of undergraduate physical chemistry is required for the M.S. in clinical chemistry although in some cases this course may be taken while enrolled as a graduate student but for no graduate credit. Graduates of the program are encouraged to continue their education toward the doctorate in any one of the several biological chemistry programs offered at Lehigh.

Master of Business Administration and Engineering
In today’s business environment expertise is required over a broad spectrum of skills in order to maximize performance. To meet this challenge, Lehigh has developed an interdisciplinary graduate program that provides a solid foundation in both business and engineering. The joint Master of Business Administration and Engineering (MBA&E) degree has been developed through the cooperative efforts of the P.C. Rossin College of Engineering & Applied Science and the College of Business & Economics. This program is part of Lehigh’s commitment to developing the industrial leaders needed to enhance our competitiveness in the new global marketplace, and is aimed at students with an engineering or science background.

The basic 45 credit hour course sequence consists of:

- MBA core courses 18 credits
- Engineering core courses 12 credits
- Business electives 5 credits
- Engineering electives 6 credits
- Free electives 3 credits
- Integrated project 1 credit

Students can choose an appropriate engineering curriculum from any of the following programs—chemical engineering, civil engineering, computer engineering, electrical engineering, industrial and systems engineering, manufacturing systems engineering, materials science and engineering, mechanical engineering and mechanics.

MBA Core Courses
MBA 401 Introduction to the Organization and Its Environment (2)
MBA 402 Managing Financial and Physical Resources (4)
MBA 403 Managing Information (4)
MBA 404 Managing Products and Services (4)
MBA 405 Managing People (4)

Engineering Core Courses
Each engineering program has its own set of core courses. Course choices are intended to be as flexible as possible, and are tailored to meet the needs of individual students. Further information can be obtained from the appropriate departmental graduate coordinator, or from the Office of Graduate Studies (610-758-6310) in the P.C. Rossin College of Engineering and Applied Science.

Electives. Engineering electives are chosen from courses in the appropriate RCEAS engineering program, and the business electives are selected from course offerings in CBE. Electives can also be chosen from joint courses that are being developed by RCEAS & CBE.

Project. A short interdisciplinary project is required of all students. Project topics, based on the specific interests of each student, will be developed by CBE and RCEAS faculty.

Admissions. Applications must be accepted by the MBA program and by the relevant department in the P.C. Rossin College of Engineering and Applied Science.

When required by the engineering program, students must take the GRE. If this is not required, then the GMAT examination must be taken. Students will not be required to take both tests.

Further information can be obtained from:
Office of Graduate Studies
P.C. Rossin College of Engineering & Applied Science
610-758-6310
www.lehigh.edu/engineering
or
The Graduate Programs Office
College of Business & Economics
610-758-5280
www.lehigh.edu/mbs
Master of Business Administration and Educational Leadership

The MBA & Master of Education joint degree program offers students the opportunity to acquire a solid foundation in both business and education. Designed to develop the administrative skills required in today’s educational systems, the MBA/M.Ed. provides a framework where excellent education and sound business practices can flourish. The MBA/M.Ed. will provide an additional option for business students in educational leadership. The program will enhance the students’ marketability in private and public sector education while providing students with an understanding of the cultures of both business and education. Core courses from both colleges will ensure that recipients of the joint degree will bring to their future positions an extraordinary medley of skills to manage human and financial resources efficiently while employing expertise in instructional supervision and training in both education and corporate settings. This program of study will enhance training and skills for those currently in the area of business and financial management in the field of education.

The Lehigh MBA/Ed. Leadership is a 45-credit joint degree program. Students earning an MBA/Ed. Leadership will be prepared for positions such as: School Superintendent, Principal, and School District Administration.

Educational Leadership Core Courses
- Introduction to Organizational Leadership 3
- Supervision of Instruction 3
- Human Resources Management 3
- School Financial Management 3
- School Law 3
- Practicum in School Business Management 1
- Research 3
- Multicultural Issues 3
- Electives 3

MBA Core Courses
- Introduction to the Organization & Its Environment 2
- Managing Financial & Physical Resources 4
- Managing Information 4
- Managing Products & Services 4
- Practicum: Integrative Experience 1
- MBA Electives 5

Electives. Educational electives are chosen from courses in the College of Education and the business electives are selected from course offerings in the College of Business and Economics.

Admission Requirements. Applications need to be approved through both the MBA Program and the Educational Leadership program. Students are required to take the GMAT. Students must have at least 2 years of professional post graduate work experience to apply for this joint degree program.

Further information about the program may be obtained by contacting Dr. George White, Professor, College of Education, 610-758-3262 or gwwl@lehigh.edu.

Manufacturing Systems Engineering

Lehigh’s award-winning graduate program leading to the master of science degree in manufacturing systems engineering (MSE) is sponsored by all the departments in the P.C. Rossin College of Engineering and Applied Science and is administered by the Center for Manufacturing Systems Engineering. In addition, the College of Business and Economics participates in teaching accounting, business, finance, management, and marketing aspects affecting manufacturing systems.

This graduate curriculum aims to develop engineers who can design, develop, install, operate and modify manufacturing systems involving materials, processes, equipment, facilities, logistics, and people using leading edge technologies. A systems perspective is integrated by means of interdisciplinary course offerings.

Distance Education

It is possible for distance students to earn the MS in MSE degree remotely.

Major Requirements

The degree requires completion of 30 credits of graduate level work, including:
- four (4) core MSE courses.
- MSE 362 Logistics and Supply Chain Management (3)
- MSE 421 (GBUS 481) Technology, Manufacturing & Competitive Strategy (3)
- MSE 427 (IE 443) Automation and Production Systems (3)
- MSE 438 Agile Organizations and Manufacturing Systems (3)

Either
- MSE 451 Manufacturing Systems Engineering Project (3)

Or
- MSE 490 Manufacturing Systems Engineering Thesis (6)

And

Elective courses (12 or 15 credits). At least one elective must be an MSE-numbered course. Elective courses are selected in consultation with the MSE academic adviser from technical and business areas related to manufacturing.

These areas include:
- design
- materials, manufacturing processes and quality control
- automation, control systems, and computer integration
- computer and information systems
- business, management, organization, and operations research

Admission requirements

- A bachelor’s degree in engineering or an appropriate science is required.
- Candidates enroll in this program through one of the university’s engineering departments, depending on individual backgrounds and interests.
- All candidates must have at least six months work experience in industry.
- All candidates must follow admission procedures and standards established by Lehigh University.
Polymer Science and Engineering

Lehigh has a diverse group of faculty members with strong, primary interest in polymer science and engineering. In order to provide better opportunities for courses and research in this interdisciplinary field, activities are coordinated through the Center for Polymer Science and Engineering (CPSE), and its academic Polymer Education Committee. Polymer faculty from traditional departments of chemical engineering, chemistry, materials science and engineering, physics, and mechanical engineering and mechanics, are participants of the CPSE.

There are two ways in which qualified graduate students, with degrees in the above or related fields, may participate. Students may pursue graduate studies within an appropriate department. Departmental procedures must be followed for the degree sought. The student’s adviser may be in that department, or in another department, or research center, in which case, the student receives a normal departmental degree, with emphasis in polymer courses and research.

Alternatively, students may elect to pursue studies toward an interdisciplinary M.S., M.E., or Ph.D. degree in polymer science and engineering. The procedures for this latter case are summarized as follows. Students enter through the departments and must meet each entering department’s criteria. When the student is ready (must have taken/be taking at least one polymer course and be in good standing in the department), the student petitions to transfer to the Center for Polymer Science and Engineering. After entering the center degree program, his/her degree program becomes Polymer Science and Engineering, but the student remains in the home department.

Master of Science Degree in Polymer Science and Engineering requires a total of 24 credits in course work and six credits in research based on a pre-approved library program. The research report is directed and signed by a faculty member of the Center for Polymer Science and Engineering and co-signed by the chairman of the Polymer Education Committee or the director of the CPSE.

Required courses:

CHE (Chm/Mat) 388  Synthesis and Characterization Lab (3)
CHE (CHM/MAT) 393; CHE (CHM) 394  Organic Polymer Science (3)  Research (6)

Three 400-level polymer courses to be selected from the following list (list may vary slightly from year to year, check with Professor Pearson or Professor Roberts for more details):

CHE 428  Rheology (3)
PHY 472  Polymer Physics (3)
CHE (CHM) 483  Emulsion Polymers (3)
CHE (CHM/MAT) 482  Engineering Behavior of Polymers (3)
CHE (CHM/MAT) 485  Polymer Blends and Composites (3)
CHE 486  Polymer Processing (3)
CHM 489  Organic Polymer Science II (3)
CHM 491  Physical Chemistry of Organic Polymer Coatings (3)
CHE (CHM) 492  Topics in Polymer Science (3)
CHM 493  Organic Chemistry of Organic Polymer Coatings (3)
CHE 487  Polymer Interfaces (3)
Courses in the admitting department must include one of the following:
CHE (CHM) 400  Chemical Engineering Thermodynamics (3)
CHM (CHE) 445 Elements of Physical Chemistry (4)
MAT 401 Thermodynamics and Kinetics 1 (3)
ME 420 Advanced Thermodynamics
PHY 442 Statistical Mechanics
plus one other 300- or 400-level non-polymer related course from the admitting department.

Master of Engineering Degree in Polymer Science and Engineering requires a total of 30 credits of course work. This option is intended for those students who do not work in a laboratory setting, or for whom thesis research is not practical, but who wish to obtain an advanced education in polymer science and engineering.

The additional six hours of coursework must include two additional 300 or 400 level polymer courses, or one polymer and one non-polymer home department course. For full-time graduate students electing the M.E. degree option, the polymer course program must include Chem. Eng. (CHM; MAT) 388, Polymer Synthesis and Characterization, a laboratory course.

Part-time and Distance Education M.S. and M.E. degree students in Polymer Science and Engineering may substitute another polymer course for Chem. Eng. (CHM; Mat) 388.

Ph.D. in Polymer Science and Engineering. For the Ph.D., the student must satisfactorily complete a qualifying examination administered by the Polymer Education Committee; satisfactorily complete graduate course work determined in consultation with the doctoral committee; pass a general examination administered by the Polymer Education Committee; and defend to the satisfaction of the doctoral committee, a dissertation in the field of polymer science and engineering. Students deficient in polymer science or related topics may be required by their committee to take remedial course work.

The doctoral committee consists of the research adviser, at least two other members of the center for polymer science and engineering, and at least one outside person. The committee’s composition is subject to approval by the Polymer Education Committee and the Graduate Research Committee of the university.

For more information, write to Dr. Raymond A. Pearson, Director, Center for Polymer Science and Engineering, Whitaker Laboratory, 5 E. Packer Avenue, Lehigh University, Bethlehem, PA 18015, or Dr. James E. Roberts, Seeley G. Mudd Building #6, Chairman, Polymer Education Committee, Lehigh University, 6 E. Packer Avenue, Bethlehem, PA 18015. Please address applications to one of the participating departments.

Certificate Programs
Cognitive Science
Stereotypes, Prejudice, Discrimination, and Intergroup Relations
Business College Certificates
Education College Certificates

Research Centers and Institutes
Lehigh has developed a number of centers and institutes to provide greater research and academic opportunities for primarily graduate students and faculty. Centers and institutes are generally interdisciplinary and complement the scholarly activities of academic departments and represent scholarship and research based on the expertise and capabilities of a group of faculty members. Frequently, centers relate to the broad-based research needs of government, industry, and the social community.

Center for Polymer Science and Engineering
The Center for Polymer Science and Engineering (CPSE) was formally established at Lehigh University in July 1988. The center provides a unique opportunity for faculty and students from the traditional departments of chemistry, chemical engineering, materials science and engineering, mechanical engineering and mechanics, and physics to perform interdisciplinary research in polymers. The center is an umbrella organization encompassing polymers research and graduate studies at Lehigh University. The center’s primary missions are preparation of first rate scientists and engineers with proficiency in polymers, fostering cross-disciplinary polymer research, organizing and teaching continuing education short courses in areas of interest to the polymer industry; and organizing campus wide seminars.

The center’s Polymer Education Committee graduate studies through the academic departments leads to the Master of Science, Master of Engineering, and Doctor of Philosophy in Polymer Science and Engineering. Students may also elect to pursue studies towards a classical degree in their respective departments with an emphasis in polymer courses and research. Both advanced undergraduate and graduate courses in polymer science and engineering are offered through the participating departments. Current course offerings include polymer synthesis and characterization laboratory, physical polymer science, organic polymer science, engineering behavior of polymers, rheology, polymer processing, emulsion polymers, polymer blends and composites, fatigue and fracture of engineering materials, colloid science, and polymer interfaces.

Research Activities. The center has a wide range of research activities covering the field of polymers. The following are the major research themes: emulsion polymerization and latex characterization, surface/interfacial aspects of polymer colloids, adhesion, polymer blends and composites, polymerization mechanisms and kinetics, polymerization reactors modeling and control, structure/property relationships of interpenetrating polymer networks, macromolecular chemistry of biopolymers and coal, polymer coatings for corrosion protection, and microelectronic packaging.

Research Facilities. The following research instrumentation is available for the Center for Polymer Science and Engineering: X-Ray Photoelectric Spectroscopy (ESCA), Scanning Auger Electron Spectroscopy, Laser Raman Spectroscopy, Mossbauer Spectroscopy, Nuclear Magnetic Resonance Spectroscopy of both solids and solutions (NMR) (3 instruments: 90 MHz, 300 MHz and 500 MHz), Fourier Transform Infrared Spectroscopy (FTIR) (both conventional and photo-acoustic), a variety of advanced transmission and scanning electron microscopes, modulated differential scanning calorime-
try, hi-res-thermogravimetric analysis, instruments for rheological studies (including a Rheometers RDA2 and Bohlin Rheometer), particle sizing instruments (Coulter N4M, Joyce-Loebl Disc Centrifuge, Capillary Hydrodynamic Fractionation, and Hydrodynamic Chromatography), Gel Permeation and Gas Chromatography units, Electrophoretic Mobility apparatus, mechanical testing devices such as the Rheovibron Dynamic Mechanical Spectroscopy, Instron Tensile Test equipment, several computer-controlled servohydraulic fatigue test machines, and Polymerization Reactors, including Bottle Polymerizer, Tubular Reactor, Stirred Tank Reactors with on-line sample analysis for residual monomer and interfaced with computer for control operations.

**Educational Opportunities.** Programs of study for individual students are designed to meet the student’s interests, the requirements of the academic department, and the student’s dissertation committee. Considerable flexibility is permitted in the selection of courses and a research topic. Lehigh University has been awarding interdisciplinary M.S. and Ph.D. degrees in Polymer Science and Engineering since 1975. Graduate students conducting polymer research may also earn the M.S. and Ph.D. degrees in the classical fields of chemistry, chemical engineering, materials science and engineering, physics, or mechanical engineering and mechanics. For further information please refer to the Polymer Science and Engineering Program in the section: Interdisciplinary Graduate Programs.

For more information about the center activities, admission to graduate school, or financial aid, contact: Dr. Mohamed S. El-Aasser, Director, Center for Polymer Science and Engineering, Iacocca Hall, Room D330, Lehigh University, 111 Research Drive, Bethlehem, PA 18015; (610) 758-3590 or Dr. L. H. Sprieling, Chairman, Polymer Education Committee, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015; (610) 758-3845. Please address applications to one of the participating departments. Please visit the web site: www.lehigh.edu/ed08/polyhome.html or e-mail mse0@lehigh.edu or lh0@lehigh.edu.

**Center for Promoting Research to Practice – Schools, Families, Communities**

The Center for Promoting Research to Practice intends to develop practical solutions to real problems for those individuals at-risk or who have disabilities. All too often research that is created for these individuals remains at the development level and is not disseminated into best practices. Using an interdisciplinary approach and establishing a living laboratory through partnerships with schools, parent and families, and community service and support providers, the Center aspires to distinguish itself as a leader at state, regional, and national levels in addressing the need for the production of research to reach the users and consumers of research. The mission of the Center for Promoting Research to Practice (CPRP) is to generate new knowledge that will favorably impact the lives of individuals with or at risk for disabilities and promote the use of evidence-based best practices by schools, families, and community service providers. The Center emphasizes the conducting of applied research, partnership, and dissemination.

**Applied Research Opportunities**

The CPRP focuses on securing research projects that emphasize bringing research findings from the field and moving them into effective practice with evaluation of outcomes. The projects secured by the CPRP faculty focus on individuals who have identified areas of disability or are considered at-risk for developing disabilities. Currently, the Center has research projects examining the most effective intervention strategies for improving behavioral and academic outcomes for students with behavior disorders. One project focuses on understanding effective, scientifically-based interventions in educating students who present severe challenges to the schools. Another project is focused on examining those factors within schools that enhance or diminish the use of positive behavioral support for students with disabilities and to examine the quality-of-life outcomes of functional assessment-based support plans. Other current projects in the Center include work designed to enhance the professional development of first grade teachers in teaching reading to students at-risk for developing reading problems, a project focused on the evaluation of the Early Reading First initiative to improve early literacy in Head Start preschool children, and a project designed to facilitate the implementation of a multi-tiered model of prevention and intervention in progress monitoring and a response-to-intervention model of identification for students in need of special education.

**Partnership**

The Center forms and maintains partnerships at national, regional, and local levels. Several objectives are established to accomplish this goal. The CPRP assists with the development and implementation of research projects designed in local school districts and intermediate districts. Many school districts, particularly small and rural districts, do not have the capacity to engage in wide-scale research efforts. Yet, these districts often have very significant needs for empirically-based decision making. The CPRP will provide a cost-effective vehicle for these districts to engage in such research efforts.

Another level of partnership for the CPRP is interdisciplinary research within the University community. This objective will be met through facilitating cross-college and cross-program proposals. Continuous efforts will be made to invite colleagues from across departments and colleges in the University to join with faculty in the College of Education in pursuing research interests that are within the mission of the Center. Efforts will also continue to conduct research with colleagues across institutions. Currently, four of five active projects in the Center are linked to partner institutions including University of California – Riverside, University of Oregon, University of Pittsburgh, and the Instructional Research Group in Long Beach, California, and Pacific Institutes for Research in Eugene, Oregon, both private research institutes, as well as the Pennsylvania Training and Technical Assistance Network.

**Dissemination**

The CPRP is a resource for distilling and bringing research findings to the field. Investigators conducting research have already begun to publish the outcomes of findings in professional journals and outlets. In addition, the CPRP plans to initiate dissemination to parents, teachers, and other practitioners in a format that more easily affects practice.

The Center’s mission, goals, current accomplishments, as well as its future initiatives will be disseminated to
groups both on- and off campus. Included in its objectives are the development of publicity about the Center itself and outcomes of Center projects through varied forms of communication across campus as well as institutions of higher education, local/state educational agencies, community agencies, and parent groups.

Center for Value Chain Research

The Center For Value Chain Research (CVCR) is committed to promoting and conducting research and information exchange through the integration of emerging theory and best practices. The center’s research focuses primarily on value chain planning and development activities, which connects corporate strategy with value chain execution systems.

The CVCR seeks out corporate, foundation, and government funds to invest in research proposals showing significant promise for advancing knowledge of information and value networks, and it disseminates research findings through professional conferences, scholarly publications, and curriculum development.

Interdisciplinary Research. The CVCR is a joint venture between Lehigh University’s P.C. Rossin College of Engineering and Applied Sciences and the College of Business and Economics. A core group of over 25 faculty members from both colleges are active participants of the center. The center provides a unique, multidisciplinary approach to research, offering exciting new opportunities for innovation by integrating analytical and quantitative engineering approaches with process-driven and field-based business research.

Research Activities. CVCR faculty perform research in a variety of topics, including logistics and operations, network organization and technology, and value network strategy. The research uses a wide range of tools and methodologies, including network design and analysis, financial engineering, mathematical programming and optimization, advanced planning and scheduling (APS), stochastic processes, auction and bidding algorithms, game theory and economic analysis, parallel and distributed computing, field studies, surveys, case studies, artificial intelligence, and data mining.

Lehigh University Center for Optical Technologies (COT):

Launched in 2001, the Center for Optical Technologies (COT) is a multi-institutional initiative based at Lehigh University with a charter to advance research, applications, and regional economic development opportunities for optical and optoelectronic technologies. (See www.lehigh.edu/optics). Lehigh partners with Pennsylvania State University in research and education, with Northampton Community College and Lehigh Carbon Community College in education and outreach programs, and with Ben Franklin Technology Partners of Northeastern Pennsylvania in business development. The COT has joint research and business development activities with a growing list of local and national companies administered through the Center’s industrial liaison program, as well as growing federally-funded research administered by the Offices of Sponsored Research at both Lehigh and Penn State. Additionally, Lehigh has developed significant joint research activities with the US Department of Defense in collaboration with the Army Research Laboratories. Pennsylvania, and the Lehigh Valley in particular, has an enviable infrastructure in optical and optoelectronic technologies, advanced optical, electronic and optoelectronic materials, and a host of related advanced nanocharacterization and nanotechnologies. The COT vision and goal is to provide a sustainable university hub and partnership to accelerate the innovative and economic development potential of these resources, to transform the economic trajectory of the region, and develop the next generation optics technology and applications. COT has structured its research thrusts and industrial partnerships to maximize our success on these key elements. The COT mission statement is: “To generate advances in the science and application of optical technologies, and to forge partnerships that drive growth and diversity in the industry.” In addition to the initial vision of advancing optical communications technologies, COT has expanded its research and application studies into new fertile high-value areas in life sciences, sensors, and displays, with significant interest from large and small corporate partners, from all corners of the globe.

The Center was initiated with a July 2000 Phase I grant of $1M from the Pennsylvania Department of Community and Economic Development (PDCED), beginning actual operations with funding availability in April 2001. This was followed in July 2001 with a major PDCED Phase II commitment of $15M through a Ben Franklin Technology Development Authority Contract, with matching financial commitments by Lehigh University and goals for major leveraged funding from federal, industry, and private sources. COT programs have successfully focused on federal Department of Defense needs, and joint activities with the Army Research Laboratory have alone already yielded over $12M of research funding. With additional generous private donations, growing competitively-awarded research grants and industrial participation, COT is progressing well towards the targeted vision discussed above.

COT Facilities & Research Activities:

In addition to the existing COT expertise at the program launch, there have been 12 faculty added in COT-related research areas at Lehigh alone leading to over 25 participants, with 20 more at Penn State. The additions include 7 new professors in Electrical and Computer Engineering, 3 new professors in Physics, and two professors in Mechanical Engineering and Biology, respectively participating in the new Bioengineering activity. These additions have also led to a significant expansion of course offerings in optical technologies at both the undergraduate and graduate levels, a new Masters in Photonics degree, and significant growth in funded graduate Ph.D. research programs. COT has provided for dramatic enhancements of the existing individual faculty laboratories at both Lehigh and Penn State, including a wide assortment of specialized optical testing and evaluation equipment. These include ultra-high-speed femtosecond pulse laser systems for advanced materials and device analysis, unique 50 GHz microwave characterization apparatus with adjustable terminations for highly accurate, unmounted, pulsed device prototype evaluations, 12.5 Gb/s and 40 Gb/s optical communications oscilloscopes and BER test apparatus, extensive optical amplification, tunable and fiber mode-locked lasers, and optical spectrum analyzers for WDM and nonlinear fiber test and evaluation systems. Unique capabilities have been installed for confocal microscopy and spectroscopy, both for
advanced optoelectronic and electro-optic materials analysis as well as for biological sample evaluation. These include a new near-field scanning optical microscope with operation extending into the UV for high-spatial-resolution imaging of photoluminescence from new GaN-based materials. Optics labs and incubator partner labs at Lehigh have been enhanced with over 30 specialized vibration-isolation tables for research or product development. COT also benefits from the extensive optical programs in the Sherman Fairchild Center for Solid-State Studies, which include a flexible electronics lab pursuing flexible OLED displays on metal film substrates, and CMOS processing capabilities currently contributing to research in silicon photonics.

Several major facilities investments have also been made, including new building wings. The new Smith Family Laboratory for Optical Technologies, made possible in large part due to a private donation from the family of Lehigh alumnus Daniel E. Smith, Jr., has provided infrastructure to pursue multidisciplinary research targeting new optical and optoelectronic materials and device structures. This facility houses two new epitaxial growth systems for GaN-based high bandgap UV materials, and GaAs-based and InP-based optoelectronic and electronic materials, and a full clean room with lithography, wet and dry processing capability for fabricating research devices. Complementing existing facilities at Lehigh and Penn State, this provides for a critically-needed capability to bring faculty together from Electrical and Computer Engineering, Physics, Materials Science and Engineering, and other disciplines including Biology, Chemistry, Chemical Engineering, and Mechanical Engineering, to pursue as a coordinated team new device and materials functionality. Lehigh has also invested in a new fiber draw tower, making it one of the few universities with the capability to make its own optical fibers for research. Current focus is on new materials such as tellurite fibers and possibly future chalcogenide glass fibers, as well as new photonic crystal fibers with micro- and nanopatterned internal structure for unique dispersive and nonlinear optical properties.

The key areas of continuing COT research focus and activity are:

(1) Advanced Optical Functionality in Glasses, Dielectrics, and Ferroelectrics
Leaders: Dr. Jean Toulouse & Dr. Himanshu Jain

(2) Semiconductor and Organic Optoelectronic Devices and Materials
Leaders: Dr. Jim Hwang & Dr. Volkmar Dierolf

(3) Biophotonics
Leaders: Dr. Daniel Ou-Yang & Dr. Ahmed Heikal (PSU)

For more information, contact Thomas L. Koch, Director, Center for Optical Technologies, 205 Sinclair, Lehigh University, 7 Asa Drive, Bethlehem, PA 18015.

**Chemical Process Modeling and Control Research Center**

The mission of the Chemical Process Modeling and Control Research Center at Lehigh University is to collaborate with industrial partners for their benefit through the application and advancement of research in the areas of control, design, synthesis, optimization and automation of a broad range of processing systems. A key execution strategy includes incorporation of a strong graduate education program at the M.S. and incorporation of a strong graduate education program at the M.S. and Ph.D. levels grounded in work defined with industrial partners. Our commitment is the delivery of Center technologies and services that will meet or exceed the expectations of economic return while advancing the knowledge in the field of process automation science.

The Chemical Process Modeling and Control Research Center was established in January 1985 through the efforts of faculty members of the chemical engineering department at Lehigh University, leading industrial processing companies, the Ben Franklin Partnership Program of the Commonwealth of Pennsylvania, coupled with the organizational and financial support of the National Science Foundation (NSF). Many of the original industrial member companies have been continuous supporters of the center.

The center provides a unique atmosphere for fundamental research, development of specific techniques, application to real industrial processes, and opportunities for advanced education in chemical process modeling and control for academics and industrial practitioners. Facilities are available for real-time testing of new algorithms in experimental process units, development of dynamic simulations of real processes, and the close collaboration with researchers in several other fields of chemical processing.

Interdisciplinary collaboration is encouraged with other research groups, centers, or institutes engaged in biotechnology, polymer processing, environmental science, advanced optoelectronic and electro-optic materials research, and other disciplines including Biology, Chemistry, Chemical Engineering, and Mechanical Engineering, to conduct an outstanding program dedicated to the education of undergraduate and graduate students.

The center has and continues to attract top quality students from a large group of well-recognized international universities. In addition to these gifted students, each year several industrial companies send employees to receive advanced training and engage in research efforts for particular company technical requirements. Because of the recognition of the value of the program and the quality of the students, the center has established a worldwide reputation as an outstanding educational and research unit in this critical area of technology development and implementation. More than a dozen graduate students are engaged in the center’s research efforts and are candidates for Ph.D. and masters degrees in this area of specialization.

**Education.** An integral part of the center is the commitment to conduct an outstanding program dedicated to the education of undergraduate and graduate students. The center has and continues to attract top quality students from a large group of well-recognized international universities. In addition to these gifted students, each year several industrial companies send employees to receive advanced training and engage in research efforts for particular company technical requirements. Because of the recognition of the value of the program and the quality of the students, the center has established a worldwide reputation as an outstanding educational and research unit in this critical area of technology development and implementation. More than a dozen graduate students are engaged in the center’s research efforts and are candidates for Ph.D. and masters degrees in this area of specialization.

**Faculty.** The center brings together six faculty members and research staff from different engineering disciplines in the university engaged in the research and educational efforts of the center. Visiting faculty from other well-recognized universities supplement these researchers and provide opportunities for diversity of thinking and innovative research. All of the associated faculty members are
recognized around the world as leaders in their respective fields of specialization. They are invited very frequently to present plenary lectures in international conferences, industrial company meetings, and various universities. They organize and chair national and international conferences and symposia. They also serve as consultants to a variety of industries seeking their advice on leading technological developments in process modeling and control.

**Facilities.** The Center is located in Iacocca Hall on the Mountain Campus of Lehigh University. This building represents a unique facility available to the center as well as the chemical engineering department and the Emulsion Polymers and Bioprocessing Institutes. The center has the use of several dedicated computer facilities with more than 50 PC or workstation computers continuously available to the students, faculty, and staff. In addition to the local computing network, the center's researchers have access to the Lehigh University central computing facilities and its outside links to other worldwide computing systems and data networks. The center has several laboratories with sophisticated equipment dedicated to process control research work.

**Areas of Research.** The research activities of the Center span a wide spectrum of problems in large complex chemical process design, dynamical analysis and control, as well micro and nanoscale complex process development, evaluation, dynamical analysis and control. The research themes emphasize a combination of new theoretical developments, new applications and translation of new theoretical developments to practical problems. The focal areas of research in the Center as summarized below:

I. **Synthesis and Plant-Wide Control**
   
   During the last decade Center faculty have done pioneering work in the area of plantwide control, which has resulted in the only textbook that covers this important area. There continue to be a number of projects in this area.

   (a) On-Demand Control of Processes with Multiple Products: This project studies the design and control of processes in which consecutive reversible reactions produce multiple products. The demand for these products can vary, so the process and its control system must be able to produce exactly the desired amount of each individual product. An ideal system has been studied first in which the effect of equilibrium constants and volatilities can be explored. A real chemical system is also being studied (the production of methyl amines).

   (b) Design and Control of Tubular Reactors Systems: Adiabatic gas-phase exothermic reactions are often carried out in tubular reactors. There are several types of systems: a single adiabatic reactor, multiple adiabatic reactors in series with either intermediate cooling or “cold shot” cooling (mixing some cold feed with the hot reactor effluent) and a cooled tubular reactor. These alternatives are being studied in terms of both steady-state design (which has the lowest total annual cost) and dynamic controllability (which provides the tightest temperature control in the face of disturbances)

II. **Dynamics and Control of Distillation**

   Reactive distillation is an emerging area in chemical engineering because it offers potential savings in capital and energy costs in some systems, particularly for reversible reactions. A recent project explored several reactive distillation systems: ETBE, methyl acetate, TAME, ethylene glycol and metathesis of pentene. The steady-state economic designs of these systems were studied. Then their dynamics and control were explored. Different types of chemical systems require types of control structures. These columns are sometimes operated using an excess of one of the reactants and sometimes using exact stoichiometric amounts of the two fresh reactant feeds. Both the process design and the control scheme are different with these two scenarios.

III. **Convex Optimization Techniques in Linear and Nonlinear Process Control**

   The last few years have seen the emergence of a new class of optimization problems that have been variously referred to as Linear Matrix Inequalities (LMIs), semi-definite programming (SDP) problems and convex problems. We were one of the first groups to explicitly show the applicability of LMIs in process control by reformulating the model-based predictive control (MPC) algorithms as LMI problems. There are several classes of problems involving control of systems subject to constraints that are amenable to LMI formulation. These include efficient off-line MPC for fast sampling time processes, observer-based nonlinear, MPC, multi-model transition control using MPC, anti-windup, moving horizon estimation and evaluation of robustness, i.e., the impact of model uncertainty on controller performance. These new control algorithms are being tested on numerous application platforms, including continuous stirred tank reactors, continuous polymerization processes and reactive distillation.

IV. **Multi-Model and Hybrid Systems Analysis and Control**

   Hybrid and multi-model systems are a class of systems in which there is interaction between continuous dynamical behavior of systems with discrete switching behavior. For example, systems described by piecewise linear multiple models are continuous and linear within a prescribed region and switch to a different linear model description in a different prescribed region of the state-space. Other examples include switches and overrides that switch one of a family of controllers into the closed-loop, based on the operating space and control objective.

   Our research in this area has focused on two broad problems (1) control of systems described by multiple piecewise linear models; (2) formulation of saturated systems as switched/piecewise linear models and subsequent anti-windup controller design using piecewise quadratic functions. We demonstrated, through a case study, the control of a highly nonlinear solution copolymerization reactor using multi-model switching MPC. The algorithm was successful in reducing off-specification product to less than a third, when compared with a open-loop transition. We have also shown how an appropriate
anti-windup controller synthesis problem can be formulated using piecewise quadratic Lyapunov functions.

V. Dynamics and Control of Micro and Nanochemical Systems

Microchemical systems are a new generation of miniature chemical systems that carry out chemical reactions and separations in precisely fabricated three-dimensional microreactor configurations in the size range of a few microns to a few hundred microns. Typical microchemical systems combine fluid handling and reaction capabilities with electronic sensing and actuation, are fabricated using integrated circuit (IC) manufacturing techniques and use silicon and related IC industry materials, polymers, ceramics, glass or quartz as their material of construction.

The goal of this integrated research and education program is to study the unique dynamical properties of such integrated microchemical systems and to develop a framework for designing implementable feedback control techniques for this class of Microsystems. Concepts for distributed and boundary control theory will be employed to study the model-based feedback control formulation of microchemical systems and to develop a technical framework for microsystem controller design. The Integrated Microchemical Systems Laboratory (under the direction of Professor M.V. Kothare) conducts this research as part of the Center.

For more information, contact Mayuresh V. Kothare (co-Director) or William L. Luyben (co-Director), Iacocca Hall, Lehigh University, 111 Research Drive, Bethlehem, PA 18015–4791, (610) 758 6654, fax (610) 758 5297, e-mail: mayuresh.kothare@lehigh.edu, wll0@lehigh.edu.

Emulsion Polymers Institute

The Emulsion Polymers Institute, established in 1975, provides a focus for graduate education and research in polymer colloids. Formation of the institute constituted formal recognition of an activity that had grown steadily since the late 1960s.

The institute has close ties with polymer and surface scientists in the Center for Polymer Science and Engineering, Polymer Interfaces Center, Center for Advanced Materials and Nanotechnology, Center for Chemical Process Modeling and Control, and the departments of chemical engineering, chemistry, physics, and materials science and engineering.

Polymer colloids or polymer latexes, as they are more commonly called, are finely divided polymer particles that are usually dispersed in an aqueous medium. Important products produced and utilized in latex form include synthetic rubber, latex paint, adhesives and paper coatings. The small particle size of typical latexes makes their colloidal properties as important as the polymer properties in a number of applications. Hence, the study of emulsion polymers is an interdisciplinary activity.

Research Activities. Emulsion polymers research includes a broad range of problems in the areas of preparation, modification, characterization, and application of polymer latexes. Most commercial polymer latexes contain a number of important ingredients, some in only small quantities.

Research programs at Lehigh are aimed at understanding the function of recipe components during the preparation and application of the latexes. The research projects are a blend of fundamental and applied efforts as well as a mixture of theoretical and experimental problems: emulsion polymerization kinetics, mechanisms, and morphology of core/shell latexes; colloidal, surface, and bulk properties of polymer colloids; dispersion polymerization; miniemulsion polymerization; film formation and properties; NMR studies of polymer colloids; and particle size characterization via capillary chromatography.

Significant research support for institute activities is obtained from industrial organizations through their membership in the Emulsion Polymers Industrial Liaison Program. Hence some considerable effort is made to relate the research results to industrial needs. Consequently, graduates can find excellent opportunities for employment.

Educational Opportunities. Graduate students in the Institute undertake dissertation research leading to the master of science or doctor of philosophy degree in existing science and engineering curricula or in the Center for Polymer Science and Engineering. Programs of study for individual students are designed to meet the student’s interests, the requirements of the appropriate academic department, and the student’s dissertation committee. Considerable flexibility is permitted in the selection of courses and a research topic.

Faculty members of the institute are involved in teaching normal university courses and continuing education courses for industrial personnel. The annual one-week short course, Advances in Emulsion Polymerization and Latex Technology, typically attracts about 70 industrial participants and 15 Lehigh students. This course is an important mechanism for developing meaningful interactions between institute staff and students and industrial scientists and engineers. Educational and research opportunities exist for postdoctoral scholars and visiting scientists as well as resident graduate students.

For more information, write to Mohamed S. El-Aasser, Emulsion Polymers Institute, Iacocca Hall, Lehigh University, 111 Research Drive, Bethlehem, PA 18015. Please visit our web site at [https://epi.lehigh.edu](https://epi.lehigh.edu) for further details.

Energy Research Center

Energy research at Lehigh is a multidisciplinary activity, involving faculty and students from a wide range of disciplines. The Energy Research Center provides a structure within which faculty and students from different backgrounds can explore their specific research interests.

The center coordinates the university’s energy research, helping the faculty respond to research opportunities and developments in energy. It is also the major contact between the university and industry and government for matters dealing with energy research. Originally founded in 1972 as the Task Force for Energy Research, the center was organized into its present form in 1978. Research within the center, supported by contracts and grants from government and industry, deals with fuels and energy resources, energy conversion systems, energy conservation and the environment.

Energy research is conducted by faculty members and graduate students in a wide range of disciplines, including chemical engineering, mechanical engineering, materials science and engineering, computer science, and the physical and life sciences. The center has been active in areas such as energy-related materials, energy storage and conversion systems, energy efficiency, energy policy, and other related areas.
The Energy Research Center has particularly close ties with industry. Joint research projects involve Lehigh faculty and students and research staff from industry. The center also operates the Energy Liaison Program, through which participating companies and government facilities have access to faculty and staff consultants, make use of laboratory facilities and library services, and receive assistance on research problems, feasibility studies and other projects related to energy.

**Energy Research.** Research within the Center falls into five major categories. Projects of interest include:

- **Energy Conversion/Power Generation.** This thrust area has several components. The largest focuses on the equipment and processes used in large fossil-fired electric power plants, with research on methods of improving power plant conversion efficiency, of reducing emissions of pollutants, and of reducing the cost of generating electricity. A second group of projects deals with fusion energy conversion, with an emphasis on the physics of magnetic plasma containment in fusion reactors. Other projects deal with fuel cell conversion systems, hydrogen production and capture of carbon dioxide.

- **Energy-Related Environmental Research.** The Center’s environmental research program deals with air pollution, solid waste, and ground water contamination issues resulting from power generation and energy conversion activities.

- **Energy-Related Materials Research.** This focus area considers materials issues in the energy field. Examples include high temperature coatings for boiler tubes, welding processes for new alloys, containment vessels for nuclear waste materials, component life prediction, and development of catalysts for pollution control.

- **Energy Conservation and Renewable Energy.** The Center’s research program in energy conservation deals with reducing energy use in manufacturing. Renewable energy research focuses on utilization of biomass materials as fuels.

- **Basic Energy Sciences.** Faculty and students in engineering and science also carry out research to improve our understanding of the basic phenomena which underlie the knowledge base required for developing new and improved energy technologies.

**Educational Opportunities.** The involvement of faculty in energy research has created a wide range of opportunities for graduate studies in energy. Most of the departments in the College of Engineering and Applied Science, as well as several departments within the College of Arts and Sciences, are active in energy research and offer both masters and doctoral degree programs suitable for studies of energy-related topics.

All degrees are granted by the academic departments and graduate students interested in energy enroll in traditional graduate degree programs in departments of their choice. These students specialize in energy by complementing their programs with a selection of energy-related courses. They pursue their graduate research in energy areas under the supervision of faculty from the Energy Research Center or from other research centers or academic departments.

Financial support for graduate students is available through fellowships and research assistantships.

**Additional Information.** For more information, write to Edward K. Levy, Director, Energy Research Center, Lehigh University, 117 ATLSS Drive, Bethlehem, PA 18015. Please visit our website at www.lehigh.edu/energy.

### Advanced Technology For Large Structural Systems (ATLSS) Research Center

The ATLSS Research Center is a national center for research and technology on structures and materials for the basic infrastructure of bridges, buildings, and ship structures. Established in May 1986 with a grant from the National Science Foundation (NSF), the center now addresses the research goals of the NSF, the U.S. Department of Transportation, the Commonwealth of Pennsylvania, the U.S. Department of Defense, and numerous national, state, and local industry and government organizations and agencies. Approximately 80 people, including graduate and undergraduate students, research associates, faculty and staff members representing the disciplines important to large structural systems are active at the center.

ATLSS research areas include: Advanced Structural Systems and Materials; Measurement, Simulation, and Evaluation of Structural Systems; Infrastructure Hazard Mitigation with particular emphasis on Earthquake-Resistant Structures; and Intelligent Infrastructure Systems. The research is conducted in close association with engineers and scientists from several Lehigh departments, industry, government, design and professional groups and other universities.

ATLSS has excellent research facilities and equipment, including two world-class structural testing facilities: the Fritz Engineering Laboratory and the major newer (1989) ATLSS Laboratory, in which researchers study large-scale structural subassemblies under static, dynamic, and/or cyclic multidirectional loading with complete computer-controlled experimentation. A recent grant from the NSF created the real-time multi-directional (RTMD) equipment site for large-scale simulation of earthquake effects on structures as part of NSF’s George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) within the ATLSS laboratory. ATLSS also has outstanding resources for computing, mechanical testing, welding, metallography, and non-destructive evaluation.

**Research Activities:**

- **Advanced Structural Systems and Materials.** Research is conducted on new structural forms and structural systems to promote efficiency through innovation, and to promote the competitive use of high-performance steel, concrete, fiber-composites, and mixed systems for bridge, building, and ship-hull applications.

- **Measurement, Simulation, and Evaluation of Structural Systems.** Techniques for measuring and simulating the behavior of structural systems under realistic loading conditions are being developed and implemented in the laboratory and in the field. Lab and field assessments are made on bridge, highway, railway and ship structures for evaluation of their behavior under load, and evaluation of the effects of corrosion, fatigue, fracture, and other damage. Forensic studies of damaged structures are made.
Infrastructural Hazard Mitigation. Research is conducted on engineering processes and structural systems and materials technology to predict and reduce economic losses and injuries from hazard events, such as earthquake, blast, fire, and vehicular impact.

Intelligent Infrastructure Systems. Research is conducted on materials, components, and systems for sensing, processing, and utilizing sensor information, and adaptively controlling the behavior of the large-scale structures of the infrastructure.

Educational Opportunities. The ATLSS Center facilitates programs of study and research that provide a fundamental, broad approach to the fields of structures and materials. Graduate students in the center's programs receive master of science, master of engineering, or doctor of philosophy degrees; usually in structural engineering, materials science and engineering, or mechanical engineering. Financial support for graduate students is available through the ATLSS Center by means of fellowships and research assistantships related to sponsored research programs.

Undergraduates participate in the center's research through summer internships and academic-year special projects.

For more information, write to Dr. Richard Sause, Director, rause@lehigh.edu; Robert Alpago, Administrative Director, rpa2@lehigh.edu; or Elizabeth MacAdam, Research Coordinator, e006@lehigh.edu; ATLSS Research Center, Lehigh University, 117 ATLSS Drive, Bethlehem, PA 18015-4728; web-site address — www.atlss.lehigh.edu.

Enterprise Systems Center (ESC)
The Enterprise Systems Center (ESC), an affiliate of the Industrial and Systems Engineering Department, was established in 1995. This multidisciplinary center is committed to fusing student experiential learning with industry value creation. The center also seeks to advance interdisciplinary research and scholarship relating to information technology, new process development, and integrated enterprise systems. Additional research initiatives focus on discovering new methods for collaboration among education, industry, and government partners through the use of advanced technology. Emphasis is given to an entrepreneurial approach to problem-solving. Started as the Computer-Aided Manufacturing Laboratory in the mid-seventies, the CAM Lab transformed into the Computer-Integrated Manufacturing Laboratory when it became clear that improvements in plant operational efficiency would require computer-based integration of the manufacturing processes involved. Driven by industry and research needs to seek performance improvements beyond the traditional manufacturing domain, the CIM Lab expanded its mission to encompass the entire enterprise, becoming the Enterprise Systems Center. Housed in Mohler Laboratory, the ESC provides undergraduate and graduate students from a variety of university disciplines including engineering, business, education, and the arts and sciences with the opportunity to work on teams with faculty and professional engineers to solve a variety of real-world industry problems. Participation in these work teams provides students with a level of work experience representative of what they will encounter following graduation. Since its inception, the ESC has completed more than 100 projects with industry and government partners that have provided more than 500 students with an integrated learning experience that develops leadership skills and sharpens entrepreneurial thinking.

Research Activities. The ESC conducts research into the development and implementation of effective strategies to put information technology to work adding value to engineering education and enterprise applications. It is its applied research efforts, the Center focuses on operational improvements, enterprise resource integration, and product development and enhancement. Operational improvement research with partner companies has explored strategies for manufacturing support, the development of decision support systems, processes for work-flow analysis and facility reorganization, analysis of constraints and throughput improvement, and new solutions to supply chain management. Work in enterprise resource integration has included methodologies for business process re-engineering and for the analysis and selection of Enterprise Resource Planning (ERP) systems. Applied research in product development and enhancement has included the use of computer modeling and simulation to support integrated product development along with analysis and evaluation of existing products, and design for manufacturability and assembly support. Involvement in these applied research activities with industry partners provides Lehigh students with hands-on learning experiences built on progressive responsibility and contribution to real-world company projects. From these activities, students gain leadership skills and valuable industry experience.

The creation of technology-enabled educational resources augments traditional learning models. Coupled with knowledge management technology, these resources create integrated learning experiences and materials to support engineering courses. The ultimate objective is to identify key components of entrepreneurial behavior and develop the educational methods necessary to transfer to students the skills and experiences that will prepare them for leadership roles in society.

Within the ESC is the Learning Collaboratory, an innovative educational environment designed to promote inquiry-based and competency-driven experiential learning that enriches the classroom lectures with practical experience through corporate partner interactions. The Collaboratory supports small-group learning, action learning, and the application of technology to augment educational resources. Collaboratory participants, including students, professors, and industry partners, can take advantage of such powerful communication methods as broadband exchanges, internet conferences, digital real-time linkages, and electronic management of information.

Educational Opportunities. The ESC provides support for courses in the analysis and design of manufacturing systems and decision support systems, computer graphics, computer-integrated manufacturing, industrial engineering techniques, and experimental projects in industrial engineering. The ISE senior project class utilizes ESC facilities and a video teleconferencing system to step beyond the traditional classroom experience in the preparation and presentation of its culminating project. These courses are offered through the Industrial and
Entrepreneurs.

and business practices with other students, faculty, and entrepreneurship. The 5-week residential program focuses on leadership and entrepreneurial skills, global networking, and business and industry relationships, and other universities — that the Iacocca Institute pursues its mission of preparing current and future leaders for a globally competitive marketplace. One of these partnering activities is the Global Village for Future Leaders of Business and Industry.

The Global Village provides young adults from around the world the chance to experience the type of total-immersion leadership program usually reserved for top executives. Its purpose is to provide personal and organizational change needed to thrive in the emerging global economy. During the GV these interns who share the dream of a leadership career in business and industry, focus on leadership and entrepreneurial skills, global networking relationships, and business and industry knowledge. To date over 800 interns representing 100 countries have graduated from the program and are now part of the growing list of Iacocca Institute Interns. The Global Village interns represent undergraduate students, MBA and graduate students, and managers from global corporations and family-owned businesses.

The Iacocca Institute also fulfills its mission for leadership development in two other program areas, Post Graduate Education and High School Programs. The Institute establishes and maintains the infrastructure necessary for Lehigh University to continue and grow an active program of professional training, serving managers and leaders in business. The Institute works with Lehigh instructors to identify appropriate post graduation courses to serve the markets in the tri-state area with seminars, customized training, and leadership programs.

The Iacocca Institute also has the privilege of hosting the Pennsylvania Governor’s School for Global Entrepreneurship. This program is a unique learning program to educate top high school students from Pennsylvania and from around the world on global entrepreneurship. The 5-week residential program focuses on challenging students as they learn about cultural and business practices with other students, faculty, and entrepreneurs.

The Iacocca Institute also hosts the PA Governor’s Institute for Personal Finance and Entrepreneurship. Teachers attending this one-week program will discover new and exciting ways to integrate personal finance and entrepreneurship into the classroom experience. The PA Department of Banking, the PA Department of Education, financial institutions, and financial service groups work together to fulfill the need for improving PA school-based financial education and teacher development. Upon completion of the program, participants are awarded two graduate credits.

The Iacocca Institute was established in 1987 with the support of Lee A. Iacocca, former chairman and chief executive officer, Chrysler Corporation, and a member of Lehigh’s Class of 1945.

For more information, contact Richard M. Brandt, Director, Iacocca Institute, Iacocca Hall, Lehigh University, 111 Research Drive, Bethlehem, PA 18015.

Institute for Metal Forming

The Institute for Metal Forming was established in 1970 to teach the principles and applications of metal forming technology to graduate and undergraduate students, to provide instructions and equipment for graduate research in metal forming processes, and to assist industry with solutions to problems in metal forming.

The main objective of the institute’s research is to conduct cross-disciplinary process engineering studies to better understand and control manufacturing processes and their impact on the microstructural response of a material. Recently, classical metal forming research has been expanded to include projects in powder processing, microstructure analysis, and forming of polymers.

The study of metal forming encompasses visioplasticity (physical modeling of a forming process); simulation of microstructure response to process parameters (via reproduction of the thermo-mechanical conditions that a material experiences during deformation); and computational numerical modeling. Computer enhanced analysis of material flow also allows us to optimize tooling design in many manufacturing processes. The combined quantitative results of these techniques may then be compared with experimental data obtained from instrumented metal forming laboratories (such as those maintained at the institute), or from our research partners in industry.

Research Activities. Current research areas include: extrusion of metals, powders and polymers, sheet material formability, rolling, wire drawing, forging, semi-solid forming, light-optical and electron-optical micro-texture analysis, coatings of powders, tooling design and tooling materials, thermo-mechanical processing of metals, rapid prototyping, rapid tooling, and machinability of sintered powder materials.

Educational Opportunities. Students interested in metal forming should refer to course offerings in the departments of materials science and engineering, mechanical engineering and mechanics, and industrial and manufacturing systems engineering.

For more information contact Wojciech Z. Misiolek, Director, Institute for Metal Forming, 242 Whitaker Laboratory, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015.
International Materials Institute for New Functionality in Glass

Lehigh's International Materials Institute for New Functionality in Glass (IMI-NFG) is founded on a program by the same name and sponsored by the National Science Foundation under a recent initiative to advance materials research globally by enhancing coordinated international collaboration between U.S. researchers and educators and their counterparts worldwide. The Institute's long term goal is the creation of a worldwide network in glass research for new applications, and the development of a new generation of scientists and engineers with enhanced international leadership capabilities.

Among the six IMIs established in the country, IMI-NFG is the only one dedicated to a single class of materials. Specifically on campus, it promotes new activities in glass research through international and national collaborations, and the development of new approaches to the education of glasses. Faculty and students from various Departments of Rossin College of Engineering and Applied Science, and College of Arts and Sciences participate in its activities listed below.

More than half of the engineering marvels of the 20th century that made the greatest impact on the quality of life have relied on the exceptional properties and fabrication methods available with inorganic glasses. Glass shall remain partner in many advanced technologies of the future, if it continues to develop with new functionality that other types of material cannot provide. Indeed, glass will continue to remain a high-tech material if we can exploit recently discovered phenomena in new applications, and take advantage of new preparation methods that are uniquely suitable for fabricating glassy meta-materials. Unfortunately, in recent decades glass education has fragmented with the result that a larger number of students is exposed to glassy materials, but with relatively shallow, cursory knowledge that does not prepare them to become a professional glass scientist or engineer. To meet these challenges IMI-NFG is pooling together resources of educational institutions, leading glass companies, national laboratories and professional organizations from across the globe, and promoting research through synergistic collaborations and international exchange of researchers at undergraduate to faculty level.

The programs of IMI-NFG are carried out with the guidance of a US Board of 8 Advisers from as many US institutions, and an International Board of 10 Advisers from as many countries, who also act as ambassadors of the Institute to various technical communities and geographical regions. To keep the scope of its activities focused, currently IMI-NFG is supporting collaborative research within six thrust areas, viz., glassy meta-materials and nanocomposites, functional coatings, and glasses engineered for strength, ionic functionality, optical functionality, and biofunctionality. To avoid duplication, the various activities are coordinated with existing glass organizations such as the Glass Manufacturing Industry Council, International Commission on Glass, and Center for Glass Research.

To promote international research collaborations for new uses of glass, and to make glass education available without geographical boundaries, IMI-NFG sponsors and provides support for several programs as summarized below:

International Research Exchange Program, which is available to the faculty, postdocs, graduate students or industry researchers from any institution in the world to establish collaborations with colleagues in USA. This opportunity can be catalytic to building new international teams of complimentary expertise. It has supported numerous short and long term visitors to Lehigh campus, including sabbatical stay of professors from abroad who have taught courses and lectured at Lehigh, and developed new multi-national research teams.

Development of Educational Material such as video DVDs and hands-on demonstrations by the leading international glass experts to promote the understanding of glass at all levels. A variety of video tutorial lectures and overviews of the latest progress are being produced and made available via Internet to interested students without charge. For example, a full semester course on Optical and Photonic Glasses consisting of 39 lectures is accessible from IMI-NFG's web site. The teachers at Lehigh and other universities and colleges will find this collection a useful resource for their lectures. Professionals in industry can learn the subject by studying these lectures.

Research Experience for Undergraduates. This program provides support for the involvement at an early stage of US undergraduates in active glass research during summer at Lehigh / Penn State University or at an overseas institution. Stipends are available for the Lehigh students to participate in glass research during the regular semester as well.

International Conference Travel Scholarship for undergraduate, graduate and postdoctoral researchers at US universities to present their work on new functionality in glass at an international meeting. Through this program IMI-NFG hopes to give the new generation of researchers a perspective of current challenges from international point of view, simultaneously encouraging discussions and collaborations among glass scientists from different parts of the world.

Lawrence Henry Gipson Institute for Eighteenth-Century Studies

The Lawrence Henry Gipson Institute for Eighteenth-Century Studies was established in 1971, to honor one of America's most distinguished scholars, who served as a long-time member of the faculty at Lehigh. Gipson's monumental life work, The British Empire Before the American Revolution (15 volumes) was written between 1936 and 1970. Gipson received the Pulitzer Prize in History in 1962 for Volume 10, subtitled, The Great War For Empire. When he died in 1971, Professor Gipson left his entire estate to Lehigh and provided the original endowment for the institute.

Research Activities. The income from the endowment of the institute is used to encourage faculty and student research in the eighteenth century by providing small grants to defray travel costs, copying, and other expenses to permit scholars to visit necessary libraries and depositories. The Gipson Institute normally awards one fellowship annually to a Ph.D. candidate enrolled at Lehigh University for dissertation research and writing in any field of eighteenth-century studies. The institute also helps provide additional resources to build the university library's research collections in eighteenth-century studies.
Educational Opportunities. The institute invites leading scholars to give occasional lectures and supports relevant programs such as interdisciplinary seminars and visiting scholars interested in the eighteenth century. Annual symposia honor Professor Gipson by bringing to campus distinguished scholars to lecture and discuss various topics. The essays generated at the symposia have been published and the institute maintains a continuing close relationship with Lehigh University Press for publishing original manuscripts on the eighteenth century.

For more information, write to either of the co-directors, Monica Najar, Department of History, Maginnes Hall, 9 W. Packer Ave., or Scott Paul Gordon, Department of English, Drown Hall, Lehigh University, 35 Sayre Drive, Bethlehem, PA 18015.

Philip and Muriel Berman Center for Jewish Studies

The Philip and Muriel Berman Center for Jewish Studies, established in 1984, develops, administers, and coordinates a comprehensive program in Jewish studies at Lehigh University. The center is directed by Laurence J. Silberstein, Philip and Muriel Berman professor of Jewish Studies.

Besides teaching on their home campuses, Berman faculty offer Jewish studies courses at DeSales University, Lafayette College, and Moravian College. In 2001, as the result of a gift from Susan Ballenzenw Beckerman, the center established the position of Writer-in-Residence in Jewish Studies at the Pontifical Gregorian University in Rome, a program initiated by Philip and Muriel Berman of Allentown, Pa.

Other activities of the center include designing and implementing new courses and seminars, an annual lecture series, scholarly colloquia, and academic conferences. Conditions permitting, the center organizes the “Lehigh in Israel” summer program taught by Lehigh faculty and provides financial awards to Lehigh undergraduates for study in Israel through the Howard Ballenzenw Memorial Fund. In addition, the center publishes a book series with New York University Press titled New Perspectives on Jewish Studies.

For more information on the Berman Center and its programs, write to Dr. Laurence J. Silberstein, Director, Philip and Muriel Berman Center for Jewish Studies, Lehigh University, 9 W. Packer Avenue, Bethlehem, PA 18015, or call 610 758-4869 (inber@lehigh.edu).

Martindale Center for the Study of Private Enterprise

The Martindale Center for the Study of Private Enterprise, part of the College of Business and Economics, was established in 1980 by a gift from Harry and Elizabeth Martindale. The primary purpose of the center is to contribute through scholarship to the advancement of public understanding of the structure and performance of our economic system.

Attention is focused on the private sector of the economy and on public policies as they influence the private sector. To achieve this end, the center activities include the sponsorship of lectures and conferences, support of faculty research and case studies, and administration of the visiting scholar and executive-in-residence programs.

The center sponsors and administers the Martindale Students Association Program (for undergraduates) and the publication of their journal, Perspectives on Business and Economics. The center has established the Canadian Studies Institute which encourages scholarship dealing with the business and economic environment of Canada and with U.S./Canadian business and economic relations; and Institute for the Study of Regional Political Economy which focuses attention on the business and economic environment of the Lehigh Valley and other regions throughout the U.S. The Center also is building a program in Microfinance and along with the Department of International Relations is partnering with the U.S. Department of State and running a lecture series on Global Political Economy.

For more information, write to Dr. J. Richard Aronson, Director, Martindale Center for the Study of Private Enterprise, Rauch Business Center, Lehigh University, 621 Taylor Street, Bethlehem, PA 18015.

Center for Advanced Materials and Nanotechnology (CAMN)

The CAMN, which evolved from the Materials Research Center established over 40 years ago, was formed in 2003 to demonstrate Lehigh University’s commitment to promote the emerging field of nanotechnology and to expand established strengths in advanced materials. The mission of the CAMN is to identify, promote, and engage in strategic areas of research and education in advanced materials and nanotechnology that meet the needs of industry, government and students through:

Innovative Interdisciplinary Research Programs with State and Federal Government. The CAMN is currently engaged in a wide variety of research activities with government in advanced materials and nanotechnology. Some examples of current government interactions include a current 5 year, $4.5 million contract through the Pennsylvania Ben Franklin Technology Development Authority in support of collaboration with Carnegie-Mellon University and the University of Pittsburgh. This award has provided the CAMN with the support of many initiatives including the development of the Materials Pennsylvania Coalition (MatPAC), a web-based professional education program in materials science and nanotechnology; the purchase of world class instrumentation to enhance an already superior array of user facilities; support of research interactions with Pennsylvania industries; and leveraging for additional research projects in the Center. In 2005, Lehigh was awarded a $4 million congressional appropriation from NASA-Goddard. The Lehigh University-Mid Atlantic Partnership for NASA Nanomaterials Program will focus on development, fabrication and characterization of innovative nanomaterials and devices to meet NASA nanotechnology objectives. The research program will lead to nanomaterial applications to enable NASA to enhance safety, reliability, efficiency, miniaturization, and automation. These advances are critical for NASA’s next generation of manned and unmanned spacecraft. Also in 2005, a cross-disciplinary group of Lehigh faculty teamed up with their peers from Harvard, Rice, Georgia Tech, UCLA and the Illinois Institute of Technology to win a five-year, $1.7 Nanoscale Science and Engineering Center funding grant from the National Science Foundation. Together, the schools will develop databases of information concerning the implications, economic impact, and environmental impact of nanotechnology.
Projects, Programs and Relationships with Industry through the Industrial Liaison Program and the Lehigh Nanotech Network. The CAMN Industrial Liaison Program (ILP) at Lehigh University has been an integral part of Lehigh University for over 40 years, supporting industry and enhancing government funding opportunities. Through active relationships with many Lehigh departments and centers, the ILP facilitates interactions with industry to provide relevant, effective, and timely results. The ILP connects with a range of regional technology companies in need of technical expertise or laboratories, and provides a vehicle to conduct research with Lehigh. It also provides linkages to faculty, funding opportunities, and to related businesses that can help smaller companies form new ideas and stay competitive.

The Lehigh Nanotech Network (LNN), initiated at Lehigh University in 2004 and administered by CAMN, is a forum for nanotechnology researchers, providers, and users in business, education, and government that facilitates the commercial application of nanotechnology through exchanging ideas, creating research partnerships, and connecting value chains within the LNN and related networks. The LNN currently includes over 50 organizations from industry, government, and academia, as well as regional economic drivers such as Ben Franklin Technology Partners of Northeast PA and the Lehigh Valley Economic Development Corporation. The mission of the LNN is to maintain a strong, connected nanotechnology cluster in an opportunity-rich networking environment to advance nanotechnology business, partnerships, and workforce development; connect academic research with business drivers for commercialization; promote visibility and alignment of the network with government initiatives and policies; facilitate inclusion of socioeconomics, arts, and education in nanotechnology pursuits; and establish a nanotechnology identity for the membership.

Multi-User State-of-the-Art Facilities. The Nanocharacterization Laboratory within CAMN enjoys the reputation of being one of the leading centers for electron microscopy in the country. The Laboratory houses the largest collection electron microscopes of any university in the United States and is operated by a small team of highly skilled research engineers who keep the instruments running at peak performance. The facility currently has 3 transmission electron microscopes (TEM's), 5 scanning electron microscopes (SEM's), 2 Scanning Transmission Electron Microscopes (STEM's), 1 FIB, 1 electron microprobe, a Scienta ESCA and several SPM systems. Lehigh is the only university in the world that contains two aberration corrected electron microscopes, and it trains the largest number of scientists and engineers in electron microscopy through its annual Microscopy Summer School.

Innovative Educational Courses and Programs. The CAMN facilitates programs of study and research that cross the traditional boundaries of science and engineering curricula, providing a fundamental, broad approach to the field of materials science and nanotechnology. The CAMN coordinates a state wide graduate course cooperative program called the Materials Pennsylvania Coalition (MatPAC) in which specialized courses are taught live via videoconferencing over internet2. In addition to Lehigh University, the coalition includes Carnegie Mellon University, Penn State University, University of Pennsylvania, University of Pittsburgh, and Drexel University.

Graduate students participating in the center's program usually receive master of science or doctor of philosophy degrees in the academic discipline of their choice, i.e., chemistry, physics, materials science and engineering, electrical engineering and computer science, etc.; or in an interdisciplinary program such as polymer science and engineering. Financial support for graduate students is available through the CAMN by means of research assistantships in association with sponsored research programs. Recently, a graduate certificate program in Nanomaterials was added to the curriculum. This four course certificate program enables students to gain a working knowledge of a broad range of instrumentation for solving nanotechnology problems. Credits earned towards this certificate may be accepted as part of a master’s or Ph.D. degree program in materials science and engineering, or the master's degree in nanomaterials currently being developed. Another option now available to undergraduate students is a Minor in Nanotechnology which can be attained in connection with most engineering and science degrees.


For more information, write to Martin P. Harmer, Director, CAMN, Lehigh University, 5 E. Packer Avenue, Bethlehem, PA 18015-3194.

The Murray H. Goodman Center for Real Estate Studies

The Murray H. Goodman Center for Real Estate Studies was established in 1988 through a major gift from Murray H. Goodman, ’48. The center is a self-supporting, interdisciplinary unit of the College of Business and Economics. The center provides financial support and other assistance for undergraduate courses in real estate and real estate finance, supports scholarly research in real estate, and sponsors joint activities with practitioners in the real estate field.

Educational Opportunities. The center provides resources for the teaching of undergraduate courses in real estate and real estate finance. Sponsored courses include FIN 336 – Real Estate Finance, FIN 395 – Starting, Managing and Growing a Business Enterprise, and FIN 396/397 – Senior Practicum in Real Estate. In addition, the center sponsors a continuing series of seminars and presentations by real estate executives and practitioners. The center also serves as a clearinghouse for students seeking internships with real estate firms and related companies.

Research Activities. Consistent with the university’s encouragement of scholarly research, the center provides funding for faculty research in the real estate area. Funding possibilities include: summer faculty research grants; travel, telephone and administrative support; and grants for part-time graduate assistants. The center also maintains a file of sponsored research opportunities available through private foundations, government agencies and practitioner organizations and provides administrative support to faculty applying for such funding.
Practitioner Interaction. The third aspect of the center’s activities is its interaction with practitioners in the real estate field. The increased emphasis on continuing education and research among real estate practitioners organizations, as well as Lehigh’s proximity to major real estate markets, enable the center to engage the practitioner community in a variety of joint projects. These joint projects include: 1) sponsored research projects; 2) continuing education programs and short courses; 3) special conferences and events of national and/or regional interest; and, 4) center-sponsored databases and continuing activities of interest to the practitioner community.

For more information, write to Dr. Stephen F. Thode, Director, Murray H. Goodman Center for Real Estate Studies, Rauch Business Center, Lehigh University, 621 Taylor Street, Bethlehem, PA 18015, or call (610) 758-4788 or email sf00@lehigh.edu.

Sherman Fairchild Center for Solid-State Studies

The Sherman Fairchild Laboratory was established by a major grant from the Sherman Fairchild Foundation and opened in the fall of 1976. The laboratory houses an interdisciplinary staff consisting of faculty and students from the departments of physics, materials science and engineering, and electrical engineering and computer engineering. While work on various aspects of solid-state science is carried out at many locations on the Lehigh campus, the Sherman Fairchild Center provides the focal point for studies of electronic materials and devices.

Research Activities. The Sherman Fairchild Center’s faculty and students have a wide range of interests that include experimental and theoretical studies of the physics of defects in non-metallic solids and of disordered materials; advanced semiconductor processing technology; and semiconductor device design, fabrication, and characterization. The materials systems of interest are equally diverse and include silicon, silicon dioxide, compound semiconductors, wide bandgap semiconductors (SiC, ZnSe, and GaN), ferroelectrics and glasses.

The Sherman Fairchild Center houses several experimental laboratories. The Nanoelectronics Research Laboratory provides processing facilities for the fabrication of CMOS, SONOS Nonvolatile memory devices, sensors, MEMS devices and integrated circuits. Available technology includes low-pressure chemical vapor deposition, RF and electron beam metallization, plasma chemistry, e-beam nanolithography, photolithography, oxidation, diffusion, and Deep Reactive Ion Etching. The Display Research Laboratory provides research on polysilicon thin-film transistors and thin-film materials for large flat panel displays. The Compound Semiconductor Research Laboratory has facilities for characterizing high speed devices and microwave integrated circuits.

Individual laboratories provide instrumentation for optical excitation and luminescence, electron paramagnetic resonance (EPR), deep level transient spectroscopy (DLTS), and Fourier transform infrared spectroscopy (FTIR) for the study of defects in semiconductors. There are also facilities for the study of Raman spectroscopy and ultrasonic attenuation. Theoretical work is facilitated by the university’s extensive network of workstations.

Current research programs include work on 1) Nanoelectronics, a study of the characterization of small-geometry solid-state devices with emphasis on high k dielectrics for CMOS (transistors); 2) SONOS nonvolatile semiconductor memories for a "semiconductor disk;" 3) SiC materials for application in high temperature power electronics; 4) the fundamental properties of impurities and simple lattice defects in silicon and wide bandgap compound semiconductors; a variety of methods (crystal growth, diffusion, electron irradiation) are used to introduce defects which can then be studied by spectroscopic techniques that include electron paramagnetic resonance (both conventional and optically detected), deep-level transient spectroscopy, and infrared absorption spectroscopy; 5) the oxidation of Si1-xGex alloys and SiC with emphasis on the very early stages of oxidation and impurity enhanced oxidation; 6) quantum mechanical calculations of the structural, vibrational, and electronic properties of defects in SiO2 and wide bandgap semiconductors like GaN; 7) the fabrication of prototype active matrix displays; 8) the fabrication and characterization of high speed, compound semiconductor integrated circuits; and 9) the collective dynamics of partially ordered and disordered ferroelectrics and glasses.

Educational Opportunities. Graduate students associated with the Sherman Fairchild Center usually enroll for the master of science or doctor of philosophy degree in the traditional discipline of their choice, such as physics, materials science and engineering, electrical engineering, etc., with specific course requirements and research participation coordinated through the appropriate department chairperson. Students are financially supported by graduate fellowships provided by the Sherman Fairchild Foundation and/or by university resources. In addition, teaching assistantships are available through the departments and a number of research assistant positions are supported by research grants and contract awards obtained by the laboratory staff. All of these arrangements typically permit graduate students in the solid-state studies to take 2-3 courses per semester in addition to their teaching or research activities. There are numerous opportunities for undergraduate students to participate in the research activities of the center with the possibility of support during summer through the Fairchild Summer Scholar Program.

For more information write to Marvin H. White, Director of the Sherman Fairchild Center for Solid State Studies, Lehigh University, 16A Memorial Drive E, Bethlehem, PA 18015-3184.

Other University Related Centers

Ben Franklin Technology Partners of Northeastern Pennsylvania

The Ben Franklin Technology Partners of Northeastern Pennsylvania (BFTP/NEP) is based on the Murray H. Goodman campus and is a wholly-owned subsidiary of Lehigh. The Center is part of a four-member state-funded economic development system that brings together the best of Pennsylvania’s people, ideas, and technology and serves as a catalyst for advancing the state’s technology economy. Ben Franklin frequently utilizes the faculty, students, and resources of Lehigh to accomplish its tasks.
BFTP/NEP fosters innovation to stimulate economic growth and prosperity. The center collaborates with educational institutions, communities, other economic development organizations, and government to help companies succeed. By providing knowledge and investment resources, Ben Franklin facilitates the creation of new products, sophisticated technologies, and fresh ideas among entrepreneurs and established companies to help them prosper. The result: the creation and retention of high quality local jobs and a strong economic climate. The goals of BFTP/NEP include helping early-stage technology-oriented businesses to form and grow, helping established manufacturers to improve productivity through the application of new technologies and practices, and promoting an innovative community-wide infrastructure that fosters a favorable business environment for high-growth companies.

Founded in 1983, the Ben Franklin Technology Partners of Northeastern Pennsylvania has:

- Created and retained over 26,600 jobs.
- Established 337 new companies.
- Commercialized and implemented over 580 new products and processes.

The Ben Franklin program is structured to help companies achieve sustainable competitive advantage. BFTP/NEP is measured on the basis of the commercial success achieved by its clients as a direct result of assistance provided.

Assistance includes expertise, largely contributed in the northeast by the center’s association with Lehigh University and other leading research universities, and funding, with investments ranging from $30,000 to $150,000 per year for up to three years. Faculty and students involved with Ben Franklin gain experience in solving real issues for working businesses. Technical and business assistance services are provided on a year-round basis.

The Northeast Center operates a business incubator on Lehigh’s Mountaintop campus. The 12,000 square foot incubator holds up to ten start-up companies. Thirty companies have graduated from the BFTP/NEP incubator. For the 2005 funding year, the Northeast Center received over $6.94 million from the state Department of Community and Economic Development, with nearly $10.5 million in matching funds committed from private-sector businesses, federal funds, educational institutions and other sources.

For more information, contact the Ben Franklin Technology Partners of Northeastern Pennsylvania, 125 Goodman Drive, Bethlehem, PA 18015-3715; 610-758-5200; www.nep.benfranklin.org. E-mail: info@nep.benfranklin.org.

Manufacturers Resource Center (MRC)

MRC, a nationally recognized leader in manufacturing assistance, helps raise the economic level of our communities by creating high-impact, cost competitive manufacturers. MRC provides strategic business consulting assistance and identifies resource options to help manufacturers develop strategies for long-term business growth.

MRC partners with individuals and organizations at local, regional, state and national levels to deliver the best solutions. MRC employs certified, professional business advisors who work side-by-side with manufacturers to evaluate, discover, strategize, and implement solutions that address their other economic needs to yield immediate as well as long-term sustainable benefits. At the heart of the MRC assistance is the sincere desire to help manufacturers grow with entry into new markets, development of new products or innovations, acquisition of new customers, and implementing cost-savings to compete globally.

MRC delivers services in a customized, individual or group basis in the following areas:

- Strategic Business Growth services to grow the top line,
- Lean6® Transformation to reduce costs and grow the bottom line,
- Workforce Training/Human Capital to grow your skills, and
- Quality training and Engineering assistance.

The MRC is one of seven statewide Industrial Resource Centers (IRCs) and one of 60 centers federally funded by the National Institute of Standards and Technology (NIST) Manufacturing Extension Partnership (MEP). MRC serves Berks, Carbon, Lehigh, Northampton, and Schuylkill counties.

For further information or assistance, please contact Jack Pfunder, Executive Director at 610-758-5596 or 800-343-6732. Please visit our website at www.mrcpa.org.

The Philip Rauch Center for Business Communications

621 Taylor Street; 758-4863
Robert R. Kendi, M.S., director

The Rauch Center for Business Communications is an academic center of Lehigh University that aims to support and foster development of e-business paradigms within the College of Business and Economics. In addition, the Center focuses on the more traditional modes of business communication such as writing technique, rhetoric, and oral presentation skills. Philip Rauch, retired chairman of Parker Hannifin Corporation and a prominent member of Lehigh University’s class of ’33, established the Center in 1981 through a generous contribution.

The role of the Center is:

- To recognize and impart to students the communication skills needed to function in diverse, global business today;
- To function as a faculty-friendly teaching, learning, and technology center;
- To support and develop the initiatives of affiliated CBE Centers.

The Rauch Center for Business Communications is dedicated to providing students and faculty with an accessible, diversified, and up-to-date range of services, designed to most effectively meet current, and anticipate future business communication needs.

For more information, write to Robert R. Kendi, Director, The Philip Rauch Center for Business Communications, Rauch Business Center, Lehigh University, 621 Taylor Street, Bethlehem, PA 18015-3117, or email rrk0@lehigh.edu or phone 610-758-4608.
Small Business Development Center
Sandra F. Holsonback, M.B.A., director; Mary Beth Zingone, A.C.A.S.; associate director; Kim Edwards, B.S.Ed., program director, financing assistance program; Jim Sizer, M.A., program director, government marketing assistance program; Cora Landis, program director, lexnet; Sally Handlon, M.B.A., program director, business education and training program; Greg Maclin, M.S.; Mo Elbanna, B.A.

Established in 1978, the SBDC provides general management assistance to over 2,000 entrepreneurs and small businesses per year in the Lehigh Valley and surrounding areas. Primary funding for this program comes from major grants from the U.S. Small Business Administration and the Commonwealth of Pennsylvania.

Specialized Programs. The Management Assistance Program delivers general management consulting to existing small firms and start-up ventures. Services are offered to retail, service, wholesale, construction and manufacturing firms. Support is offered through electronic data base research. Seminars are offered on many topics of interest to growing firms.

The International Trade Development Program (ITDP) is a specialized outreach effort of the Small Business Development Center. The ITDP helps companies with exportable products to develop export marketing plans and establish direct contacts with international markets. Seminars, trade missions and research projects support the efforts of this program.

The Government Marketing Assistance Program assists potential suppliers to government in identifying and developing procedures. Clients are handled on a one-to-one basis. Trade fairs and seminars are also offered.

The Financing Assistance Program provides assistance in loan packaging and financial planning and helps clients identify appropriate financing sources. The program administers the Lehigh Valley Small Business Loan Pool and the Lehigh Valley Chapter of the Northeastern Pennsylvania Angel Network, a partnership program with the Ben Franklin Technology Partners of Northeastern PA. Contracts with the Lehigh/Northampton Revolving Loan Fund, the Lehigh Valley Economic Development Corporation and other funding agencies provide resources for this assistance.

The Lehigh Valley Export Network (LEXNET) is the regional office of the Team Pennsylvania Export Network. Throughout the year LEXNET brings PA foreign office representatives to the Lehigh Valley to meet with SBDC clients and discuss in-country export assistance needs. LEXNET also assists with export finance programs such as Market Access Grants allowing small and mid-sized manufacturing or service companies to participate in international trade events. Specialized training events and seminars are also held throughout the year.

Technology Business Development Program (TBDP) – The TBDP provides assistance to companies in the areas of technology, product development, patent searches, trademarks, copyright, Internet strategies, commercial potential, business socio-economic certifications and defense conversion. Special assistance with SBIR/STTR research funding opportunities is available. Clients are handled on a one-to-one basis. Seminars and workshops are also available.

Environmental Management Assistance Program (EMAP) – The EMAP provides assistance to companies in the areas of compliance assistance, energy efficiency, environmental technology and pollution control. EMAP also provides access to an on-line materials exchange program called PA Material Trader. Services are free to SBDC clients.

Business Education and Training Program (BETP) – The Business Education and Training Program of the Small Business Development Center provides specialized workshops, seminars and customized training for the small business community. In addition, BETP hosts a quarterly Venture Luncheon Series, providing a networking forum for entrepreneurs and venture capitalists.

LUMAC. The Lehigh University Management Assistance Counseling program (a graded three-credit course) was established in 1972 on the initiative of undergraduate students. Through support from the SBDC, approximately 150 students per year gain practical experience by providing counseling to starty businesses.

SCORE. The Service Corps of Retired Executives is associated with the SBDC. SCORE, which works most closely with the SBDC, is chartered by the U.S. Small Business Administration and provides business expertise to current or potential business owners.

For more information, write to Sandra Holsonback, Director, Small Business Development Center, Rauch Business Center, 621 Taylor Street, Bethlehem, PA 18015.

Center for Manufacturing Systems Engineering
The Center for Manufacturing Systems Engineering was created in response to the expressed needs of industry for educational and research services which were distinctive-}

ly cross-disciplinary. A primary responsibility of the center is the administration of an award winning educational program leading to a Master of Science degree in Manufacturing Systems Engineering. This world-renowned program started in January of 1984 as a result of a major initiation grant from the IBM Corporation. It now has 357 alumni who are working as managers and technical leaders in industry around the world. The center has four major thrusts:

1. A graduate program which offers a curriculum leading to the master of science degree in MSE. 2. Research directed at solving problems of manufacturing; this also serves to maintain faculty currency and provides a vehicle for student project and thesis studies. 3. Technology transfer to sustain the free flow of knowledge from the research laboratories to industrial applications, and from leading-edge member industries back into the classrooms. 4. The provision of services by supporting conferences, clinics, workshops and other means for communicating and disseminating the advantages of sound manufacturing systems engineering practice.

Graduate Education. The 30-credit master's degree MSE program is cross-disciplinary, administered through the College of Engineering and Applied Science, with additional courses provided by the College of Business and Economics. Four core courses, 4-5 graduate level elective courses (at least one must be an MSE-numbered course) and a 3- or 6-credit research project or thesis are requirements of all candidates for the M.S.
degree. Courses are offered on campus and scheduled so that part-time students can complete the degree in two years. It is possible for distance students to earn the MS in MSE degree remotely. Special activities in the program are team intensive and include in depth studies of companies, tours of industry, industry-related research and internships. Additionally, an MSE option is available in the MBA&E program.

Research Activities. Students in the MS in MSE program undertake research of interest either to their employers, or to industry in general. Research activities have included microelectronics packaging, design systems, thick film hybrids, the characterization of coatings and package interfaces, and the use of lead free solders. A microelectronics manufacturing laboratory was set up by means of grants and equipment from the AT&T Foundation and IBM Corporation. It possesses equipment for thick film hybrid manufacturing and other processes. There are investigations into activity-based costing, design management, application of financial information systems, and injection molding. There is collaboration with other centers, departments and laboratories in the preparation and planning of research proposals and programs which aim to improve the understanding of manufacturing.

For more information, contact: Keith M. Gardiner, kg03@lehigh.edu, Director, Center for Manufacturing Systems Engineering, H. S. Mohler Laboratory, Lehigh University, 200 W. Packer Avenue, Bethlehem, PA 18015, or call (610) 758-5157 or visit our website at www.lehigh.edu/~inmse/gradprogram/

Technology Studies Resource Center

The Technology Studies Resource Center, based in the College of Arts and Sciences, creates and disseminates materials and programming that will lead a wide range of people to an understanding of the mutual interaction of technology and social institutions and values. Through the center, academics from all disciplines can collaborate on research and develop educational opportunities in technology studies with academic colleagues and with nonacademic sponsors.

The Technology Studies Resource Center’s activities embrace the needs of academics, pre-college and college students, and industrial, political, and public audiences, who seek information about technology as a force in contemporary society. Four principal areas of activities are the development and dissemination of resource materials, professional development programming, educational programming, and stimulation and coordination of technology studies and research projects. Specific activities include: collecting and distributing college-level course syllabi in technology studies; publishing bibliographies in specific areas of technology studies; publishing the Science, Technology and Society Curriculum Development Newsletter; maintenance of a data base of personnel, curricula, and materials resources in technology studies; sponsoring conferences, workshops, seminars, and institutes in technology studies; and integrating technology studies material with existing high school curricula and developing better courFor more information write to Stephen H. Cutcliffe, Director, Technology Studies Resource Center, Maginnes Hall, Lehigh University, 9 W. Packer Avenue, Bethlehem, Pa. 18015.
V. Courses, Programs and Curricula

This section includes listings of undergraduate and graduate courses offered by Lehigh University. For purposes of record, all approved courses are listed. It must be understood, however, that the offerings in any given semester are contingent upon a number of factors, including student needs as determined at the time of early registration.

All academic departments and programs are listed in alphabetical order.

Credit Hours

The number in parentheses following each course title indicates the credit value of the course in terms of semester hours ("credit hours").

Course Numbering

The course numbering system specifies which courses can be applied to the program of study as the student progresses toward the undergraduate or graduate degree. In general, the numbering series is as follows:

0-99. Courses primarily for freshmen or sophomores. Not available for graduate credit.
100-199. Intermediate-level undergraduate courses. Not available to freshmen except on petition. Not available for graduate credit.
200-299. Advanced undergraduate courses. Courses in the College of Business and Economics and specific departments as noted in the listings are open to freshmen and sophomores only on petition. Not available for graduate credit.
300-399. Advanced undergraduate courses. Same as 200-299, but available for graduate credit in major field.
400-499. Graduate-level courses, open to undergraduates only by petition.

Provisional Courses

Each instructional department is authorized to offer provisional courses, or those offered on a trial basis, as well as special opportunities courses. Such courses can become a permanent part of the university curriculum. These courses are numbered, as is appropriate, 95-98, ..., 195-198, ..., 295-298, ..., 395-398, for a maximum of two semesters.

Apprentice Teaching and Cooperative Undergraduate Education

For details of these programs, see descriptions under “Apprentice Teaching” and “Cooperative Undergraduate Education,” in section III.

Prerequisites

Academic preparation required for admission to courses is indicated under “prerequisites” included at the end of each course description. Prerequisites are stated in most cases for purposes of convenience in terms of Lehigh courses. Academic status required for admission, where numbering does not fully describe this status, is also indicated under “prerequisites.”

A student who does not have the status (e.g., sophomore standing) or the academic preparation set forth as prerequisites must in order to be admitted to a course either obtain on line permission from the designated college or department officer or, file with the registrar at the time of registration and on a standard form provided, a waiver of prerequisites signed by the course instructor, the teaching department chair and either the chair of the student’s major department or the associate dean.

Academic work completed elsewhere must be attested in this manner as being substantially equivalent to prerequisites listed, unless the student's records in the Office of the Registrar show that the proper officers have so evaluated this preparation previously.

In a few cases, corequisites are indicated. In such instances the corequisite course is taken in the same semester.

Information Limits

The course descriptions are intended to guide the student in selecting appropriate courses. For reasons of space, descriptions are brief. In most cases, courses will have a significantly broader scope than the topics listed in the description. In some courses, material may change from what is described. If there is doubt concerning the appropriateness of any course for the individual's educational objectives, it is suggested that the student confer with the adviser.

Abbreviations

Whenever possible, course listings contain information indicating what requirements the course satisfies, the space or semesters in which it is offered, and the name of the scheduled instructor or instructors.

While all information herein is subject to change, the information is included to serve as a guide in the selection of appropriate courses that best fulfill the student's academic requirements and personal goals.

The symbols following course descriptions for some College of Arts and Sciences courses include:

GC. Courses that meet the Global Citizenship program requirements.
HU. Courses that meet the Humanities distribution requirements.
NS. Courses that meet the Science distribution requirements.
SS. Courses that meet the Social Science distribution requirements.
MA. Courses that meet the Mathematical distribution requirements.
ND. Not designated to meet distribution requirements.

The symbols following course descriptions for some College of Engineering and Applied Science courses include:

ES. This code plus the following number indicates that the course satisfies a number of hours of engineering science requirements for ABET accreditation.
ED. This code plus the following number indicates that the course satisfies a number of hours of engineering design requirements for ABET accreditation.

The course numbering system specifies which courses can be applied to the program of study as the student progresses toward the undergraduate or graduate degree. In general, the numbering series is as follows:

0-99. Courses primarily for freshmen or sophomores. Not available for graduate credit.
100-199. Intermediate-level undergraduate courses. Not available to freshmen except on petition. Not available for graduate credit.
200-299. Advanced undergraduate courses. Courses in the College of Business and Economics and specific departments as noted in the listings are open to freshmen and sophomores only on petition. Not available for graduate credit.
300-399. Advanced undergraduate courses. Same as 200-299, but available for graduate credit in major field.
400-499. Graduate-level courses, open to undergraduates only by petition.
Accounting

Professors: James A. Largay, III, Ph.D. (Cornell), C.P.A.; John W. Paul, Ph.D. (Lehigh), C.P.A.; Heibatollah Sami, Ph.D. (Louisiana State University); Kenneth P. Sinclair, Ph.D. (Massachusetts), chair, department of accounting.

Associate Professors: Karen M. Collins, Ph.D. (VPI), C.P.A.; Parveen P. Gupta, Ph.D. (Penn State); James A. Hall, Ph.D. (Oklahoma State).

Assistant Professors: Stephen L. Liedtka, Ph.D. (Maryland), C.P.A. Erin A. Moore, Ph.D. (Fairfield University) C.P.A.

Instructors: William S. Zhang, M.B.A. (Catholic University of Leuven)

Professors of Practice: Paul N. Gordon, M.B.A. (University of Wisconsin at Madison), C.P.A.;

Lecturers: David J. Hinrichs, M.B.A. (Lehigh).


The Department of Accounting provides a variety of courses to support College of Business and Economics (CBE) core requirements and to provide an undergraduate major in accounting and a M.S. degree in accounting.

The mission of the Accounting Department is to provide rigorous accounting education that prepares high quality undergraduate and graduate students with diverse backgrounds for life-long learning and positions of leadership in the business community, and to emphasize faculty research efforts that contribute to the body of knowledge in accounting. Consistent with the missions of Lehigh University and the College of Business and Economics, the Accounting Department continuously seeks to be recognized as one of a select group of programs in the United States where an educational experience of the highest possible quality is obtainable.

Within the accounting major, there is an opportunity to explore the various career opportunities within the broad field of accounting, Public Accounting Assurance and Tax Services, Financial Services and Corporate Accounting, and Information Systems. In addition to the undergraduate program, the Master of Science in Accounting and Information Analysis degree (see Master of Science in Accounting and Information Analysis program under Graduate Studies) offers an outstanding opportunity to prepare graduate students for a career in today's demanding field of accounting. Lehigh's unique program recognizes the impact of technology on business processes and the value chain while paying respect to the time honored usefulness of accounting information. The Accounting Program recognizes the learning objectives set forth by the College of Business and Economics as an integral part of the curriculum, as well as the importance of providing students with a strong foundation in liberal arts, humanities, and science as set out in the CBE core curriculum. In addition to the CBE core curriculum, the accounting curriculum is designed to foster the following learning objectives:

1. Preparing and understanding general purpose financial statements for parties outside the firm.
2. Using accounting information for decision-making inside the firm.
3. Understanding the information systems governing the flow of and control over financial information inside the firm.

To the extent that the above objectives are achieved, Accounting graduates will be well-prepared for positions in public accounting, industry, not-for-profit organizations, and graduate school. Although preparation for professional examinations is not a primary objective, graduates will have the background to take professional examinations in accounting.

The Accounting Major

The undergraduate program in accounting is accredited by AACSB-The International Association for Management Education. This achievement places the program within a small group of schools which have satisfied a rigorous examination of the program, faculty, and students that extend beyond the accreditation standards applied to the entire College of Business and Economics undergraduate and graduate programs.

In addition to the existing sophomore prerequisites, Introduction to Financial Accounting (ACC 151) and Introduction to Managerial Accounting (ACC 152), accounting majors are required to take four junior-level, accounting core requirements (12 credits) and one concentration (9 credits):

Core Requirements (typically taken junior year)

Credits

Financial I and II (ACC 315 and 316) 6
Accounting Information Systems (ACC 311) 3
Cost Accounting (ACC 324) 3
Concentration (typically taken senior year)--three courses, one of which is accounting 9

The following three concentrations are available:

1. Public Accounting Assurance and Tax Services
   This concentration is suited for students interested in entering public accounting. This concentration requires the core and the following 9-credit concentration:
   • Fundamentals of Federal Income Taxation (ACC 307)
   • Fundamentals of Auditing (ACC 320)
   • Advanced Financial Accounting (ACC 317)

2. Financial Services and Corporate Accounting
   This concentration may appeal to students seeking accounting positions at financial services firms and industrial corporations. For some time representatives from these companies have sought Lehigh students with a strong accounting background. External constituencies suggest that a dose of finance will strengthen these students and make them even more attractive.
   Because Lehigh's finance faculty determined that two courses, Investments (FIN 323), and Corporate Financial Policy (FIN 328), are both needed to have a core understanding of finance, this second concentration requires these two courses. Also, a new course, Analysis of Financial Statements, ACC 318, is positioned at the interface of accounting and finance.
   • Investments (FIN 323)
   • Corporate Financial Policy (FIN 328)
   • Analysis of Financial Statements (ACC 318)
3. Information Systems

Public accounting firms seek graduates for the rapidly growing area of global risk management (GRM). Students entering GRM will be responsible for assessing, accounting system and computer risks that impact the financial statements of the organization and for evaluating internal controls in place to minimize such risks. Their findings become an important element in the conduct of the financial audit. This new career path thus requires students who possess strong systems skills and an understanding of financial accounting, management accounting, and auditing. Taxes and advanced financial accounting topics are less important in this setting. Therefore, the following courses comprise this concentration.

- Fundamentals of Auditing (ACC 320)
- Systems Analysis and Design (BIS 311)
- Electronic Commerce (BIS 331) or E-Business Systems (BIS 342) or Internship in Prague (BIS 360)

The description and requirements of the Master of Science in Accounting and Information Analysis Program are found under Graduate Study and Research.

Undergraduate Courses

ACCT 108. Fundamentals of Accounting (3)
A one-semester survey of accounting principles and practices designed for those students which includes an introduction to industrial cost systems designed for those non-CBE students planning to take only one accounting course. Other students should take the Acc 151-152 sequence.

ACCT 151. Introduction to Financial Accounting (3)
The organization, measurement and interpretation of economic information. Introduction to accounting theory, concepts and principles, the accounting cycle, information processing, and financial statements. Exposure to controversial issues concerning income determination and valuation. Prerequisite: sophomore standing and successful completion of Excel competency exam.

ACCT 152. Introduction to Managerial Accounting (3)
An introduction to internal accounting information for all levels of management. Topics include cost flow in a manufacturing operation; planning, evaluating and controlling through budgeting and standard costing; and decision-making using cost-volume-profit analysis, direct costing, and relevant costs. Prerequisite: Acc 151.

For Advanced Undergraduates and Graduate Students

Courses numbered 200 and above in the College of Business and Economics are open to sophomores only on petition.

An introductory study of the principles and concepts of federal income taxation of individuals, corporations, partnerships, and fiduciaries; and federal gift and estate taxes. Determination of tax liabilities and opportunities for planning are emphasized. Problem-solving using the source materials of tax law and tax research are important components of the course. Prerequisite: Acc 151.

ACCT 309. Advanced Federal Income Taxation (3)
An advanced study of the taxation of business organizations, estates, trusts, and wealth transfer taxes. Planning and research are the basic components of the course. Problem-solving and written research are emphasized. Prerequisite: Acc 307.

ACCT 311. Accounting Information Systems (3)
An introduction to the concepts underlying information systems as they relate to organizational structure, managerial decision making and accounting. The course acquaints students with the reports and documents generated by information systems, as well as procedures and controls employed in a variety of business applications. Students apply these concepts, techniques and procedures to the planning, analysis and design of manual and computer-based information systems. Prerequisite: Acc 152 and BIS 111.

ACCT 315. Financial Accounting I (3)
Intensive study of the basic concepts and principles of financial accounting, emphasizing the problems of fair presentation of an entity's financial position and operating results. Consideration of the conceptual framework of accounting, review of the accounting process, and measurement and valuation of current assets, current liabilities, plant assets, intangibles, investments, and long-term debt. Problem-solving skills and critical analysis are stressed. Prerequisite: Acc 152.

ACCT 316. Financial Accounting II (3)
The sequel to Accounting 315, this course continues with intensive study of such topics as stockholders' equity, valuation and disclosure of leases and pensions, income tax allocation, changing prices, revenue issues, earnings per share, and complexities related to the statement of changes in financial position. Analysis and interpretation of financial statements and problem-solving skills are integral parts of the course. Prerequisite: Acc 315.

ACCT 317. Advanced Financial Accounting (3)
A study of specialized topics in financial accounting, including partnership accounting, business combinations and consolidated financial statements, segment and interim reporting, foreign currency transactions and translation, and accounting and reporting for governmental and other non-profit organizations. Involves considerable problem-solving and critical evaluation of controversial theoretical issues. Prerequisite: Acc 315 or 316.

ACCT 318. Analysis of Financial Statements (3)
This course uses financial statement information to analyze companies' profitability and risk. Understanding the form, content and relationships among the financial statements is integrated with the use of ratios and analytical adjustments to augment the information in published financial reports. Current developments, business strategies and off-balance-sheet financing are linked to assessments of companies, performance. Case studies, team projects and presentations involve actual companies, financial statements. Prerequisite: Acc 316 (may be taken concurrently); open only to graduating seniors.

ACCT 320. Fundamentals of Auditing (3)
An introduction to auditing theory, objectives, and practices related largely to the responsibilities of independent professional accountants. The auditing environment, generally accepted auditing standards, internal control theory, and reporting alternatives are considered. Exposure to operational auditing is provided. Prerequisites: Acc 311 and 315.
The major in Africana Studies consists of a minimum of four (4) upper level courses. It entails training across disciplinary lines as well as concentrated study in a single discipline:

**Introductory Course** (1)

**Humanities** (3)

**Social Sciences** (3)

**Disciplinary Concentration** (3)

In addition, students are encouraged to pursue independent study opportunities to enhance their knowledge of specific aspects of Africana Studies.

The Minor

The minor consists of a minimum of five (5) courses, constituting at least 15 hours of study that includes the introductory course and no less than two upper level courses in the field.

**Core Courses:**

Core courses concentrate on subject material directly relevant to the study of past and present experiences of people of African descent.

**AAS 3. Introduction to Africana Studies (4)**

An interdisciplinary examination of the roots, culture, and politics of the modern black world through study of classic works in Africana Studies with emphasis on the continuities among African peoples worldwide and the social forces that have shaped contemporary black life in Africa and the Americas. Fleisher (SS)

**AAS 5. (HIST 5) African Civilization (4)**

Sub-Saharan Africa through the millennia of the ancient world to the present. Human origins, state and non-state systems, the external slave trade; colonialism, resistance to European rule; independence movements; neocolonialism. Staff (SS)

**AAS 38. (ENGL 38) Introduction to African Literature (3)**

Sub-Saharan African literary themes and styles, historical and social contexts, African folk tales, oral poetry, colonial protest literature, postcolonial writing, films on contemporary Africa. Staff (HU)

**AAS 64. (ECO 64, HIST 64) Plantation to Ghetto (2)**

Examination of topics in the economic history of African Americans from the 1500s to the present. Explores the slave trade, slavery, post-Civil War South, the black family, migration, urbanization, and race and poverty. O’Brien, Scott (SS)

**AAS 103. (SSP 103) Race and Ethnicity (4)**

Examines race and ethnicity from a sociological perspective. Focus on the role of the major racial and ethnic communities in modern American society. Explores the roles of race and ethnicity in identity, social relations, and social inequality. Topics include racial and ethnic communities, minority/majority groups, assimilation, prejudice/discrimination, identity and the social construction of the concept of “race.” H. Johnson (SS)

**AAS 129. (HIST 129) Black Political Thought in America (4)**

Black leadership, organizations, and philosophy in America from Reconstruction to the Civil Rights Era; ideas and programs of Booker T. Washington, W.E.B. DuBois, Marcus Garvey, Malcolm X and Martin Luther King, Jr. Scott (SS)
Johnson (SS)  gap between the “Haves” and the “Have-Nots.” H. grams and other reform efforts aimed at decreasing the surrounding public policy, tax laws, anti-poverty pro-
erations. We will address contemporary debates 
chances and structuring opportunity, as well as their 
er the roles of wealth and poverty in determining life 
causes, consequences and social context. We will consid-
Society. Focus is a critical analysis of the wealth gap, its 
ceance and disadvantage, “rags and riches” — in American 
United States (4) 
AAS 166. (SSP 166) Wealth and Poverty in the United States (4) 
Examines the sociology of wealth and poverty — afflu-
ence and disadvantage, “rags and riches” — in American Society. Focus is a critical analysis of the wealth gap, its 
causes, consequences and social context. We will consid-
er the roles of wealth and poverty in determining life 
chances and structuring opportunity, as well as their 
roles in the perpetuation of social inequality across gen-
erations. We will address contemporary debates surrounding public policy, tax laws, anti-poverty pro-
grams and other reform efforts aimed at decreasing the gap between the “Haves” and the “Have-Nots.” H. 
Johnson (SS) 
AAS 263. Caribbean Artistic and Cultural Traditions (4) 
Representation of contemporary popular culture in the Caribbean in literature, music, painting and other artistic 
expressions. Major attention is devoted to the influences on tradition, folklore and religion in modern Caribbean life. Staff (HU) 
AAS 310. (SSP 310, WS 310) Gender, Race and Sexuality: The Social Construction of Differences (4) 
This course will provide the student with an opportunity to engage current debates about the meaning and use of racial and sexual classification systems in society. Using a multidisciplinary and critical approach, we will examine the historical and sociological contexts in which specific theories of racial and sexual differences emerged in the U.S. Prerequisite: SSP 103, or department permission. H. Johnson (SS) 
AAS 331. (HIST 331) United States and Africa (4) 
Reciprocal relationships between North America and the African continent from the slave trade in the seventeenth century to the twentieth century Afrocentric movement; impact of Americans on shaping of modern Africa; Pan-
African relations; influence of African Americans on U.S. policies toward Africa. Scott (SS) 
AAS 332. (HIST 332) Slavery and the American South (4) 
The emergence and demise of the “peculiar institution” of African American slavery in British North America and the Old South. African background, colonial begin-
nings, 19th century slave community, the ruling race and proslavery ideology, the death of slavery and its after-
math, slavery and freedom in a comparative context. Staff (SS) 
AAS 359. (HIST 359) History of South Africa (4) 
South Africa’s history from its earliest human settlement to its emergence as a racist political order and transition to a non-racial democratic state. Includes comparisons with political thought and practices in the U.S. Scott (SS) 
AAS 371, 372. Independent Study (1-3) 
Independent study in advanced areas of Africana Studies. Independent research with an individual faculty member in the Africana Studies program. Consent of director (ND) 
AAS 379. (SSP 379) Race and Class in America (4) 
The ways in which race and class intersect in the social, economic, and political structures of American society. Through sociological literature, fiction, non-fiction, film, and other media we will explore the place of race and class in American society. We will examine how race and class operate on a personal, “micro” level, while at the same time operating on a large-scale, “macro” level. H. Johnson (SS) 
AAS 381. Special Topics. (ND) 
AAS 382. Seminar on a topic in Africana Studies. (ND) 
Collateral Courses 
ANTH 12 Human Evolution and Prehistory 
HIST 334 American City in the 20th Century 
POLS 330 Movements and Legacies of the 1960s 
POLS 352 Civil Rights 
POLS 322 Politics of Developing Nations
American Studies

American Studies Faculty. John Pettigrew, Ph.D. (Wisconsin), associate professor of history, Director of the American Studies Program, David Amidon, Jr., M.A. (Penn State), professor of urban studies; Gail A. Cooper, Ph.D. (U.C., Santa Barbara), associate professor of history; Berriford Booth, M.F.A., associate professor (Maryland Institute College of Art); Stephen H. Catcliffe, Ph.D. (Lehigh), professor of history; Alex Doty, Ph.D. (Illinois), professor of English; Edward J. Gallagher, Ph.D. (Notre Dame), professor of English; Norman J. Girardot, Ph.D. (Chicago), professor of religion studies; Heather Johnson, PhD (Northeastern), assistant professor of sociology; Dawn Keetley, Ph.D. (Wisconsin), associate professor of English; Judith N. Lasker, Ph.D. (Harvard), professor of sociology; Jack Lule, Ph.D. (Georgia), professor of journalism; James R. McIntosh, Ph.D. (Syracuse), professor of sociology; Richard K. Mathews, Ph.D. (Toronto), distinguished professor of political science; Seth Moglen, Ph.D. (U.C., Berkeley), associate professor of English; Edward T. Morgan, Ph.D. (Brandeis), professor of political science; Monica Najar, Ph.D. (Wisconsin), associate professor of history; Kathy Olson, Ph.D. (North Carolina), assistant professor of journalism; Michael L. Raposa, Ph.D. (Pennsylvania), professor of religion studies; William R. Scott, Ph.D. (Princeton), professor of history; Roger D. Simon, Ph.D. (Wisconsin), professor of history; John K. Smith, Ph.D. (Delaware), associate professor of history; Robert R. Soderlund, Ph.D. (Temple), professor of history; Albert Wurth, Ph.D. (North Carolina), associate professor of political science.

American Studies is the interdisciplinary study of American thought, literature, and culture–both past and present. Born in the early years of the Cold War and with an implied commitment to American exceptionalism, American Studies has since transformed itself into a multi-faceted critical examination of United States society. Comparative frameworks along with close attention to applying cultural and literary theory to such matters as violence, citizenship, democracy, community, poverty and prosperity, politics, race, and gender in the United States make American Studies an intellectually sophisticated yet practical course of undergraduate study.

American Studies is an excellent major for those seeking a general education in the liberal arts and social sciences. Students have found it a particularly good major for careers in journalism, law, and teaching.

Lehigh in New York Summer Program

The American Studies Program hosts a six-week summer academic session in New York City. Several professors of History, Sociology and Anthropology, Art and Architecture, English, and other departments contribute their teaching and research expertise on New York City to the program.

Lehigh in New York combines course work on New York culture, art, and history with experiential learning in the city itself. Walking tours, theatre, art museums, and just hanging out deepen students’ classroom study of one of the world’s great cities.

Students stay in a New York University dormitory in Greenwich Village and attend classes within easy walking distance. The program cost includes eight Lehigh University undergraduate credits, dormitory room, meal plan, and special events.

Each student selects two courses out of three or four that are normally offered. Courses offered usually include The History of New York City’s Built Environment (HIST 96) and TV in New York and Beyond (COMM/HIST/SSP 197).

Requirements for the major:

The American Studies major consists of a minimum of 35 credit hours, normally ten courses. The major must complete the following three groups of courses:

I. Four Required Courses

AMST 101 Introduction to American Studies (4)
AMST 372 Special Topics Seminar in American Studies (4)
AMST 391 Senior Thesis or Project (2)
AMST 392 Senior Thesis or Project (4)

II. Three Courses Split between the Departments of History and English (a minimum of nine credits)—at least one course must be at the 200 level or higher

III. Three Further Courses on a Topical or Chronological Focus (a minimum of nine credits), one of which must be outside English and History. At least one course must be at the 200-300 level or higher.

In close consultation with his/her adviser, majors will select a topical focus (e.g., ethnicity and race, film and electronic media, art and literature, popular culture, gender, cross-cultural studies, legal and political thought) or a chronological focus (e.g., antebellum America, the twentieth century), which they will explore in at least three courses plus their senior thesis or project.

Core American Studies Courses:

AAS 138 Introduction to African American Literature
AAS 140 African American Theater
AAS 145 African American Writers
AAS 150 Africans in the New World
ARCH 107 History of American Art
ART 150 Africans in the New World
ENGL 123 American Literature I
ENGL 124 American Literature II
ENGL 163 Topics in Film Studies
ENGL 316 Native American Literature
ENGL 376 Early American Literature
ENGL 377 American Romanticism
ENGL 378 American Realism
ENGL 379 Twentieth-Century American Literature
ENGL 380 Contemporary American Literature
ENGL 387 Film History, Theory and Criticism
HIST 41 United States to 1865
HIST 42 United States, 1865-1941
HIST 43 United States Since 1945
HIST 64 Plantation to Ghetto
HIST 124 Women in America
HIST 129 Black Political Thought in America
HIST 130 African American History
HIST 315 American Environmental History
HIST 323 American Cultural History Since 1900
HIST 325 History of Sexuality and the Family in the U.S.
HIST 328 American Intellectual History since 1900
HIST 331 United States and Africa
HIST 332 Slavery and the American South
HIST 360 American Legal History
PHL 239 Figures/Themes in Contemporary Philosophy
POLS 227 Socialization and the Political System
POLS 229 Propaganda, media, and American Politics
POLS 230 Movements and Legacies of the 1960s
POLS 251 Constitutional Law
POLS 252 Civil Rights and Civil Liberties
POLS 267 American Political Thought
POLS 271 U.S. Politics and the Environment
REL 152 American Judaism
REL 180 Religion and the American Experience
SSP 103 Sociological Perspectives on Racial and Ethnic Communities
SSP 310 Gender, Race, and Sexuality; The Social Construction of Differences
SSP 379 Race and Class in America
SSP 394 Historical Sociology: Identity and the Social Problems of Generations

This is not a comprehensive list. New courses may be offered each semester. Students should check with the director for an updated list.

Courses:

AMST 101. Introduction to American Studies (4)
An introduction to the methods, concerns, and practices of American Studies through the examination of a critical decade of cultural transformation (e.g. the 1770s, 1850s, 1890s, 1930s or 1970s). Will draw on literature, philosophy, painting, architecture, landscape design, social thought and cultural criticism, crime, reform movements, sports, and popular culture to explore such topics as responses to economic change, ideas of nature and culture, the meaning of work and leisure, law and politics, race, construction of gender, family structure, population dynamics, science and technology, sexuality, class, urban experience, and the American past.

AMST 372. Special Topics in American Studies (4)
Focused interdisciplinary study of one particular subject area in American culture.

AMST 391. Senior Thesis or Project (2)
Independent work with an individual faculty member on a research thesis or other project approved by faculty member and adviser.

AMST 392. Senior Thesis or Project (4)
Continuation of AMST 391.

Graduate Work in American Studies
A Master of Arts degree in American Studies is offered jointly by the departments of English and History. Candidates for the master's degree must complete at least 30 credit hours. In addition to the Theory and Method course, students must choose two courses in American history and two courses in American literature and film from those offered by the history department and the English department. Students must also take one special topics seminar. The other four courses for the master's degree will be divided between thesis or “thesis paper” credits and American Studies courses not in history or literature/film. To fulfill the thesis requirement, students will write one longer thesis or two thesis papers that are aimed at conference presentation and/or publication.

Courses:

AMST 400. American Studies: Theory and Method
An introduction to the theoretical orientations and methodological strategies of American Studies. Seminar involves extensive reading as well as application of theory and method to students' research.

AMST 401. Special Topics in American Studies
Graduate seminar focused on one particular subject area in American culture.

AMST 490. Master's Thesis
Independent work with a faculty member on master's thesis. Topic approved by individual faculty member. Typically taken in the last semester of course work.

Applied Life Science Program

Faculty Committee. Neal Simon, Ph.D., Biological Sciences (Rutgers), chair; Linda J. Lowe-Krentz, Ph.D., Biological Sciences (Northwestern) co-chair; Robin Dillon, Ph.D. Philosophy (Pittsburgh); Arthur E. King, Ph.D. Economics (Ohio State); Judith N. Lasker, Ph.D. Sociology and Anthropology (Harvard); Daniel Ou-Yang, Ph.D. Physics (U.C.L.A.); Eric Salathe, Ph.D. Mathematics (Brown).

The Applied Life Science program provides a flexible curriculum in the liberal arts tradition for students interested in bridging life science with disciplines such as mathematics, economics, political science, philosophy, international relations, information management, chemistry, communications, or business. The educational goals of the program include the development of critical analytical capabilities, strong communication skills, a core understanding of bioscience and biotechnology, and the capacity to bring an integrative, multidisciplinary perspective to the analysis of issues emanating from advances in life science. These goals are achieved through a learning environment that features integrative practices on four levels: uniting traditionally separate academic disciplines, bridging theory and practice through classroom and project-based experiential learning, working in research environments that foster team-based problem solving and professional responsibility, and partnerships and research opportunities with faculty, clinicians and the private and public sectors.

The B.A. and B.S. programs will provide students with preparation for a range of careers based primarily on the field that is hybridized with the life science core. Potential career paths including law (particularly intellectual property), management in biotechnology-related industries, ethics, journalism, policy analysis, finance, information management, or medicine as well as graduate and professional school are among the many possibilities open to Applied Life Science majors.

For students wishing to integrate engineering and life sciences, the P.C. Rossin College of Engineering offers an integrated program in Bioengineering. For additional information, students should contact Professor Neal G. Simon, Department of Biological Sciences at 610-758-3620 or ng0@lehigh.edu or Linda J. Lowe-Krentz, Associate Chair, Department of Biological Sciences at 610-758-5084 or lj0@lehigh.edu.

For Bioengineering contact Professor Anand Jagota, Director of Bioengineering at 610-758-4396 or anj6@lehigh.edu.
BA in Applied Life Science
The B.A. in Applied Life Science is intended to provide a technical concentration in a liberal arts context. It is well-suited for students who are interested in the broad impact of the life science revolution on society including the economic, social, political, and legal implications. The program provides sufficient flexibility for the student to explore a range of interests and to pursue a double major or minor. Students can prepare for graduate school but are advised to seek guidance early to insure appropriate preparation.

University and College Requirements (24 to 27 credits)
ENGL 001 and 002 (6 credits)
Choices and Decisions (1 credit)
College seminar (1 to 4 credits)
Social Sciences (at least 8 credits of designated coursework)
Humanities (at least 8 credits of designated coursework)

Collateral Requirements (16 to 17 credits)
MATH 021 (4 credits)
CHM 025 and 026 or CHM 075 (4 or 5 credits)
BIOS 41, 42, 115, and 116 (8 credits)

Major Requirements (at least 36 credits)
1. Core
   BIOE 110 (3 credits)
   BIOE 210 (3 credits)
2. Concentration
   a. At the time of declaring the major, the student will meet with an adviser in the Applied Life Science program and design a group of courses to suit the student's interests. The courses selected must form a cogent grouping to the adviser's satisfaction. The student's individualized program must be drawn up and approved by the adviser before the 10th day of classes in the student's fifth college semester (i.e., with at least three semesters remaining to be rostered).
   b. The concentration must include at least 30 credits of natural science, mathematics, and engineering beyond the 6 credits required for the core. At least 20 credits of the concentration must be at the 100 level or above, and at least 8 credits of the concentration must be at the 300 level.
   c. No more than 3 BIOS courses after 115/116 may be included in the major.
   d. CHM 031 (or CHM 076) is strongly recommended.
   e. The concentration must also include at least one of the designated Advanced Applied Life Science seminar courses, which counts toward the credits required at the 300 level.
   f. Up to 4 credits of adviser–preapproved independent work may be included in the major.

Free electives
Sufficient coursework to bring the total to at least 121 credits. Students are advised to include courses in ethics, history and philosophy of science, and economics among their electives.

BS in Applied Life Science
The B.S. in Applied Life Science follows the same philosophy as the B.A., but requires a larger number of core courses and a greater focus on major requirements. While there is lesser flexibility compared to the B.A. program, a B.S. student can complete minors, participate in a faculty research project, or prepare for graduate study in a different field (e.g., economics, journalism, ethics).

University and College Requirements (24 to 27 credits)
ENGL 001 and 002 (6 credits)
Choices and Decisions (1 credit)
College seminar (1 to 4 credits)
Social Sciences (at least 8 credits of designated coursework)
Humanities (at least 8 credits of designated coursework)

Collateral Requirements (41 credits)
MATH 012, 021 and 022 (12 credits)
PHY 011, 012 (5 credits)
CHM 075 and 076 (or 025, 026, and 031) (8 credits)
CHM 051, 053, 052, and 058 (8 credits)
BIOS 41, 42, 115, 116 (8 credits)

Major Requirements (at least 42 credits)
1. Core
   BIOE 110 (3 credits)
   Bioengineering Physiology BIOE 210 (3 credits)
   Physiology or MATH/CHE 207 (3 credits)
2. Concentration
   a. 3 courses from A (life science specialization; see below) (at least 9 credits)
   b. 5 courses from B (complementary specialization; see below) (at least 15 credits)
   c. 3 courses selected from A and B (selection must be approved by the adviser and constitute a cogent grouping) (at least 9 credits)
   d. 1 senior seminar (at least 3 credits)
   e. Up to 4 credits of adviser–preapproved independent work may be included and count towards either A or B.
   f. No more than 3 BIOS courses after 115/116 may be included in the major.
   g. The concentration must also include at least one of the designated advanced Applied Life Science seminar courses, which counts toward the credits required at the 300 level.
3. Practicum
   The student must complete an experience preapproved by the adviser and relating to the practical application of methods in applied life science.
   Laboratory or independent work courses or an internship or other work experience may satisfy all or part of the practicum. The practicum need not entail academic credit but must be the equivalent of at least 4 credits of effort (at least 8 weeks of full–time employment in a suitable activity). Detailed information is available from the adviser.

Free electives
At least 12 credits to bring the total to at least 121 credits.
The concentration

A. Life Science specialization
The biological basis for the student’s concentration, provided by advanced courses in Bioengineering, Biological Sciences, or kindred disciplines (e.g., ecology, biochemistry).

B. Complementary specialization
The complementary coursework for the student’s concentration, provided by courses outside the life sciences.

Concentrations (*denotes required course for the concentration)

1. Biophysics concentration
   A. Life Science specialization
      BIOE 120/121, BIOE 210, BIOE 331, BIOS 345, BIOS 353, BIOS 367, BIOS 371, BIOS 372, BIOS 381, BIOS 384
   B. Complementary specialization
      CHE 044, ECE 081, ECE 108, ECE 123, ECE 125, ECE 212, MATH 023*, MATH 205*, MATH 242, MATH 320, MATH 322, MATH 323, MECH 002, BIOE 120/121, PHY 021/022*, PHY 091, PHY 190, PHY 212, PHY 213, PHY 352, PHY 355, PHY 380

2. Mathematical and Computational Life Science concentration
   A. Life Science specialization
      BIOE 210, BIOS/EES 152, BIOS 317, BIOS 324, BIOS 328, BIOS 337, BIOS 345, BIOS/EES 351, BIOS 353, BIOS 356
   B. Complementary specialization
      CHE/MATH 207, CSE 010/014 (or ENG 001), CSE 017, CSE/MATH 261, CSE/MATH 340, CSE 347, MATH 023*, MATH 205*, MATH 208, MATH 230*, MATH 231, MATH 242, MATH 243, MATH 301, MATH 302, MATH 309, MATH 310, MATH 312, MATH 320, MATH 322, MATH 323, MATH 334, MATH 338, MATH 341, PHY 380

3. Chemical Biology
   A. Life Science specialization
      BIOE 210, BIOE 343, BIOE 357, BIOS 177, BIOS 324, BIOS 328, BIOS 345, BIOS 346, BIOS 367, BIOS 368, BIOS 371, BIOS 372, BIOS 377, BIOS 381, BIOS 382, BIOS 384
   B. Complementary specialization
      CHE 281, CHE 282, CHE 283, CHM 194*, CHM 332, CHM 336, CHM 338, CHM 339, CHM 341, CHM 353, CHM 358, MATH 023, MATH 205

4. Decision-Making in Applied Life Science
   A. Life Science specialization
      BIOE 210, BIOS 177, BIOS 276, BIOS 317, BIOS 328, BIOS 345, BIOS 356, BIOS 367, BIOS 371, BIOS 372, BIOS 382, BIOS 384
   B. Complementary specialization
      ECO 001, ECO 105 or 146, ECO 145 or MATH 012, ECO 231*, ECO 234, ECO 246, ECO 315, ECO 323, ECO 333, ECO 357, ECO/IE 358, ECO 368, PHIL 105, PHIL/REL 116*, PHIL 126, PHIL 128, PHIL 137, SSP 160, SSP 162, SSP 341, SSP 367, STS 011*, STS/JOUR 124, STS/HIST 145

Applied Mathematics and Statistics

Professors. Bennett Eisenberg, Ph.D. (M.I.T.); Wei-Min Huang, Ph.D. (Rochester); Eric P. Salathe, Ph.D. (Brown); Joseph E. Yukich, Ph.D. (M.I.T.).

Associate Professors. Garth Isaak, Ph.D. (Rutgers); Ramamirthan Venkataraman, Ph.D. (Brown).

The Division of Applied Mathematics and Statistics was established within the Department of Mathematics to promote and administer undergraduate and graduate education in applied mathematics and statistics, and to foster interdisciplinary research in the mathematical sciences at Lehigh. Courses and programs offered by the division may be found under the departmental listing.

Applied Science

Director, associate dean of the P.C. Rossin College of Engineering and Applied Science

The Applied Science Program enables students to create interdisciplinary specialties that prepare them for careers in a world that increasingly bridges academic disciplines. Students pursue subject-area concentrations that represent academic interests they wish to integrate into a meaningful program. The core offers students the intellectual tools to identify connections between the concentrations and engage in interdisciplinary problem-solving and critical thinking.

The program leads to the Bachelor of Science in Applied Science. Each student’s curriculum combines a general engineering education with a carefully customized concentration in engineering and/or science as well as another area of emphasis, which may include courses taken inside the PC Rossin College of Engineering & Applied Science and may also include courses taken in one or more of the other three Colleges within the University.

In order to ensure the success of this individualized approach to education, Applied Science places primary emphasis on advisement. Each student is teamed with an advisor who helps the student plan the course of study and who supervises independent study and internships. The advisor remains the student’s advisor throughout his or her undergraduate career.

Unlike students in the traditional college programs, students in the Applied Science program of individualized study do not declare a major in a particular academic department. Instead, they develop a concentration that may combine study in several areas. Students are encouraged by their advisor to develop the concentration in such a way that the student will be well prepared for further study in graduate school or for pursuing a particular career path. While the chosen concentration can be highly customized in consultation with the advisor, examples of concentrations include: Technical Communications, Digital Media, Entertainment Science, Technology/Science and Education, Technology/Science and Pre-law, Technology/Science and Pre-Medicine, Technology Management, Technology Marketing, and Engineering and Architecture. Many other combinations are possible.
The College of Engineering & Applied Science requires in math and basic sciences, as well as the humanities and social science requirements must also be satisfied.

**Recommended Sequence of Courses**

1. **First engineering year (see Section III)**

2. **Sophomore year, first semester (15 credits)**
   - EES 31: Introduction to Environmental and Organic Biology (4) or EES 21: Introduction to Earth Materials and Processes and Laboratory (4)
   - CHM 51, 53: Organic Chemistry and Laboratory (4)
   - MATH 23: Analytic Geometry and Calculus III (4)
   - ECO 1: Principles of Economics (4)

3. **Sophomore year, second semester (17 credits)**
   - major subject (3)
   - approved elective (3)
   - MATH 205: Linear Methods (3)
   - PHYS 21, 22: Introductory Physics II and Laboratory (5)
   - HSS elective (3)

4. **Junior year, first semester (16 credit hours)**
   - EES 21: Introduction to Earth Materials and Processes and Laboratory (4) or EES 31, 32: Introduction to Environmental/Organisal Biology and Laboratory (4)
   - PSYC 231: Probability and Statistics (3)
   - major (3)
   - HSS elective (3)

5. **Junior year, second semester (15 credit hours)**
   - approved electives (6)
   - major (6)
   - elective (3)

6. **Senior year, first semester (18 credit hours)**
   - approved electives (6)
   - major (6)
   - HSS elective (3)
   - free elective (3)

7. **Senior year, second semester (18 credits)**
   - PHIL 128: Philosophy of Science (3)
   - approved elective (3)
   - major (6)
   - HSS elective (3)
   - free elective (3)

**Apprentice Teaching**

300. Apprentice Teaching (1-4)

Supervised participation in various aspects of the teaching of a course. Transcript will identify department in which apprentice teaching was performed. Prerequisite: consent of department chairperson. The transcript will reflect the subject area in which the teaching was done.

**Art and Architecture**

**Professors.** Lucy Gans, M.F.A. (Pratt); Tom F. Peters, M.ARCH (ETH Zurich dipl.ARCH.ETH) and Dr. sc. [techn.) ETH Zurich, director, Building and Architectural Technology Institute; Ricardo Viera, M.F.A. (R.I.S.D.), director of Lehigh University Art Galleries; Ivan Zaknic, M.ARCH, and Urban Planning (Princeton).

**Associate Professors.** Berresford W. Boothe, M.F.A. (Maryland Institute College of Art); Anna M. Chupa, M.F.A. (University of Delaware); Amy Forsyth, M.ARCH (Princeton); Bruce Thomas, Ph.D. (University of Calif., Berkeley), Anthony Viscardi, M.ARCH (Georgia Institute of Technology).

**Professors of Practice.** Christine Usler, M.ARCH (Columbia University).

**Lecturer.** Ann Priester, Ph.D. (Princeton).

The department of art and architecture offers four major programs:

- The **architecture major** is a multidisciplinary major based in a department that draws on the resources of all Lehigh’s colleges. Although architectural design is the primary concern of this major, other courses in architectural history, art studio and technology are also required. The architecture major leads to the liberal arts B.A. (Bachelor of Arts), a pre-professional four-year degree. This degree is satisfactory for admission to graduate study in architecture and candidacy for the M.ARCH. professional degree.

  - In recent years students have gone on to graduate study in architecture at Yale, Harvard, Columbia, University of Pennsylvania, Maryland and Washington University, among other schools, or to entry-level employment in the profession.

  - The Arts/Engineering five-year degree, in which the student earns both B.A. (architecture) and B.S. (civil engineering), is available for those interested in both fields.

- A **major in art** introduces the student to the basic media of art such as drawing, sculpture, painting, and photography. For those interested in becoming creative artists, intensive study at Lehigh as well as the other Lehigh Valley colleges is recommended; such students can expect to take more than the required number of credits for the major. A major in art may also focus on museum studies or graphic design.

  - A major in art can also be combined with psychology for those who seek a career in art therapy. It may also be combined with theater for those interested in costume design or with architecture and theater for those interested in set design. A major in art and minor in education is available for students interested in becoming public school art teachers.

  - The resources of the Lehigh University art collection and the Zoellner Art Center are made available to many students taking classes in art.

The Lehigh University Art Galleries maintain and develop the university’s permanent art collection, LUAG presents temporary exhibitions, designed to provide visual literacy as part of the university learning experience. Exhibitions and gallery events supplement formal classroom study across the disciplines and create educational opportunities for the student body, enriching the cultural life of the campus and community at large. The university’s public collection of outdoor sculpture, in a variety of sizes and materials such as steel, aluminum, bronze, slate and wood, can be found on all three campuses.
Art Galleries contain a wealth of material. The summer resources available. The Special Collections of the library. An architectural history major at Lehigh has numerous part of an architectural practice. Or they may even go into archival and research work as may pursue graduate study in the academic discipline. development, in museum and cultural institutions, or jobs in historic preservation, in municipal and state govern- Students in architectural history may gravitate toward ideas associated with the production of those buildings. gible artifacts that are buildings, and in the disparate examination of the unique qualities inherent in the tan- development, business practices, etc. – all addressed by study in the humanities. This includes the study of his- tory approaches the study of works of art from diverse contexts in which they are produced. Students will be exposed to a broad range of artistic production, from antiquity through the present, and to the varied intel- lectual concerns and methodological approaches that characterize the discipline. Because the discipline of art history approaches the study of works of art from diverse contexts and interests, students will also learn to use evidence from the study of history, religion, economics, politics, literature, and gender studies. The art history major trains students in critical thinking and analytical skills that provide an excellent foundation for careers or further study in the field of art history, as well as for a wide range of other professional and educational options. Many students of art history at Lehigh have gone on to jobs in art galleries, museums, and other cul- tural institutions, or to graduate study in art history. Others have gone on to successful careers in such fields of law, business, and medicine. Art history majors have a wealth of resources at Lehigh University. Majors are encouraged to make use of the original works of art in the collection of the Lehigh University Art Gallery, and the Special Collections of the Lehigh's library. Students are also able to study abroad through programs such as the Lehigh in Rome and Florence program and Lehigh in Paris program, as well as a number of semester abroad programs available to Lehigh students. Proximity to major art museums in New York and Philadelphia provide superb opportunities for studying first-rate, original works of art. Field trips to these cities are organized regularly through the Department of Art and Architecture.

An architectural history major introduces students to the study of architecture as an academic discipline not centered in the studio. Rather, architecture will be pre- sented as the means of understanding the broad range of ideas, issues and events traditionally associated with study in the humanities. This includes the study of his- tory, art, religion, economics, politics, industrial development, business practices, etc. – all addressed by examination of the unique qualities inherent in the tangible artifacts that are buildings, and in the disparate ideas associated with the production of those buildings. Students in architectural history may gravitate toward jobs in historic preservation, in municipal and state gov- ernment in capacities related to growth and development, in museum and cultural institutions, or may pursue graduate study in the academic discipline. Or they may even go into archival and research work as part of an architectural practice. An architectural history major at Lehigh has numerous resources available. The Special Collections of the library and the permanent collection of the Lehigh University Art Galleries contain a wealth of material. The summer foreign study programs of the Dept. of Art & Architecture as well as numerous semester-abroad pro- grams are obvious resources for the architectural historian. The proximity to New York and Philadelphia expand further the range of resources, and provide great urban repositories of building to study first-hand. Indeed, a wide area rich in architectural history sur- rounds the Lehigh student interested in focusing on the built environment.

Note: A student must achieve a 2.0 or higher in each major course.

Departmental Honors:
Exceptional students in art or architecture may apply for departmental honors at the end of their junior year or beginning of their senior year. To be eligible, a student must have attained a 3.5 GPA in her/his major program and a minimum overall GPA of 3.0. Candidates should submit to the department chair a written proposal, pre- pared in consultation with a faculty advisor. The project could result in a research paper, design project, or exhibi- tion, accompanied by an oral presentation. Successful completion of the project and presentation would result in the “Departmental Honors” designation being affixed to the student's transcript.

Art Major
Forty-three credit hours are required.

Required courses (22 credit hours)

- ART 1 or ARCH 1 Art History: Ancient and Medieval or Architectural History (3)
- ART 2 Art History: Renaissance to Present (3)
- ART 3/DES 3 Design Foundations I (3)
- ART 4/DES 4 Design Foundations II (3)
- ART 13 Sculpture I (3)
- ART 15 Figure I (3)
- ART 120 20th-Century Art (4)
- plus one of the following (3 credit hours)
- ART 22/REL 22 Visions of God: 2000 Years of Christian History and Art (4)
- ART 121/WS 121 Women in Art (4)
- ART 175 Introduction to Museum Work (3)
- ART 206/ARCH 206 Medieval Art and Architecture (3)
- ART 207/ARCH 207 Renaissance Art and Architecture (3)
- ARCH 210 20th-Century Architecture (3)
- ART 222 Seminar in Contemporary Art (3)

plus six studio major courses (18 credit hours)
Art studio; six courses, two at the advanced level. A typical first semester schedule might include ART 1: Art History: Ancient & Medieval [required for the major], or ARCH 1: Architectural History I, ART/DES 3, Design Foundations I [required for the major], or an available art studio offering such as ART 13, Sculpture I, [required for the major], ART 11, Drawing I, or ART 77, Photography.
A typical second semester schedule might include ART 2: Art History: Renaissance to Present [required for the major], ART/DES 4, Design Foundations II [required for the major], or an available art studio offering such as
ART 13, Sculpture I, [required for the major], ART 15, Figure I, [required for the major], ART 11, Drawing I, or ART 77, Photography.

**Art History Major**

Fifty credit hours are required.

**Required Courses: (19 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 1</td>
<td>Art History: Ancient and Medieval or ARCH 1 Architectural History I (3)</td>
</tr>
<tr>
<td>ART 2</td>
<td>Art History: Renaissance to present (3)</td>
</tr>
<tr>
<td>ART 3/DES 3</td>
<td>Design Foundations I</td>
</tr>
<tr>
<td>or ART/DES 4</td>
<td>Design Foundations II (3)</td>
</tr>
<tr>
<td>ART 120</td>
<td>20th-Century Art (4)</td>
</tr>
<tr>
<td>ART 175</td>
<td>Introduction to Museum Work (3)</td>
</tr>
<tr>
<td>ART 356</td>
<td>Historiography and Research Seminar (3)</td>
</tr>
</tbody>
</table>

**Distribution requirements: (15 credit hours)**

One art studio course (in addition to Art 3 or Art 4): (3 credits)

One course from ancient art (3 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 174/ARCH 174/CLSS 174/ANTH 174</td>
<td>Greek Archaeology (3)</td>
</tr>
<tr>
<td>ART 176/ARCH 176/CLSS 176/ANTH 174</td>
<td>Roman Archaeology (3)</td>
</tr>
</tbody>
</table>

One course from medieval/renaissance art (3-6 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 206/ARCH 206</td>
<td>Medieval Art and Architecture (3)</td>
</tr>
<tr>
<td>ART 207/ARCH 207</td>
<td>Renaissance Art and Architecture (3)</td>
</tr>
<tr>
<td>ART 22/REL 22</td>
<td>Visions of God: 2000 Years of Christian History and Art (4)</td>
</tr>
<tr>
<td>ART 42/REL 42</td>
<td>Representing the Sacred: Art and Religious Experience in Italy (6)</td>
</tr>
</tbody>
</table>

Two courses in the history of architecture (6 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 2</td>
<td>Architectural History II (3)</td>
</tr>
<tr>
<td>ARCH 107</td>
<td>History of American Architecture (3)</td>
</tr>
<tr>
<td>ART 206/ARCH 206</td>
<td>Medieval Art and Architecture (3)</td>
</tr>
<tr>
<td>ART 207/ARCH 207</td>
<td>Renaissance Art and Architecture (3)</td>
</tr>
<tr>
<td>ARCH 209</td>
<td>Architecture and Ideas (3)</td>
</tr>
<tr>
<td>ARCH 210</td>
<td>20th-Century Architecture (3)</td>
</tr>
<tr>
<td>ARCH 212</td>
<td>The Architecture of Carlo Scarpa (3)</td>
</tr>
<tr>
<td>ARCH 213</td>
<td>The City (3)</td>
</tr>
<tr>
<td>ARCH 212</td>
<td>The Planning of a Modern Metropolis (3)</td>
</tr>
<tr>
<td>ARCH 253</td>
<td>Modern Architecture in France: New Directions (3)</td>
</tr>
<tr>
<td>ARCH 254</td>
<td>Modern Architecture in France: New Directions (3)</td>
</tr>
<tr>
<td>ARCH 255</td>
<td>Modern Architecture in France: New Directions (3)</td>
</tr>
<tr>
<td>ARCH 257</td>
<td>Modernism to Postmodernism (3)</td>
</tr>
</tbody>
</table>

**Elective Courses (6-8 credits)**

Any of the courses listed above, as well as:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES 66</td>
<td>Design History (3)</td>
</tr>
<tr>
<td>ART 121/WS 121</td>
<td>Women in Art (4)</td>
</tr>
<tr>
<td>Art 144/REL 144</td>
<td>Raw Vision: Creativity and Ecstasy in the Work of Shamans, Mystics, and Artist Outsiders (4)</td>
</tr>
<tr>
<td>ART 222</td>
<td>Seminar in Contemporary Art (3)</td>
</tr>
<tr>
<td>ART 269</td>
<td>Special Topics in Art History (1-3)</td>
</tr>
<tr>
<td>ART 275</td>
<td>Museography and Museology (4)</td>
</tr>
<tr>
<td>ART 370</td>
<td>Special Topics in Museum Studies (1-4)</td>
</tr>
<tr>
<td>ART 375</td>
<td>Museum Internship (3)</td>
</tr>
<tr>
<td>HIST 339</td>
<td>Managing Nonprofit Organizations (4)</td>
</tr>
<tr>
<td>PHIL 123</td>
<td>Aesthetics (4)</td>
</tr>
<tr>
<td>REL 189</td>
<td>Religion and the Visual Arts (4)</td>
</tr>
</tbody>
</table>

**Architecture Major**

Fifty-two credit hours are required.

**Design Sequence (22 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 43</td>
<td>Architectural Design I (4)</td>
</tr>
<tr>
<td>ARCH 143</td>
<td>Architectural Design II (4)</td>
</tr>
<tr>
<td>ARCH 243</td>
<td>Architectural Design III (4)</td>
</tr>
<tr>
<td>ARCH 343</td>
<td>Architectural Design IV (6)</td>
</tr>
</tbody>
</table>

**Art Studio (12 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 3/DES 3</td>
<td>Design Foundations I (3)</td>
</tr>
<tr>
<td>or ART/DES 4</td>
<td>Design Foundations II (3)</td>
</tr>
<tr>
<td>plus two other studios (various choices) (6)</td>
<td></td>
</tr>
</tbody>
</table>

**Architectural History (9 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 1 or ARCH 1</td>
<td>Art History: Ancient and Medieval or Architectural History I (3)</td>
</tr>
<tr>
<td>ARCH 2</td>
<td>Architectural History II (3)</td>
</tr>
<tr>
<td>ARCH 210</td>
<td>20th Century Architecture (3)</td>
</tr>
</tbody>
</table>

**Materials and Building Systems (3 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 147</td>
<td>Building Materials and Methods (3)</td>
</tr>
</tbody>
</table>

**Architecture and its intellectual context (6 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 107</td>
<td>History of American Architecture (3)</td>
</tr>
<tr>
<td>ARCH 206/ARCH 207</td>
<td>Medieval Art and Architecture (3)</td>
</tr>
<tr>
<td>ARCH 207/ARCH 207</td>
<td>Renaissance Art and Architecture (3)</td>
</tr>
<tr>
<td>ARCH 209</td>
<td>Architecture and Ideas (3)</td>
</tr>
<tr>
<td>ARCH 213</td>
<td>The City (3)</td>
</tr>
<tr>
<td>ARCH 212</td>
<td>The Planning of a Modern Metropolis (3)</td>
</tr>
<tr>
<td>ARCH 253</td>
<td>Modern Architecture in France: New Directions (3)</td>
</tr>
<tr>
<td>ARCH 254</td>
<td>Modern Architecture in France: New Directions (3)</td>
</tr>
<tr>
<td>ARCH 255</td>
<td>Modern Architecture in France: New Directions (3)</td>
</tr>
<tr>
<td>ARCH 257</td>
<td>Modernism to Postmodernism (3)</td>
</tr>
<tr>
<td>ANTH 335</td>
<td>Religion, Witchcraft and Magic (4)</td>
</tr>
<tr>
<td>ECO 311</td>
<td>Environmental Economics (3)</td>
</tr>
<tr>
<td>ECO 312</td>
<td>Urban Economics (3)</td>
</tr>
<tr>
<td>HIST 334</td>
<td>American City in the Twentieth Century (3-4)</td>
</tr>
<tr>
<td>PHIL 123</td>
<td>Aesthetics (4)</td>
</tr>
<tr>
<td>PSYC 373</td>
<td>Sensation and Perception (4)</td>
</tr>
<tr>
<td>US 62</td>
<td>Contemporary Urban Issues (4)</td>
</tr>
<tr>
<td>US 363</td>
<td>Philadelphia: Development of a Metropolis (4)</td>
</tr>
</tbody>
</table>
Architecture and Technology
ARCH 10/CEE 10 Engineering/Architectural Graphics and Design (3)
ARCH 361/HIST 361 Evolution of Highrise Building Construction (3)
ARCH 363/HIST 363 Evolution of Long-span Bridge Building (3)
ARCH 365/HIST 365 Evolution of the Modern Building Process (3)

For the architecture major, students must fulfill the mathematics requirement with MATH 21 & 22 or MATH 51 & 52 or MATH 75/76 and MATH 22; the physical science requirement must be filled with PHYS 10 or 11 and 12.

ARCH 5 Introduction to Architecture (2) and ARCH 6 Introduction to Architectural Drawing (2) are recommended for first-year students. A typical first semester schedule might include ART /ARCH 1, ART /Architectural History I [required for major], ART 3/DES 3 or Design Foundations I [required for major] and ARCH 5 Introduction to Architecture [recommended for major]. A typical second semester schedule might include ARCH 2 Architectural History II [required for major], and ART 4/DES 4 or Design Foundations II [required for major].

For students contemplating graduate studies in architecture, MECH 2 is recommended.

Architectural History Major
Thirty-nine to forty-four credit hours are required.

Required Courses (21 credits)
ARCH 1 or ART 1 Architectural History I; Art History: Ancient and Medieval (3)
ARCH 2 Architectural History II (3)
ART 3/DES 3 or Design Foundations I (3)
ART/DES 4 Design Foundations II (3)
ARCH 107 American Architecture (3)
ARCH 210 20th-Century Architecture (3)
ARCH 147 Building Materials and Methods (3)
ART 356 or Historiography and Research Seminar (3)
ARCH 271 Special Topics in Architecture (1-4)

Distribution requirements (9-11 credits)
One course from the ancient world (3 credits)
ARCH 174/ART 174/ CLSS 174/ ANTH 174 Greek Archaeology (3)
ARCH 176/ART 176/ CLSS 176/ ANTH 174 Roman Archaeology (3)
HIST 21/CLSS 21 Greek History (4)
HIST 22/CLSS 22 Roman History (4)

One course from the medieval / renaissance world (3-4 credits)
ART 206/ARCH 206 Medieval Art and Architecture (3)
ART 207/ARCH 207 Renaissance Art and Architecture (3)
ART 22/REL 22 Visions of God: 2000 Years of Christian History & Art (4)

HIST 150 Medieval Civilization (4)
HIST 156 The Late Middle Ages and the Renaissance (4)

One course from technology (3-4 credits)
ARCH 361/HIST 361 Evolution of Highrise Building Construction (3)
ARCH 363/HIST 363 Evolution of Long-span Bridge Building (3)
ARCH 365/HIST 365 Evolution of Modern Building Process (3)
HIST 107 Technology and World History (4)
HIST 111 Engineering in the Modern World (4)

Elective Courses (9-12 credits)
Three courses: any of the courses listed above as well as:
ARCH 209 Architecture and Ideas (3)
ARCH 213 The City (3)
ARCH 212 The Architecture of Carlo Scarpa (3)
ARCH 253 Paris, the Planning of a Metropolis (3)
ARCH 254 Modern Architecture in France: New Directions (3)
ARCH 367 Modernism to Postmodernism (3)
ART 175 Introduction to Museum Work (3)
HIST 333 American City to 1900 (3-4)
HIST 334 American City in the Twentieth Century (3-4)
US 61 The Study of Urbanization (4)
US 62 Contemporary Urban Issues (4)
US 363 Philadelphia: Development of a Metropolis (4)

Undergraduate Courses in Art

ART 1. Art History: Ancient and Medieval (3) fall
Survey of major monuments of art and architecture from the prehistoric caves of Lascaux and Altamira through the Gothic cathedrals of Chartres and Notre-Dame of Paris, along with highlights of art and architecture of the non-Western civilizations of Africa, India, and China. Work seen in the context of cultural, historical, and technological developments. Priester (HU)

ART 2. Art History: Renaissance to Present (3) spring
Survey of Western painting and sculpture from Renaissance to present. Priester (HU)

ART 3. (DES 3) Design Foundations I (3)
An introduction to the basic elements and principles of design. Course involves use of various materials to solve 2-D design problems in studio and computer lab. Required for all majors in department. Staff (HU)

ART 4. (DES 4) Design Foundations II (3)
An introduction to the basic elements and principles of design. Course involves use of various materials to solve 3-D design problems in studio and computer lab. Problem solving in variety of materials for 3-D design including assemblages, models, constructions, and conceptual forms. Required for all majors in department. Staff (HU)
ART 11. Drawing I (3)
Concepts and practice of drawing, both traditional and contemporary. Includes drawing from life and an introduction to materials and techniques. Staff (HU)

ART 13. Sculpture I (3)
Projects directed toward developing design in sculpture. Exploration of materials and their application. Emphasis on sculptural form as it relates to techniques. Gans (HU)

ART 15. Figure I (3)
Drawing and modeling in clay from direct observation of the human figure. Fundamental principles of drawing, and two- and three-dimensional design through analysis of the human form. In-class exercises cover basic scale, proportion, structure, drawing media and techniques, and clay modeling. Emphasis on personal expression, the human figure as vehicle for narrative, abstract or formal drawings or sculpture. Gans (HU)

ART 22. (REL 22) Visions of God: 2000 Years of Christian History and Art (4)
An interdisciplinary course that combines art history and the history of Christianity. From the beginnings of their tradition, Christians have represented their theologies and religious sentiments in visual arts and architecture, and for the same two millennia, a myriad of Christians have learned their Christianity through visual representations. Provides a one-semester survey of the history of Christianity as expressed in the visual arts. Priester/Wright (HU)

ART 35. Painting I (3)
Painting in oil beginning with color mixing and basic layering techniques. Students learn the basic mechanisms for creative expression. Emphasis on understanding the physical nature of the materials. Studio prerequisite: ART 3, 4, 11 or consent of instructor. Boothe (HU)

ART 37. Survey of Printmaking I (3) fall
Introduction to various techniques in relief and intaglio printing: monoprints, woodcuts, linocuts, drypoint, etching grounds, aquatint, and other intaglio techniques. Includes an historical survey through slides and actual examples. Viera (HU)

ART 38. Survey of Printmaking II (3) spring
Introduction to the fundamentals of stone and metal lithography and the basics of screen printing as a fine art print medium: various screen stencils, blockouts, and color transparencies; drawing methods and transfer. Includes an historical survey through slides and actual examples. Viera (HU)

Art 42. (REL 42) Representing the Sacred: Art and Religious Experience in Italy (6) alternate summers in Rome and Florence
This course explores the interaction between artistic expression and religious experience from the earliest traces of Christian art in the catacombs to the sensual and theatrical churches of the Baroque. All classes are conducted on site: in museums, churches, and in the streets of Rome, Florence, and Assisi. No prerequisites. Wright/Priester (HU)

ART 53. (DES 53) Graphic Design I (3) fall and spring
Design principles are explored with emphasis on visual communication. Students learn basic concepts for design and typography including the vocabulary and historical precedence of graphic design and computer graphics. Introduction to professional-level formal exercises contributes to the development of visual thinking and original ideas. Prerequisite: ART 3/DES 3. Staff (HU)

ART 68. (DES 68) Color Theory (3)
Application of color in design. Color in graphics, product, digital imaging, and all related fields of design. (HU)

ART 69. Special Topics in Art History (1-3)
Directed projects for students in the history of art or architecture. Prerequisites: consent of instructor. May be repeated for credit. (HU)

ART 73. Introductory Studio Practice (1-3)
An introduction to the methods and techniques of studio art. Designed to acquaint the student with general studio practice, covering topics not covered in other specific studio course listings. May be repeated for credit. Staff (ND)

ART 77. Photography I (3)
Introduction to photography as a fine art. Emphasis on interaction of technique, perception and communication in making and responding to photographic image. Lectures, demonstrations, critiques. Students must provide own hand camera. Staff (HU)

ART 111. Drawing II (3)
Projects in creative drawing designed to build on concepts and practices initiated in basic drawing and life drawing. Prerequisite: ART 11. Staff (HU)

ART 113. Sculpture II (3)

ART 115. Figure II (3)
Projects in figure modeling and drawing from direct observation of the human figure, designed to build on concepts and practices initiated in Figure I. Students may elect to concentrate in one particular medium, although the primary investigation of form will always incorporate both two- and three-dimensional work. Prerequisite: ART 15. Gans (HU)

ART 120. 20th-Century Art (4)
A survey of the major movements of 20th century art including Cubism, Expressionism, Surrealism, Abstract Expressionism, Pop, Minimalism, Conceptual Art, Feminism and Post-Modernism. Priester (HU)

ART 121. (GC 121, WS 121) Women in Art (4)
Women artists from Renaissance to present. Attitudes toward women artists and their work; changing role of women in the art world. Visits to museums and artists' studios. May be repeated for credit as topic varies. Gans (HU)

ART 135. Painting II (3)
A sustained exploration of paint media. Students concentrate on developing a body of related images using various media and approaches. Prerequisite: ART 35. Boothe (HU)

ART 144. (REL 144) Raw Vision: Creativity and Ecstasy in the Work of Shamans, Mystics, and Artist Outsiders (4)
Comparative exploration of the nature and meaning of religious and artistic experience as reflected in shamanism (both prehistoric and tribal), mystic traditions.
(especially Taoism and Christianity), and contemporary self-taught artistic visionaries (e.g., Jean Dubuffet, Howard Finster, Mr. Imagination, Lonnie Holley, Norbert Kox). Various disciplinary perspectives will be employed including comparative religions, anthropology, art history, and psychology. Girardot (HU)

ART 148. (DES 148) Furniture Design I (3)
Design methodology, fabrication techniques, and methods of design presentation. Prerequisite: ART/DES 4. Forsyth (HU)

ART 153, (DES 153) Graphic Design II (3) spring
Aspects of design are inter-related in function, concept or planning processes. Students focus on the poster in order to solve a variety of contemporary design problems. Professional-level formal team exercises include a series of informative posters, identity systems, publication, and advertising design. Computer graphics and Macintosh lab are employed as integral design tools in graphic design. Prerequisite: ART 53/DES 53. Staff (HU)

ART 169. Special Topics in Art History (1-3)
Directed projects for students in the history of art or architecture. Prerequisite: consent of instructor. May be repeated for credit. Staff (HU)

ART 174. (ARCH 174, CLSS 174, ANTH 174) Greek Archaeology (3)
Ancient Greek cultures from the neolithic to hellenistic periods. Reconstructions of Greek social dynamics from study of artifacts. Small (SS)

ART 176. (ARCH 176, CLSS 176, ANTH 176) Roman Archaeology (3)
Cultures of the Roman Empire. Reconstructions of social, political, and economic dynamics of the imperial system from study of artifacts. Small (SS)

ART 177. Photography II (3)
Intensive work in photography as fine art. Advanced study of problems of the photographic image. Lectures, demonstrations, critiques. Students must provide own hand camera. Prerequisite: ART 77. Staff (HU)

ART 179. History of Photography (1)
Photography as fine art from earliest images to present day. Problems in contemporary photography. Mason (HU)

ART 206. (ARCH 206) Medieval Art and Architecture (3)
Survey of the art and architecture of the Italian Renaissance from its beginnings in 13th and 14th century Tuscany and its first flowering in 15th century Florence through the brilliant achievements of the masters of the High Renaissance and later 16th century. Priester (HU)

ART 211. Drawing III (3)
Projects in traditional and contemporary drawing. Oriented toward developing an individual portfolio. Drawing as a vehicle for ideas, creative expression, and image making. Students investigate a broad range of materials, forms and traditions. Prerequisite: ART 111. Boothe or Gans (HU)

ART 213. Sculpture III (4)
Development of principles and techniques in Sculpture II for advanced students. Modeling, casting, fabrication and carving. Prerequisite: ART 113. Gans (HU)

ART 215. Figure III (3)
Further exploration of the human figure as the subject of art. More advanced students may elect to concentrate in either two- or three-dimensional representations in any media. The emphasis will be on personal interpretation and independent work with the instructor. Prerequisite: ART 115. Gans (HU)

ART 222. Seminar in Contemporary Art (3)
Recent aspects, developments in contemporary art. Exploring ideas and consequences of today's image-making. Studio workshops, readings, discussions and museum visits. Prerequisite: ART 2. Staff (HU)

ART 235. Painting III (3)
Emphasis on identifying an individual creative style or direction with the media. Students are encouraged to develop a body of painted work ready for professional exhibitions. Outside critics invited to final reviews. Prerequisite: ART 135 or consent of instructor. May be repeated for credit. Staff (HU)

ART 248. (DES 248) Furniture Design II (3)
Advanced fabrication. Contemporary art issues and furniture history. Prerequisite: ART/DES 148. Forsyth (HU)

ART 255. (DES 255) Graphic Design III (3) fall
A combination workshop/seminar course in which the student, as part of a design team, through classroom and individual discussion with the instructor and respective non-profit clients, develops and produces a minimum of two major design projects. Readings and classroom discussions of contemporary graphic design history and current trends form an essential part of the course. Prerequisite: ART/DES 153. Staff (HU)

ART 259. Special Topics in Art History (1-3)
Directed projects for advanced students in the history of art or architecture. Prerequisite: consent of instructor. May be repeated for credit. Staff (ND)

ART 273. Special Topics in Studio Practice (1-4)
Individually directed projects for advanced students capable of undertaking independent creative work in studio art. Prerequisite: consent of instructor. May be repeated for credit. Staff (ND)

ART 277. Special Topics in Photography (1-4)
Individually directed projects in photography for advanced students capable of undertaking creative work in photography. Prerequisites: ART 177 and consent of instructor. May be repeated for credit. Staff (ND)

ART 311. Art Portfolio (1-4)
The concept, layout, and preparation of a portfolio for graduate school application or employment search, including graphic techniques and reproduction method. Student must contact sponsoring professor. Prerequisite: ART 111 or consent of instructor. (ND)
ART 337. Multimedia Workshop (3)  
A workshop emphasizing individual instruction and allowing students to explore all art mediums and/or combinations while developing a relationship between ideas and materials. May be repeated for credit.  
Prerequisite: consent of professor. Viera (HU)

ART 350. Special Topics in Graphic Design and Theory Seminar (1–4)  
Current topics in graphic communication theory and practice. Course will cover preparation, production, and formulation of individual portfolio. Selected readings and discussions in professional ethics as well as legal issues in the field will be covered. May be repeated for credit.  
Prerequisites: ART/DES 253. Staff (ND)

ART 352. Advanced Studio Practice (1–4)  
Advanced studio for art or architecture majors under guidance of faculty. Oral and written critiques. Variable media. May be repeated for credit. Prerequisites: Third-level (200-numbered) course of a studio art discipline and permission of instructor. Staff (HU)

ART 353. Graphic Design Internship (1–4)  
Practical in-field experience in a communication design field. Preapproved a semester in advance by instructor and host organization. A minimum of 15 hours per week. Prerequisite: Art/Des 253. Staff (ND)

ART 356. Historiography and Research Seminar (3)  
This seminar introduces students to the tradition of art history, from Winckelmann to the present day, and to various art historical methodologies, including formalism and connoisseurship, iconology, Marxism, the social history of art, and semiology. Students will be trained in advanced research methods, culminating in a major research paper. Prerequisites: Art 1, 2, and 120, or permission of the instructor. Priester (HU)

ART 373. Studio Art Internship (1–4)  
Practical in-field experience in an artist’s studio or art-related apprenticeship opportunity. Requires approval a semester in advance by instructor and host organization. Staff (ND)

Museum Studies

ART 175. Introduction to Museum Work (3) fall  
Introduction to the methods and procedures of research and interpretation of art objects, historical material sites, documents, specimens, and living entities. The nature of museum work in its practical aspects. Field trips and workshops. Each student completes several interactive projects. Viera (ND)

ART 275. Museography and Museology (4) fall-spring  
Theory and practice in contemporary museums and galleries. Practicum in the L.U.A.G. Museum operation, dealing with collection management, exhibition, and interpretation issues. Student completes a research report or equivalent. Recommend that concentration/minors repeat this course. Prerequisite: ART 175. Viera (ND)

ART 370. Special Topics in Museum Studies (1–4)  
Special project and/or internship for graduate and advanced undergraduates in the museum studies. Prerequisite: Art 275 or equivalent course in Anthropology or History. Viera (ND)

ART 375. Museum Internship (3) fall-spring  
Internship under professional supervision in one or more of the following areas: education/interpretation, collection management, curatorial, exhibition/installation, and development/PR, administration; in one of the following regional organizations: Allentown Art Museum, Lehigh County Historical Society, Bethlehem Historical Partnership, Hugh Moore Park, Canal Museum. Prerequisite: ART 275. Viera (ND)

Undergraduate Courses in Architecture

ARCH 1. Architectural History I (3) fall  
Survey of architecture from earliest building to the Renaissance, examined in the context of culture formation, design concepts, and the built environment. Thomas (HU)

ARCH 2. Architectural History II (3) spring  
Survey of architecture from the Renaissance to the present, examined in the context of culture formation, design concepts, and the built environment. Thomas (HU)

ARCH 5. Introduction to Architecture (2) fall  
An introduction to the discipline of architecture for first-year probable architecture majors. Covers basic principles, aspects of the profession, how to understand building, etc. Staff. Freshman Year Class. (HU; FYC)

ARCH 6. Introduction to Architectural Drawing (2) spring  
An introduction to basic architectural drawing skills for first-year probable architecture majors. Covers sketching techniques, orthographic drawing, axonometric, etc. Staff (ND)

ARCH 10. (CEE 10) Engineering/Architectural Graphics and Design (3)  
Graphical communication of civil engineering or architectural projects using manual techniques and commercial state-of-the-art computer software. Topics include visualization and sketching; orthographic, isometric and other drawings; points, lines and planes in descriptive geometry; site design; overview of geographical information systems and 3-D applications. Teamwork on design projects with oral and graphical presentations. Open to a limited number of architecture, design arts or other students with project roles consistent with students’ background. Not available to students who have taken MECH 10.

ARCH. 43. Architectural Design I (4)  
Fundamental design studio for architecture majors. Composition, spatial concepts; precedent; materials and detail; light and color in architecture. Instruction in basic communication techniques. Prerequisite: ART/DES 3 and ART/DES 4. Reserved for declared Architecture majors. Viscardi or Ussler (ND)

ARCH 107. History of American Architecture (3) spring  
Survey of American building from European colonization to the present. Prerequisite: ART/ARCH 1 and ARCH 2 or permission of instructor. Thomas. (HU)

ARCH 143. Architectural Design II (6)  
Studio format, introductory course in architectural design which introduces students to new ways of thinking about architecture and the perception of space, three-dimensional composition, drawing, and model-
making. Previous or concurrent courses in studio art and/or architectural history are recommended.

Prerequisite: ARCH 43. Zaknic (ND)

ARCH 147. Building Materials and Methods (3)
The primary structural material, wood, steel and reinforced concrete are examined in their relationship to architectural design. Peters. Prerequisite: ARCH 43 or consent of professor. (ND)

ARCH 161. (THTR 161) Theatre Design and Technology (4)
Theatre environments, equipment systems and acoustics. Functions and ethics. (HU)

ARCH 171. Special Topics in Architecture (1-4)
Directed projects for students in architecture. Student must initiate contact with sponsoring professor. Prerequisite: Major standing in department and/or permission of instructor. Staff (ND)

ARCH 174. (ART 174, CLSS 174, ANTH 174) Greek Archaeology (5)
Ancient Greek cultures from the neolithic to hellenistic periods. Reconsctructions of Greek social dynamics from study of artifacts. Small (SS)

ARCH 176. (ART 176, CLSS 176, ANTH 176) Roman Archaeology (3)
Cultures of the Roman Empire. Reconstructs of social, political, and economic dynamics of the imperial system from study of artifacts. Small (SS)

ARCH 206. (ART 206) Medieval Art and Architecture (3)
Focus on art and architecture in Western Europe from 313 A.D. until ca. 1500 A.D. Topics include: the emergence of Christian art and architecture; the art of barbarian migrations; the Carolingian Renaissance; monasticism, pilgrimage and the Romanesque; the Gothic cathedral; and medieval manuscript illumination. Priester (HU)

ARCH 207. (ART 207) Renaissance Art and Architecture (3)
Survey of the art and architecture of the Italian Renaissance from its beginnings in 13th and 14th century Tuscany and its first flowering in 15th century Florence through the brilliant achievements of the masters of the High Renaissance and later 16th century. Priester (HU)

ARCH 209. Architecture and Ideas (3)
Examination of philosophical, technological, and cultural forces shaping Western architecture and urbanism. Prerequisites: ART/ARCH 1 and ARCH 2 or permission of instructor. Writing intensive. Thomas (HU)

ARCH 210. 20th-Century Architecture (3)
History and theory of modern architecture. Analysis of buildings and architects, theories and manifestoes, from industrial revolution to avant-garde movements. Prerequisite: Art 1 or ARCH 1 and another course in architectural history is recommended. Zaknic (HU)

ARCH 211. Architectural Drawing/Analysis and Expressions (3) alternate summers in Italy
This studio course is part of the Lehigh in Italy summer program and will utilize several different architectural drawing techniques to study aspects of architecture from analysis of a piazza to architecture in detail. It will employ pencil sketching, charcoal drawing, and watercolor. These drawings will act as a way of seeing the Italian urban landscape and supplement the study and analysis of the Italian architect's contemporary work. Fulfills an art studio elective requirement. Viscardi (ND)

ARCH 212. The Architecture of Carlo Scarpa/Theory and Practice (3) alternate summers in Italy
This course which is part of the Lehigh in Italy summer program will survey several of the Venetian architect's most famous works. Meet with architects who worked with Scarpa and completed his unfinished projects. Explore thematic principles behind Scarpa's work, their origin and role in his unique process of design. Viscardi (HU)

ARCH 213. The City (3)
Historical development of the modern city. Philosophical, technological, and cultural forces shaping urban experience. Western culture beginning with the Enlightenment. Prerequisites: Art 1 or ARCH 1 and ARCH 2 or permission of instructor. Thomas (HU)

ARCH 243. Architectural Design III (6)
Continuation of ARCH 143. Design principles of space and form stressed in earlier studios to issues of "materiality," "structure," "modes of representation" and the "process of making." Prerequisites: ARCH 1, 143 and one art studio. Viscardi (ND)

ARCH 253. Paris, the Planning of a Metropolis (3) alternate summers in Paris
The splendor of modern Paris is due in large part to bold, large-scale modernization and changes in the city's patterns during the 19th century. This course, which is part of the Lehigh in Paris summer program, will cover a century of change and focus on the major accomplishments of its visionary planners. Zaknic (HU)

ARCH 254. Modern Architecture in France: New Directions (3) alternate summers in Paris
The course, which is part of the Lehigh in Paris summer program, will cover the most important contributions to modern architecture in the Paris region including Centre Pompidou, Musee d'Orsay, Le Grand Louvre, Parc de la Villette, La Defense, and the new satellite towns around Paris. Zaknic (HU)

ARCH 271. Special Topics in Architecture (1-4)
Directed projects for advanced students in architecture or architectural criticism. Prerequisites: ARCH 1 and 143. Major standing in the department or consent of instructor. Student must contact sponsoring professor and complete a contract sheet at pre-registration. May be repeated for credit. Staff (ND)

ARCH 311. Portfolio (1)
The concept, layout, and preparation of a portfolio for graduate school application or employment search, including graphic techniques and reproduction method. Student must contact sponsoring professor. Prerequisite: ARCH 243. Staff (ND)

ARCH 321. Architectural Internship (1-3)
Supervised internship in architectural firm, planning or preservation office. Internship plan must be approved in writing before it is pursued. Staff (ND)

ARCH 328. Architectural Representation (3)
Studio format, instruction in rendering media such as graphite, charcoal, color pencil, water color and pastel
and a variety of three-dimensional drawing techniques. Intended for architectural students who have mastered orthographic drawing (plan, elevation, section). The origin, history, and theory of three-dimensional drawing techniques will also be studied. Prerequisite: ARCH 243. Ussler (ND)

ARCH 342. Theory of Architecture (3)
Study of the genesis of form, its representation and its interrelationship to related artistic disciplines. Formal notions will be studied, compared and manipulated through the role of time, scale, perceptual analysis and material transformation. Permission of instructor required. Viscardi (ND)

ARCH 343. Architectural Design IV (6)
Continuation of ARCH 243. The design of buildings and building groups, with the emphasis on urban design and the city. Prerequisite: ARCH I/ART I, 243, one art studio, and a 200 level Architecture History class recommended. Usler (ND)

ARCH 345. Architectural Design V (3)
Undergraduate thesis. An individual design project exploring, with faculty approval, some aspect of architecture of interest to the student. Prerequisite: Architectural Design I-IV; all other courses required for major, previously or concurrently. Staff (ND)

ARCH 346. Construction, Materials and Design (3)
The influence of construction, structure, and material choice on the design of a small building. The studio also deals with the relationship between different scales of design concern. Pre-requisite: ARCH 147 and ARCH 243. Peters (ND)

ARCH 361. (HIST 361) Evolution of Highrise Building Construction (3)
The new materials iron and concrete led to new ways of thinking about building. The Industrial Revolution initiated the development of our modern culture of building and our current urban society. Peters (HU)

ARCH 363. (HIST 363) Evolution of Long-span Bridge Building (3)
New materials, forms of education and technology contributed to advanced structural understanding. Specialization and the rise of technological thinking led to new bridge types and increasing span size. Peters (HU)

ARCH 365. (HIST 365) Evolution of the Modern Building Process (3)
The criteria of trade—time and money—entered the world of building in the 19th century. The unplanned interlude between the design and the inauguration of a building became a new professional field: the building process. Peters (HU)

ARCH 367. Modernism to Postmodernism (3)
Re-examine the central issues facing the great masters of twentieth-century architecture: how they formulated their principles, how they applied them, and how those who inherited the legacy have interpreted it. The major attention will focus on either the great master builders such as Le Corbusier, Mies van der Rohe, Frank Lloyd Wright and Walter Gropius, or on second generation including the transitional figures such as Philip Johnson and other groups: The Whites, Greys, High-Tech, etc. Prerequisite: Art I/ART I or Art 2/ARCH 2 and ARCH 210. Zaknic (HU)

ARCH 388. Advanced Architectural Design (3) spring
Intensive design projects under a sequence of visiting design instructors. Prerequisites: ARCH 210, 243 and consent of the instructor. Zaknic (ND)

Arts and Sciences

ARTS 1-9. Choices and Decisions (1)
Introduction to decision making with emphasis on curriculum, career planning, and social options. Techniques for using values, family history, and social norms as guidelines for decision-making processes. Pass-fail grading.

ARTS 251. Fieldwork (1)
Structured fieldwork for students who have previously taken Arts 250 without the fieldwork component. Students will be required to provide some regular written and oral reports of activity and then write a detailed analysis/assessment report of particular issues and lessons learned. Prerequisite: 3 credits of Arts 250 (without fieldwork component) and instructor's consent. (ND)

ARTS 250. Communications, Cultures, Behaviors and Attitudes (4)
Writing-intensive experiential focus on communications, development of social roles and life skills required for effective functioning in a diverse society in America and globally. Models of group processes; small group projects: communications; critical thinking and its application to course content; cognitive processes in handling individual differences in race, gender, class, religion, disabilities, sexual harassment, religions of the world, sexual orientation, and culture; synthesis of class experiences with readings and discussions; and social role implications on choices. The application of lessons learned in the course to real life situations such as structured fieldwork will be required in addition to in class work. As part of the fieldwork experience, students will be required to provide some regular written and oral reports of activity and then write a detailed analysis/assessment report of particular issues and lessons learned. Students may not receive credit for both Arts 250 and Comm 65. (ND)

Arts-Engineering

The Arts-Engineering program provides the student with an opportunity to experience the breadth of an arts education and simultaneously follow the more focused curriculum of an engineering major. This is a five-year, dual-degree program administered by the College of Arts and Sciences. An Arts-Engineering graduate is awarded two bachelors degrees, one from the College of Arts and Sciences and another from the College of Engineering and Applied Science.

A typical freshman year class schedule for an Arts-Engineer is shown below. Note that the Arts-Bioengineering program has a different freshman year class schedule.

freshman year, first semester (15-17 credit hours)

| ARTS 2 | Choices & Decisions | 1 |
| ENGL 1 | Composition/Literature I | 3 |
| MATH 21 | Calculus I | 4 |
| PHY 11 | Intro Physics I | 4 |
| PHY 12 | Intro Physics Lab I | 1 |
| (Dept) 90 | College Seminar or FYC | 2-4 |
Freshman year, second semester (17 credit hours)
- ENGL 2 Composition/Literature II 3
- MATH 22 Calculus II 4
- CHM 25 Intro Chemical Principles 4
- ENGR 1 Engineering Computations 3
- ENGR 5 First-Year Design Experience 3

Selection of a major in the College of Engineering and Applied Science occurs prior to beginning the sophomore year. A major leading to a degree in the College of Arts and Sciences should be chosen prior to beginning the junior year.

Basic Arts-Engineering programs leading to a bachelor of arts degree from the College of Arts and Sciences and a Bachelor of Science degree in an area of engineering are suggested below. The listed courses may be taken in any order if prerequisites are met. Arts-Engineering candidates should recognize that pursuit of a bachelor of science degree (e.g., biology, chemistry, biochemistry, earth and environmental sciences, mathematics, and physics) or a bachelor of arts program with larger than average credit requirements (e.g., art, architecture, physical sciences, cognitive science, international careers, among others) will severely restrict choices of free electives. For these students, very careful planning of the academic program is necessary to guarantee completion of all major, distribution and total credit requirements for the two degrees in five years.

The designation AS-courses/electives refers to those courses which meet the major and distribution requirements for the degree in the College of Arts and Sciences while other types of electives meet major requirements in the College of Engineering. When selected properly, courses which meet distribution requirements in the College of Arts and Sciences will also satisfy most distribution requirements of the College of Engineering and Applied Science. Note that the bookkeeping used to arrive at the total credits for each dual degree program assumes 33 credit hours were earned in the freshman year.

**Arts-Chemical Engineering**

A total of 162 credit hours is needed for the bachelor of arts and the bachelor of science degrees.

See electives (1) through (5) for the chemical engineering program in Section III. Careful planning is required so that these may be scheduled during the senior year and fifth year of the program. Any order that does not violate prerequisites is acceptable.

**Sophomore year, first semester (17 credit hours)**
- CHE 31 Material and Energy Balances of Chemical Processes (3)
- CHM 31 Chemical Equilibria in Aqueous Solutions (3)
- MATH 23 Calculus III (4)
- ECO 1 Principles of Economics (4)
- AS course/elective (3)

**Sophomore year, second semester (18 credit hours)**
- CHE 44 Fluid Mechanics (4)
- PHY 21 Introductory Physics II (4)
- PHY 22 Introductory Physics Lab II (1)
- BIOS 41 Biology Core I: Cell and Molecular Biology (3)
- MATH 205 Linear Methods (3)
- AS courses/electives (3)

**Junior year, first semester (17 credit hours)**
- CHE 151 Introduction to Heat Transfer (3)
- CHM 51 Organic Chemistry I (3)
- CHM 53 Organic Chemistry Laboratory I (1)
- CHM 192 Physical Chemistry Laboratory II (2)
- AS courses/electives (8)

**Junior year, second semester (17 credit hours)**
- CHE 244 Mass Transfer and Separation Processes (3)
- CHE 210 Chemical Engineering Thermodynamics (4)
- CHE 179 Professional Development (1)
- CHM 52 Organic Chemistry II (3)
- AS courses/electives (6)

**Senior year, first semester (15 credit hours)**
- CHE 201 Methods of Analysis in Chemical Engineering (3)
- CHM 189 Physical Chemistry II (3)
- electives for engineering major* (6)
- AS courses/electives (3)

**Senior year, second semester (15 credit hours)**
- CHE 211 Chemical Reactor Design (3)
- CHE 242 Introduction to Process Control and Simulation (3)
- electives for engineering major* (6)
- AS courses/electives (3)

**Fifth year (31 credit hours)**

See program description for senior year of Chemical Engineering.

*These electives are chosen with the chemical engineering adviser.

**Arts-Civil Engineering**

A total of 159 credit hours is needed for the bachelor of arts and the bachelor of science degrees. This total may differ depending on selection of electives that satisfy requirements for both degrees.
sophomore year, first semester (16 credit hours)
MATH 23 Calculus III (4)
MECH 2 Elementary Engineering Mechanics (3)
CEE 10 Engineering/Architectural Graphics and Design (3)
AS courses/electives (6)

sophomore year, second semester (18 credit hours)
MATH 23 Calculus III (4)
MECH 2 Elementary Engineering Mechanics (3)
CEE 10 Engineering/Architectural Graphics and Design (3)
AS courses/electives (6)

junior year, first semester (16 credit hours)
MAT 33 Engineering Materials and Processes (3)
CEE 123 Civil Engineering Materials (1)
CEE 11 Surveying (1)
CEE 12 Civil Engineering Statistics (2)
CEE 121 Mechanics of Fluids (3)
Engineering Science Elective* (3)
AS courses/electives (6)

junior year, second semester (15 credit hours)
CEE 117 Numerical Methods in Civil Engineering (2)
CEE 222 Hydraulic Engineering (3)
ECO 1 Principles of Economics (4)
AS courses/electives (6)

senior year, first semester (15 credit hours)
CEE 142 Fundamentals of Soil Mechanics (3)
CEE 159 Structural Analysis I (4)
AS courses/electives (8)

senior year, second semester (15 credit hours)
CEE 262 Fundamentals of Steel Structural Design (3)
or CEE 264 Fundamentals of Concrete Structural Design (3)
CEE 242 Principles and Practice of Geotechnical Engineering (3)
Civil Engineering electives** (3)
AS courses/electives (6)

fifth year, first semester (17 credit hours)
CEE 202 Civil Engineering Planning and Engineering Economics (3)
CEE 203 Professional Development (2)
Civil Engineering electives** (6)
AS courses/electives (6)

fifth year, second semester (16 credit hours)
CEE 290 Civil Engineering Capstone Design (3)
Civil Engineering elective** (6)
AS courses/electives (6)

**Of seventeen CEE elective credits, three credits are satisfied by a 300 level course in the major AS department; the other fifteen are approved by the CEE department chairperson; see list on department web site.

Arts-Computer Engineering
A total of 164 credit hours is needed for the bachelor of arts and bachelor of science degrees.
sophomore year, first semester (16 credit hours)
MATH 23 Calculus III (4)
PHY 21 Introductory Physics (4)
PHY 22 Introductory Physics Lab (1)

fifth year (36 credit hours)
fifth year, first semester (18 credit hours)
ECE 257 Senior Lab Project I (3)
ECE 319 Digital System Design (3)
CSE 303 Operating System Design (3)
HSS elective (6)
free elective (3)

fifth year, second semester (17 credit hours)
ECE 258 Senior Lab Project II (2)
approved technical electives* (9)
HSS elective (3)
free elective (3)

*Approved technical electives (15 credits) are subjects in the area of science and technology. They are not restricted to offerings in the department of Computer Science and Engineering. One elective must be an engineering science elective from another department. CSE 252 is not an approved technical elective.

Arts-Computer Science
A total of 157 credit hours is needed for the bachelor of arts and the bachelor of science degrees.
sophomore year, first semester (16 credit hours)
MATH 23 Calculus III (4)
PHY 21 Introductory Physics II (4)
PHY 22 Introductory Physics Lab II (1)
CSE 17 Structured Programming and Data Structures (4)
MATH 205 Linear Methods (3)
ECO 1 Principles of Economics (4)
AS courses/electives (6)

senior year, second semester (16 credit hours)
ECE 81 Principles of Electrical Engineering (4)
MATH 231 Probability and Statistics (3) or
MATH 309 Theory of Probability (3)
AS courses/electives (9)

senior year, first semester (16 credit hours)
ECE 121 Electronic Circuits Laboratory (2)
ECE 123 Electronic Circuits (3)
CSE 109 Systems Programming (3)
approved technical electives* (3)
AS courses/electives (5)

junior year, second semester (16 credit hours)
ECE 121 Electronic Circuits Laboratory (2)
ECE 123 Electronic Circuits (3)
CSE 109 Systems Programming (3)
approved technical electives* (3)
AS courses/electives (5)

junior year, first semester (16 credit hours)
ECE 81 Principles of Electrical Engineering (4)
MATH 231 Probability and Statistics (3) or
MATH 309 Theory of Probability (3)
AS courses/electives (9)

Arts-Computer Science
A total of 157 credit hours is needed for the bachelor of arts and the bachelor of science degrees.
Arts - Engineering

ECO 1 Principles of Economics (4)
AS courses/special electives* (6)

junior year, first semester (16 credit hours)
CSE 261 Discrete Structures (3)
ECE 33 Introduction to Computer Engineering (4)
MATH 231 Probability and Statistics (3)
AS courses/special electives* (6)

junior year, second semester (18 credit hours)
CSE 216 Software Engineering (3)
CSE 262 Programming Languages (3)
CSE 340 Design and Analysis of Algorithms (3)
AS courses/special electives* (9)

senior year, first semester (15 credit hours)
CSE 318 Automatic and Formal Grammars (3)
AS courses/special electives* (12)

senior year, second semester (15 credit hours)
ECE 201 Computer Architecture (3)
CSE 252 Computers, the Internet, and Society (3)
AS courses /special electives* (9)

fifth year, first semester (15 credit hours)
CSE 303 Operating System Design (3)
CSE 379 Senior Project (3)
AS courses/special electives* (9)

fifth year, second semester (14 credit hours)
AS courses/special electives* (4)

*Special electives [technical electives (15 credit hours) and professional electives (6 credit hours), with one of the electives being a hardware-oriented course] are required and are chosen with the approval of the major advisor. See the catalog listing for B.S. in Computer Science in the P. C. Rossin College of Engineering for further details.

Arts-Electrical Engineering

A total of 164 credit hours is needed for the bachelor of arts and bachelor of science degrees.
sophomore year, first semester (15 credit hours)
MATH 23 Calculus III (4)
ECO 1 Principles of Economics (4)
ECE 81 Principles of Electrical Engineering (4)
sophomore year, second semester (16 credit hours)
PHY 21 Introductory Physics II (4)
PHY 22 Introductory Physics Lab II (1)
MATH 205 Linear Methods (3)
MATH 208 Complex Variables (3)
The student must choose either the Solid State Electronics or the Optical Sciences concentration, listed below.

Solid State Electronics Concentration
junior year, first semester (16 credit hours)
PHY 212 Electricity and Magnetism I (3)
ECE 33 Introduction to Computer Engineering (4)
ECE 123 Electronic Circuits (3)
MATH 322 Methods of Applied Analysis I (3)

junior year, second semester (18 credit hours)
ECE 82 Sophomore Laboratory (1)
ECE 108 Signals and Systems (4)
ECE 126 Fundamentals of Semiconductors Devices (3)
MATH 231 Probability and Statistics (3)

senior year, first semester (18 credit hours)
ECE 121 Electronic Circuits Laboratory (2)
ECE 123 Electronic Circuits (3)
ECE 202 Introduction to Electromagnetics (3)

ECO 1 Principles of Economics (4)
approved elective* (3)
AS courses/electives (3)

senior year, second semester (16 credit hours)
ECE 125 Circuits and Systems (3)
ECE 138 Digital Systems Laboratory (2)
ECE 203 Introduction to Electromagnetic Waves (3)
approved technical elective* (3)
AS courses/elective (5)

fifth year (36 credit hours)
See program description for senior year of electrical engineering, under Electrical Engineering.

*Approved technical electives are subjects in the areas of science and technology. Students must select a minimum of four courses from the ECE or CSC course listings, with a minimum of two courses in one of the technical areas described in the following list. Students must also choose at least one engineering elective in either materials, mechanics, thermodynamics, fluid mechanics or physical chemistry, and at least one science elective in physics, chemistry or biology. For students interested in solid state electronics, quantum mechanics is recommended for the science elective.

Arts-Engineering Physics

A total of 161 credit hours is needed for the bachelor of arts and bachelor of science degrees.
sophomore year, first semester (17 credit hours)
PHY 21 Introductory Physics II (4)
PHY 22 Introductory Physics Lab II (1)
MATH 23 Calculus III (4)
ECE 81 Principles of Electrical Engineering (4)
sophomore year, second semester (16 credit hours)
PHY 21 Introductory Physics II (4)
PHY 22 Introductory Physics Lab II (1)
MATH 23 Calculus III (4)
ECE 82 Electricity and Magnetism I (3)
ECE 123 Electronic Circuits (3)
MATH 322 Methods of Applied Analysis I (3)

junior year, first semester (16 credit hours)
PHY 212 Electricity and Magnetism I (3)
ECE 33 Introduction to Computer Engineering (4)
ECE 123 Electronic Circuits (3)
MATH 322 Methods of Applied Analysis I (3)

junior year, second semester (18 credit hours)
PHY 212 Electricity and Magnetism II (3)
PHY 262 Advanced Laboratory (2)
PHY 215 Classical Mechanics I (4)
ECE 126 Fundamentals of Semiconductors Devices (3)

senior year, first semester (15 credit hours)
PHY 362 Atomic and Molecular Structure (3)
PHY 363 Physics of Solids (3)
SSE Elective* (3)
SSE Elective* or AS courses/electives (3)
AS courses/electives (3)
senior year, second semester (15 credit hours)
SSE Electives* (5)
AS courses/elective or SSE elective (3)
AS courses/electives (7)
fifth year, first semester (15 credit hours)
PHY 340 Thermal Physics (3) or ME 104 Thermodynamics I (3)
SSE Elective* (3)
AS courses/electives (9)
fifth year, second semester (16 credit hours)
AS courses/electives (16)
*The 14 credit hours of SSE electives must include ECE 251 or 252 or PHY 273 (must be a design project with an engineer co-advisor). Advisor has list of approved SSE electives. Must include at least 30 credits taught by engineers and sufficient engineering design and engineering science credits to satisfy ABET guidelines.
Optical Sciences Concentration
junior year, first semester (15 credit hours)
PHY 212 Electricity and Magnetism I (3)
PHY 362 Atomic and Molecular Structure (3)
MATH 322 Methods of Applied Analysis I (3)
OE Elective** (3)
AS courses/electives (3)
junior year, second semester (18 credit hours)
PHY 213 Electricity and Magnetism II (3)
PHY 262 Advanced Laboratory (2)
PHY 215 Classical Mechanics (4)
OE Elective** (3)
AS courses/electives (6)
senior year, first semester (17 credit hours)
PHY 352 Modern Optics (3)
OE Elective** (9)
AS courses/electives (5)
senior year, second semester (15 credit hours)
PHY 355 Lasers and Non-linear Optics (3)
OE Elective** (6)
AS courses/electives (6)
fifth year, first semester (15 credit hours)
PHY 340 Thermal Physics (3) or ME 104 Thermodynamics I (3)
AS courses/electives (12)
fifth year, second semester (15 credit hours)
AS courses/electives (15)
**The 18 credit hours of Optical Engineering electives must include ECE 257 or 258 or PHY 273 (must be a design project with an engineer co-advisor). Must include at least two of ECE 347, 348, 371, and 372. Advisor has list of approved OE electives. Must include at least 30 credits taught by engineers and sufficient engineering design and engineering science credits to satisfy ABET guidelines.
Arts-Environmental Engineering
A total of 159 credit hours is needed for the bachelor of arts and the bachelor of science degrees. This total may differ depending on the selection of electives that satisfy the requirements for both degrees. Some CAS requirements may be satisfied by taking courses such as CEE/EES cross-listed courses that can reduce this total.
sophomore year, first semester (17 credit hours)
MATH 23 Calculus III (4)
MECH 2 Elementary Engineering Mechanics (3)
Arts - Engineering

sophomore year, second semester (16 credit hours)
IE 121 Applied Engineering Statistics (3)
IE 131 Work Systems and Facilities Planning (3)
IE 132 Work Systems and Facilities Planning Lab (1)
MATH 205 Linear Methods (3)
AS courses / electives (6)
junior year, second semester (17 credit hours)
IE 122 Software Tools (1)
IE 220 Introduction to Operations Research (3)
ECE 81 Principles of Electrical Engineering (4)
IE 224 Information Systems Analysis and Design (3)
AS courses / electives (9)
senior year, second semester (15 credit hours)
IE 226 Engineering Economy (3)
IE 305 Simulation (3)
IE 339 Stochastic Models (3)
TE Technical Elective (3)*
AS courses / electives (6)

summer
IE 100 Industrial Employment (0)
fifth year, first semester (15 credit hours)
IE 154 Senior Project (3)
IE 341 Data Communication Systems Analysis and Design (3)
TE Technical Elective (3)*
AS courses / electives (6)

*Technical Electives from approved list

Arts-Materials Science and Engineering

A total of 161 credit hours is needed for the bachelor of arts and bachelor of science degrees.
sophomore year, first semester (17 credit hours)
IE 111 Engineering Probability and Statistics (3)
MATH 23 Calculus III (4)
CSC 17 Structured Programming and Data Structures (4)
AS courses / electives (6)
sophomore year, second semester (17 credit hours)
IE 121 Applied Engineering Statistics (3)
MATH 205 Linear Methods (3)
ACCT 108 Fundamentals of Accounting (3)
PHY 21, 22 Introductory Physics II and Laboratory (5)
AS course / elective (3)
junior year, first semester (16 credit hours)
IE 122 Software Tools (1)
IE 220 Introduction to Operations Research (3)
BIS 211 Management Information Systems (3)
MECH 2 Elementary Engineering Mechanics (3), or ME 104 Thermodynamics I (3), or MAT 33 Engineering Materials and Processes (3)
AS courses / electives (6)
junior year, second semester (17 credit hours)
IE 170 Algorithms in Systems Engineering (3)
IE 171 Algorithms in Systems Engineering Laboratory (1)
IE 275 Fundamentals of Web Applications (3)
ECE 81 Principles of Electrical Engineering (4)
AS courses / electives (6)
senior year, first semester (16 credit hours)
IE 224 Information Systems Analysis and Design (3)
ECO 1 Principles of Economics (4)
TE Technical Elective (6)*
AS course / elective (3)
senior year, second semester (16 credit hours)
IE 226 Engineering Economy (3)
IE 305 Simulation (3)
IE 339 Stochastic Models (3)
TE Technical Elective (3)*
AS courses / electives (6)

summer
IE 100 Industrial Employment (0)
fifth year, first semester (15 credit hours)
IE 154 Senior Project (3)
IE 341 Data Communication Systems Analysis and Design (3)
TE Technical Elective (3)*
AS courses / electives (6)

*Technical Electives from approved list

Arts-Information and Systems Engineering

A total of 161 credit hours is needed for the bachelor of arts and bachelor of science degrees.
sophomore year, first semester (17 credit hours)
IE 111 Engineering Probability and Statistics (3)
MATH 23 Calculus III (4)
CSC 17 Structured Programming and Data Structures (4)
AS courses / electives (6)
sophomore year, second semester (17 credit hours)
IE 121 Applied Engineering Statistics (3)
MATH 205 Linear Methods (3)
ACCT 108 Fundamentals of Accounting (3)
PHY 21, 22 Introductory Physics II and Laboratory (5)
AS course / elective (3)
junior year, first semester (16 credit hours)
IE 122 Software Tools (1)
IE 220 Introduction to Operations Research (3)
BIS 211 Management Information Systems (3)
MECH 2 Elementary Engineering Mechanics (3), or ME 104 Thermodynamics I (3), or MAT 33 Engineering Materials and Processes (3)
AS courses / electives (6)
junior year, second semester (17 credit hours)
IE 170 Algorithms in Systems Engineering (3)
IE 171 Algorithms in Systems Engineering Laboratory (1)
IE 275 Fundamentals of Web Applications (3)
ECE 81 Principles of Electrical Engineering (4)
AS courses / electives (6)

Arts-Materials Science and Engineering

A total of 165 credit hours is needed for the bachelor of arts and bachelor of science degrees.
sophomore year, first semester (16 credit hours)
MAT 33 Engineering Materials and Processes (3)
MATH 23 Calculus III (4)
PHY 21 Introductory Physics II (4)
PHY 22 Introductory Physics Lab II (1)
MAT 10 Materials Laboratory (1)
AS courses / electives (3)
senior year, second semester (17 credit hours)
MECH 2 Elementary Engineering Mechanics (3)
MATH 205 Linear Methods (3)
MAT 20 Computational Methods in Materials Science (2)
MAT 203 Materials Structure at the Nanoscale (3)
MAT 205 Thermodynamics of Macro/Nanoscale Materials (3)
AS courses / electives (3)

Arts-Information and Systems Engineering

A total of 161 credit hours is needed for the bachelor of arts and bachelor of science degrees.
sophomore year, first semester (17 credit hours)
IE 111 Engineering Probability and Statistics (3)
MATH 23 Calculus III (4)
CSC 17 Structured Programming and Data Structures (4)
AS courses / electives (6)
sophomore year, second semester (17 credit hours)
IE 121 Applied Engineering Statistics (3)
MATH 205 Linear Methods (3)
ACCT 108 Fundamentals of Accounting (3)
PHY 21, 22 Introductory Physics II and Laboratory (5)
AS course / elective (3)
junior year, first semester (16 credit hours)
IE 122 Software Tools (1)
IE 220 Introduction to Operations Research (3)
BIS 211 Management Information Systems (3)
MECH 2 Elementary Engineering Mechanics (3), or ME 104 Thermodynamics I (3), or MAT 33 Engineering Materials and Processes (3)
AS courses / electives (6)
junior year, second semester (17 credit hours)
IE 170 Algorithms in Systems Engineering (3)
IE 171 Algorithms in Systems Engineering Laboratory (1)
IE 275 Fundamentals of Web Applications (3)
ECE 81 Principles of Electrical Engineering (4)
AS courses / electives (6)

Arts-Materials Science and Engineering

A total of 165 credit hours is needed for the bachelor of arts and bachelor of science degrees.
junior year, second semester (15 credit hours)
ENGR 211 Integrated Product Development Projects I (3)
MAT 204 Processing and Properties of Polymeric Materials (3)
MAT 206 Processing and Properties of Metals (3)
MAT 210 Macro, Micro and Nanoscale Materials Processing Laboratory (2)
MAT 214 Processing and Properties of Ceramic Materials (3)
MAT 226 Materials Selection in Design (1)

senior year, first semester (17 credit hours)
ENGR 212 Integrated Product Development Projects II (2)
AS courses/electives (15)

senior year, second semester (15 credit hours)
CHE 60 Unit Operations Survey (3)
AS courses/electives (12)

fifth year (34 credit hours)
See program description for senior year of Materials Science and Engineering, except replace ENGR 212 (2) with AS course (3) and CHE 60 (3) with AS course (3).
Note: Students interested in the industrial or research options should consult with the department chairperson prior to their fourth year. Students selecting the research option should elect MAT 240, Research Techniques, in the first semester of the senior year. Students selecting the industrial option should elect MAT 327 & MAT 329, Industrial Project.

Arts-Mechanical Engineering
A total of 162 credit hours is needed for the bachelor of arts and the bachelor of science degrees.

sophomore year, first semester (16 credit hours)
PHY 21 Introductory Physics II (4)
PHY 22 Introductory Physics Lab II (1)
MATH 23 Calculus III (4)
ME 100 Mechanical Engineering Design I (3)
ME 111 Professional Development (1)
AS courses/electives (3)

sophomore year, second semester (18 credit hours)
MECH 2 Elementary Engineering Mechanics (3)
ME 104 Thermodynamics I (3)
MATH 205 Linear Methods (3)
AS courses/electives (9)

junior year, first semester (17 credit hours)
MECH 12 Strength of Materials (3)
ECE 81 Principles of Electrical Engineering (4)
ECO 1 Economics (4)
AS courses/electives (6)

junior year, second semester (15 credit hours)
MECH 102 Dynamics (3)
ME 211 Mechanical Engineering Laboratory I (1)
ME 230 Fluid Mechanics (3)
ECE 162 Electrical Laboratory (1)
AS courses/electives (7)

senior year, first semester (15 credit hours)
MAT 33 Engineering Materials and Processes (3)
ME 215 Engineering Reliability (3) or
MATH 208 Complex Variables (3) or
MATH 230 Numerical Methods (3) or
MATH 231 Probability and Statistics (3)
ME 252 Mechanical Elements (3)
AS courses/electives (6)

senior year, second semester (16 credit hours)
ME 211 Mechanical Engineering Design I (3)
ME 242 Mechanical Engineering Systems (3)
ME 240 Manufacturing (3)
ME 121 Mechanical Engineering Laboratory II (1)
AS courses/electives (6)

fifth year (33 credit hours)
See program description for senior year of Mechanical Engineering & Mechanics. One of the courses is an AS course/elective (3).

Asian Studies
Professors. John Gatewood, Ph.D. (Illinois), Sociology and Anthropology; Norman Girardot, Ph.D. (Chicago), Religion Studies; Kenneth Kraft, Ph.D. (Princeton), Religion Studies; Michael Notis, Ph.D. (Lehigh), Materials Science and Engineering; David Pankenier, Ph.D. (Stanford), Modern Languages and Literature; Nicola Tannenbaum, Ph.D. (Iowa), Sociology and Anthropology; Raymond Wylie, Ph.D. (London, England), International Relations.

Associate Professors. Constance Cook, Ph.D. (U.C., Berkeley) Program Director, Modern Languages and Literature; Gail Cooper, Ph.D. (U.C., Santa Barbara), History; Michael Mendelson Ph.D. (San Diego), Philosophy; Kiri Lee, Ph.D. (Harvard), Modern Languages and Literature.

Assistant Professors. Amardeep Singh, Ph.D. (Duke), English; Robert Rozehnal, Ph.D. (Duke), Religion Studies; Elizabeth Vann, Ph.D. (Virginia), Sociology and Anthropology.

The Asian Studies program provides undergraduates an opportunity to acquire a systematic knowledge East Asia, Southeast Asia, and the Pacific. The program focuses on the rich historical and cultural heritage of the countries of Asia, as well as their growing importance in world affairs and their critical relationship to the national interests of the United States.

Courses offered at other LVAIC institutions may be taken for credit by Lehigh students. Students are encouraged to participate in a variety of extracurricular activities that are offered by the Asian Studies Program, such as special lectures and seminars, films, performances, and exhibits.

The overall program is administered by the Asian Studies Committee, an interdisciplinary body of faculty with special interests in the region. This committee oversees both the formal academic work within the program as well as extracurricular activities. It also cooperates with the Asian Cultural Society and other student organizations involved in Asian Studies.

The courses listed are regularly offered in the program and new ones are currently under development in several subject areas. (Consult the Registrar’s Schedule of Classes for specific offerings in any particular semester.) For further information, interested students should consult Dr. Constance Cook, Director, Asian Studies Program, Maginnes Hall, 9 W. Packer Ave., 758-3091 (ca8), or any of the Asian Studies faculty listed above (www.lehigh.edu/~inasp/).
Major in Asian Studies

The Asian Studies major is designed to accomplish three goals: to ground the student in a regional language and culture, to survey various disciplines in Asian Studies more broadly, and to provide advanced research opportunities. The program, when successfully completed, prepares the student for further graduate work, professional education, or employment in the public or private sector. There is an increasing demand for graduates who combine a major in a disciplinary field (e.g., business, economics, international relations) with a second major (or minor) in Asian Studies, including Chinese or Japanese language competence.

The major in Asian Studies may have a Chinese studies or a Japanese studies concentration, each requiring a minimum of 9 courses (36 credits). The distribution of credits is as follows:

I. A. 2 years (or 16 credits) of an Asian language which is not the student's native language;
   B. 3 courses (or 10 credits) of humanities and social science courses under the 200 level (see list below);
   II. 2 courses from either:
       A. Advanced language and culture, or
       B. Humanities and social sciences. At least one course must be at the 300 level.

The academic advisor is Dr. Constance Cook, Director, Asian Studies Program, Maginnes Hall, 9 W. Packer Ave, 758-3091 (cac8). Students may also request an advisor from among the Asian Studies faculty above.

Minor in Asian Studies

The minor in Asian Studies is intended to complement a student’s major field of study and it is flexible according to individual needs. Students are free to survey the field broadly or concentrate in a specific area such as Chinese or Japanese studies. The minor comprises a minimum of 9 courses (36 credits) in Asian studies, chosen from an approved list in consultation with the minor advisor, Dr. Constance Cook, Director, Asian Studies Program, Maginnes Hall, 9 W. Packer Ave, 758-3091 (cac8).

While students minoring in Asian Studies are encouraged to study languages, only 8 credits of language study count towards the Asian Studies minor. Students interested only in language study are encouraged to minor in Chinese or Japanese language (see MLL).

Study Abroad Programs

Students are encouraged to spend a summer, semester, or year in an approved study program in China, Japan, Korea, Southeast Asia, South Asia or the Pacific. Students who wish to study abroad, and who wish to have the academic work taken in that program count toward a Lehigh degree, must have a GPA of 3.0 or higher. Any student with a lower GPA may petition the Committee on the Standing of Students for an exception to this rule before applying to an approved study abroad program. These programs are open to all LVAIC students subject to the regulations of their home institutions. For details on all programs, consult Erica Smith, Director, Study Abroad Office, Coxe Hall, 32 Sayre Dr, 610-758-3351, (ers5) (<lehigh.edu/studyabroad>). A limited number of Asian Studies study abroad scholarships are available.

I. Core Requirements

A. Language and Culture: Chinese or Japanese or other approved Asian languages to intermediate level (2 years); or 4 courses (16 credits), based on placement, chosen from the following. *:

- ASIA 91 Elementary Asian Language and Culture Abroad (1-8)
- ASIA 191 Intermediate Asian Language and Culture Abroad (1-8)
- CHIN, JPNS 91 Language and Culture Abroad I (1-8)
- CHIN, JPNS 191 Language and Culture Abroad II (1-8)
- CHIN 001 Beginning Chinese Reading & Writing I (2)
- CHIN 002 Beginning Chinese Reading & Writing II (2)
- CHIN 003 Beginning Spoken Chinese I (2)
- CHIN 004 Beginning Spoken Chinese II (2)
- CHIN 011 Intermediate Chinese Reading & Writing I (2)
- CHIN 012 Intermediate Chinese Reading & Writing II (2)
- CHIN 013 Intermediate Spoken Chinese I (2)
- CHIN 014 Intermediate Spoken Chinese II (2)
- CHIN 111 Advanced Chinese Reading & Writing I (2)
- CHIN 112 Advanced Chinese Reading & Writing II (2)
- CHIN 113 Advanced Spoken Chinese I (2)
- CHIN 114 Advanced Spoken Chinese II (2)
- JPNS 1 Elementary Japanese I (4) fall
- JPNS 2 Elementary Japanese II (4) spring
- JPNS 11 Intermediate Japanese I (4) fall
- JPNS 12 Intermediate Japanese II (4) spring
- JPNS 141 Advanced Japanese I (4) fall
- JPNS 142 Advanced Japanese II (4) spring
- JPNS 145 Japanese Conversation and Culture I (4)
- JPNS 146 Japanese Conversation and Culture II (4)

*B. Humanities and Social Science: 3 courses (minimum 10 credits) chosen from the following:

- ASIA 60 (REL 60) Religions of South Asia (4)
- ASIA 61 (IR 61) Pacific Asian International Relations (4)
- ASIA 64 (REL 64) Religions of China (4)
- ASIA 65 (REL 65) Religions of Japan (4)
- ASIA 67 (REL 67) Japanese Civilization (4)
- ASIA 68 (MLL 68) Japanese Language: Past and Present (4)
- ASIA 73 (GCP 73, MLL 73, WS 73) Film, Fiction, and Gender in Modern China (4)
- ASIA 74 (MLL 74) Chinese Cultural Program (1-8)
- ASIA 75 (HIST 75, MLL 75) Chinese Civilization (4)
- ASIA 76 (HIST 76, MLL 76) Understanding Contemporary China (4)
- ASIA 77 (REL 77) The Islamic Tradition (4)
- ASIA 78 (MLL 78) Asian-American Studies (4)
- ASIA 100 Seminar in Asian Studies (1-4)
- ASIA 125 (MLL 125) Immortal Images: Traditional Chinese Literature in Translation (4)
- ASIA 127 (MLL 127) ORIENTations: Approaches to Modern Asia (4)
ASIA 140 (PHIL 140) Eastern Philosophy (4)
ASIA 141 (STS 141) Science and Technology in East Asia (4)
ASIA 145 (REL 145) Islam and the Modern World (4)
ASIA 146 (REL 146) Islam in South Asia (4)
ASIA 160 (REL 160) The Taoist Tradition (4)
ASIA 161 (IR 161) China in World Affairs (4)
ASIA 162 (REL 162) Zen Buddhism (4)
ASIA 163 (IR 163) Japan in World Affairs (4)
ASIA 164 (REL 164, IR 164) Japan's Response to the West (4)
ASIA 165 (GCP 165, MLL 165) Love and Revolution in Shanghai (4)
ASIA 167 (REL 167) Engaged Buddhism (4)
ASIA 168 (REL 168) Buddhism in the Modern World (4)
ASIA 169 (REL 169) Classics of Asian Religion (4)
ASIA 177 (HIST 177, MLL 177) China Enters the Modern Age (4)
ASIA 184 (ANTH 184) Cultures of the Pacific (4)
ASIA 187 (ANTH 187) Peoples of Southeast Asia (4)
ASIA 188 (ANTH 188) Southeast Asians in Southeast Asia and America (4)

II. Advanced Electives
Two courses (7 or 8 credits) chosen from the following, 1 course of which must be at the 300 level:

A. Language and Culture:
CHIN 251 Special Topics (1-4)
JPNS 290 Special Topics (1-4)
ASIA 291 Advanced Asian Language and Culture Abroad (1-8)
CHIN, JPNS 291 Language and Culture Abroad III (1-8)
CHIN 371 Special Topics (1-4)
JPNS 390 Special Topics (1-4)

B. Humanities and Social Sciences:
ASIA 221 (REL 221) Topics in Asian Religions (4)
ASIA 240 (PHIL 240) Figures/Themes in Eastern Philosophy (4)
ASIA 247 (REL 247) Islamic Mysticism (4)
ASIA 254 (REL 254) Buddhism and Ecology (4)
ASIA 340 (HIST 340) History of Japanese Industrialization Since 1800 (3-4)
ASIA 361 Internship in Asian Studies (1-4)
ASIA 364 (IR 364) International Relations of Pacific Asia (4)
ASIA 371 Advanced Readings in Asian Studies (1-4)
ASIA 381 Special Topics in Asian Studies (1-4)
ASIA 386 (GCP 386) Chinese Culture in a Multinational Workplace (3)
ASIA 391 Senior Seminar in Asian Studies (1-4)
ASIA 399 Senior Thesis in Asian Studies (1-4)

C. Other suitable courses at LVAIC or other approved institutions in the United States.

D. Other suitable courses in approved study abroad programs in Asia.
CHIN 013. Intermediate Spoken Chinese I (2)
Further development of communicative skills in Chinese using situational dialogues and class discussion; emphasis on oral proficiency. Not open to native speakers. (Fall) Prerequisite: Chin 004, Chin 011, or permission of the instructor. Staff. (HU)

CHIN 014. Intermediate Spoken Chinese II (2)
Continuation of Chin 013: further development of communicative skills in Chinese using situational dialogues and class discussion; emphasis on oral proficiency. Not open to native speakers. (Fall) Prerequisite: Chin 012, Chin 013, or permission of the instructor. Staff. (HU)

CHIN 111. Advanced Chinese Reading & Writing I (2)
Reading, translation, and writing practice using text-based exercises, short stories, essays, and other selected materials. (Fall) Prerequisite: Chin 014, Chin 113 or permission of the instructor. Staff. (HU)

CHIN 112. Advanced Chinese Reading & Writing II (2)
Continuation of Chin 111: reading, translation, writing exercises using text-based exercises, short stories, essays, and other selected materials. (Spring) Prerequisite: Chin 111, Chin 113 or permission of the instructor. Staff. (HU)

CHIN 113. Advanced Spoken Chinese I (2)
Topical discussions and oral presentations in Chinese. (Fall) Prerequisite: Chin 014, Chin 111, or permission of the instructor. Staff. (HU)

CHIN 114. Advanced Spoken Chinese II (2)
Continuation of Chin 113: topical discussions and oral presentations in Chinese. (Fall) Prerequisite: Chin 112, Chin 113, or permission of the instructor. Staff. (HU)

CHIN 252. Business Chinese (1-2)
Directed readings on the Chinese business environment and business terminology. Emphasis on reading comprehension and translation. May be repeated for credit. Prerequisite: CHIN 112, CHIN 114, or permission of the instructor. Staff. (HU)

CHIN 253. Chinese Fiction (1-2)
Students read modern Chinese short stories or a novel. Emphasis on reading comprehension and translation. May be repeated for credit. Prerequisite: CHIN 112, CHIN 114, or permission of instructor. Staff. (HU)

CHIN 254. Intensive Conversation (1-2)
Conversational practice based on topical readings. For advanced speakers only. May be repeated for credit. Prerequisite: CHIN 112, CHIN 114, or permission of the instructor. Staff. (HU)

CHIN 255. Newspaper Readings in Chinese (1-2)
Newspaper readings in Chinese. Emphasis on reading comprehension and translation. May be repeated for credit. Prerequisite: CHIN 112, CHIN 114, or permission of the instructor. Staff. (HU)

JPNS 1. Elementary Japanese I (4) fall
Introduction to the oral and written language with emphasis on spoken Japanese and syllabaries. Language laboratory. (HU)

JPNS 2. Elementary Japanese II (4) spring
Continuation of Japanese 1. Prerequisite: Japanese 1 or equivalent. (HU)

JPNS 11. Intermediate Japanese I (4) fall
Continuation of Japanese 2. Structural patterns in both spoken and written languages. 150 kanji (Chinese characters). Prerequisite: JPNS 2 or equivalent. (HU)

JPNS 12. Intermediate Japanese II (4) spring
Continuation of Japanese 11. Prerequisite: Japanese 11 or equivalent. (HU)

JPNS 141. Advanced Japanese I (4) fall
Advanced reading and oral comprehension. Conversation and writing practice. Prerequisite: JPNS 12 or equivalent. (HU)

JPNS 142. Advanced Japanese II (4) spring
Continuation of JPNS 141. Prerequisite: JPNS 141 or equivalent. (HU)

JPNS 145. Japanese Conversation and Culture I (4)
This course emphasizes oral skills and culture by discussing topics related to modern Japan. Advanced writing skills, especially the knowledge of Kanji, are introduced individually. Prerequisite: Jpns 12 or consent of instructor. (HU)

JPNS 146. Japanese Conversation and Culture II (4)
Continuation of Jpns 145. Emphasis on advanced oral and writing skills, and knowledge of the culture. Prerequisite: Jpns 145 or consent of instructor. (HU)

B. Humanities and Social Science:

ASIA 60. (REL 60) Religions of South Asia (4)
A thematic introduction to the foundational religious traditions of South Asia: Hinduism, Jainism, Buddhism, Sikhism and Islam. Students explore the social and spiritual dimensions of these religious worlds through scripture, ritual practices, narrative and teaching traditions, music and art. Rozehnal. (HU)

ASIA 61. (IR 61) Pacific Asian International Relations (4)
Introduction to Pacific Asian international relations, with emphasis on post-1945 period: historical background; Cold War conflicts; China’s rise to power; Japan’s growing role; Korea and the NIC’s; Southeast Asia; U.S. and Russian policies; current and future issues. Wylie (SS)

ASIA 64. (REL 64) Religions of China (4)
History and meaning of the major forms of Chinese religion- especially Confucianism and Neo-Confucianism, Taoist mysticism, Buddhism (Ch’an/Zen), and popular religion. Girardot. (HU)

ASIA 65. (REL 65) Religions of Japan (4)
A survey of Japan’s diverse religious heritage and its impact on contemporary culture. Japanese approaches to the self, the world, and the sacred are considered in comparative perspective. Topics covered include: Shinto, Buddhism, Zen, Confucianism, the way of the warrior, folklore, and postwar movements. Kraft. (HU)

ASIA 67. (REL 67) Japanese Civilization (4)
The history and culture of Japan from its origins to the present. Special consideration will be given to the rise and fall of the warrior class, developments in art and religion, the dynamics of family life, and Japan’s “economic miracle.” Kraft. (H/S)

ASIA 68. (MLL 68) Japanese Language: Past and Present (4)
Historical and contemporary aspects of the Japanese language, including the origins of Japanese in relation to Korean, the influence of Chinese, syntactic features which reflect the hierarchical character of Japanese socie-
ty, differences in female and male speech, and use of foreign loan words. Prerequisite JPN 1. Lee (HU)

ASIA 73. (GCP 73, MLL 73, WS 73) Film, Fiction, and Gender in Modern China (4)
Study of the struggle for an individual “modern” identity out of traditionally defined roles for men and women as depicted by Chinese writers and filmmakers. Class, texts, and films in English. Students interested in setting up a corollary Chinese language component for credit as Chin 251, may discuss this possibility with the professor. Cook (HU)

ASIA 74. (MLL 74) Chinese Cultural Program (1-8)
A summer program in China, taught in English. (HU)

ASIA 75. (HIST 75, MLL 75) Chinese Civilization (4)
The development of traditional Chinese thought, beliefs, technology, and institutions from a historical perspective, from earliest times to China’s encounter with the West. Pankenier (HS)

ASIA 76. (HIST 76, MLL 76) Understanding Contemporary China (4)
An overview of recent history, politics, economy, religion, problems of modernization, popular culture, and attitudes. Contemporary Chinese society viewed against the backdrop of tradition and the tumultuous history of twentieth-century China. Pankenier (SS)

ASIA 77. (REL 77) The Islamic Tradition (4)
A thematic introduction to Islamic history, doctrine and practice. Topics include: Qur’an; prophecy and sacred history; ritual practices; community life; legal interpretation; art and aesthetics; mysticism; politics and polemics. Rozehnal. (HU)

ASIA 78. (MLL 78) Asian-American Studies (4)
A survey of issues concerning Asians living in the United States from the perspectives of history, language, literature, and film. (HU)

ASIA 100. Seminar in Asian Studies (1-4)
Topics in Asian Studies. May be repeated for credit. (HU/SS depending on topic)

ASIA 125. (MLL 125) Immortal Images: Traditional Chinese Literature in Translation (4)
Explore age-old themes in literature as diverse as pre-modern novels, ghost stories, poetry, divination manuals, and medical texts. Students interested in setting up a corollary Chinese language component for credit as CHIN 251, may discuss this possibility with the professor. Cook (HU)

ASIA 127. (MLL 127) ORIENTations: Approaches to Modern Asia (4)
A survey of the rapid economic, political, and social changes occurring in East, South, and Southeast Asian countries. How do the contemporary societies and historical traditions of Asian countries differ from the West? What distinguishes our perspectives on politics, individual liberties, civic responsibility, religious faith, the “pursuit of happiness”? How are Asians represented (or misrepresented) in the West, and how will the ongoing process of globalization change, and be changed by, Asian cultures? Pankenier. (HS)

ASIA 140. (PHIL 140) Eastern Philosophy (4)
Survey of selected texts and issues in the eastern philosophical traditions. Attention will be given to the development and interrelations of these traditions as well as a comparison of western and eastern treatments of selected issues. Areas of focus may include: Confucianism, Taoism, and Zen Buddhism. (HU)

ASIA 141. (STS 141) Science and Technology in East Asia (4)
The development of science and technology in East Asia with emphasis on Japan and China. (SS)

ASIA 145. (GCP 145, REL 145) Islam and the Modern World (4)
Examines how numerous Muslim thinkers-religious scholars, modernists, and Islamists-have responded to the changes and challenges of the colonial and post-colonial eras. Special emphasis is placed on the public debates over Islamic authority and authenticity in contemporary South Asia. Rozehnal. (HU)

ASIA 160. (REL 160) The Taoist Tradition (4)
Consideration of the religious and cultural significance of Taoism in its various historical forms. Primary attention will be given to a close reading of some of the most important texts of the early philosophical tradition (e.g. Tao Te Ching, Chuang Tzu) and of the later religious tradition (e.g. Pao P’u Tzu and other selections from the Tao Tsang). Contemporary implications of Taoist thought will also be considered (e.g. “The Tao of Physics”, “a Taoist on Wall Street”, and “the Tao of Japanese Management”). Girardot. (HU)

ASIA 161. (IR 161) China in World Affairs (4)
China in world affairs, emphasizing role in Pacific Rim: historical background; domestic politics; foreign and security policies; relations with regional and global powers; policies toward Asia and Third World; current and future issues. Wylie. (SS)

ASIA 162. (REL 162) Zen Buddhism (4)

ASIA 163. (IR 163) Japan in World Affairs (4)
Japan in world affairs, emphasizing role in Pacific Rim: historical background; domestic politics; foreign and security policies; relations with regional and global powers; policies toward Asia and Third World; current and future issues. Wylie. (SS)

ASIA 164. (REL 164, IR 164) Japan’s Response to the West (4)
A survey of Japanese history and culture from 1500 to the present, following the theme of Japan’s contact with the West. What enabled Japan to modernize and Westernize so successfully? Topics covered include: the expulsion of Christianity, the first samurai mission to the U.S., the postwar American occupation, and contemporary issues. Readings include Japanese novels and short stories (translation). Kraft. (HS)
ASIA 165. (GCP 165, MLL 165) Love and Revolution in Shanghai (4)
This project-based course will examine human relationships and political-economic changes in Shanghai through the lens of literature, film, and a selection of other readings. Students will discuss the conflicts between and influences of pre-communist, communist, and capitalist systems as played out in the Shanghai area. Students will write research papers on aspects of historical or modern Shanghai, and present their results to the class. They will also be responsible for blackboard and in-class discussions of assigned readings and films. (HU)

ASIA 167. (REL 167) Engaged Buddhism (4)
Examines a contemporary international movement that applies Buddhist teachings and practices to social, political, and environmental issues. Topics include: important thinkers, forms of engagement, and areas of controversy. Kraft. (HU)

ASIA 168. (REL 168) Buddhism in the Modern World (4)
Explores contemporary Buddhism in Asia, America, and Europe. Topics include the plight of Tibet, Buddhist environmentalism, and the emergence of a socially engaged Buddhism. How are Westerners adapting this ancient tradition to address present-day concerns? Kraft. (HU)

ASIA 169. (REL 169) Classics of Asian Religion (4)
Sacred scriptures of Asia and an introduction to the religions they represent. What do these texts teach about reality, humanity, divinity, and society? How is the path of spiritual practice presented in the different traditions? Prerequisite: one prior course in Religion or Asian Studies. Kraft, Girardot. (HU)

ASIA 177. (HIST 177, MLL 177) China Enters the Modern Age (4)
The collapse of the imperial order and China’s agonizing transformation into a modern nation-state over the past 150 years. The impact of imperialism, war, radical social change, and protracted revolution on Chinese traditions, values, and institutions. Pankenier. (H/S)

ASIA 184. (ANTH 184) Cultures of the Pacific (4)
Cultures of the Pacific Islanders prior to substantial disruption by European influences. Culture histories, language families, social organizations, and religions of Australian, Melanesian, Polynesian, and Micronesian peoples. Gatewood. (SS)

ASIA 187. (ANTH 187) Peoples of Southeast Asia (4)
Peoples and cultures of Burma, Laos, Cambodia, Thailand, Malaysia, Singapore, Indonesia, and the Philippines. World view, religion, economy, politics, and social organization. Tannenbaum. (SS)

ASIA 188. (ANTH 188) Southeast Asians in Southeast Asia and America (4)
In this course we explore the ways in which different peoples lived in Southeast Asia, why they moved to America, and the ways in which this move affected their cultures. Topics explored include: aspects of their culture, particularly religion and social organizations, motivations for migrating (including war, political, and economic reasons), and their adaptations to America and American responses to their presences. No prerequisites. Tannenbaum. (H/S)

II. Advanced Electives
A. Language and Culture:

ASIA 240. (PHIL 240) Figures/Themes in Eastern Philosophy (4)
This seminar course will involve in-depth focus upon a major figure in Eastern thought or upon the Eastern treatment of a particular theme or set of themes. Content varies. May be repeated more than once for credit. (HU)

CHIN 251. Special Topics (1-4)
Literary and linguistics topics not covered in regular courses. May be repeated for credit. Prerequisite: consent of the instructor. (HU)

JPN 290. Special Topics (1-4)
Literary or linguistics topics not covered in regular courses. May be repeated for credit. Prerequisite: consent of instructor. (HU)

ASIA 291. Advanced Asian Language and Culture Abroad (1-8)
Advanced language and culture abroad other than Chinese and Japanese. (HU)

CHIN, JPN 291. Language and Culture Abroad III (1-8)
Intensive practice of speaking and writing in the language of the country aimed at providing the student with extensive proficiency of expression and the ability to discriminate linguistic usage. Idiomatic expressions and an introduction to stylistics. Reading and analysis of more difficult texts, supplemented by in-depth study of selected aspects of contemporary civilization. Prerequisites: consent of MLL chair and proficiency examination in the target country. (HU)

CHIN 371. Special Topics (1-4)
Directed study of an author, genre, or period not covered in regular courses. May be repeated once for credit. Prerequisite: consent of the instructor. (HU)

JPN 390. Special Topics (1-4)

B. Humanities and Social Sciences:

ASIA 221. (REL 221) Topics in Asian Religions (4)
Selected thematic and comparative issues in different Asian religious traditions. May include Buddhism and Christianity, religion and martial arts, Asian religions in America, Taoist meditation, Zen and Japanese business, Buddhist ethics. May be repeated for credit. Girardot, Kraft. (H/S)

ASIA 247. (REL 247) Islamic Mysticism (4)
Sufism, the inner or ‘mystical’ dimension of Islam, has deep historical roots and diverse expressions throughout the Muslim world. Students examine Sufi doctrine and ritual, the master-disciple relationship, and the tradition’s impact on art and music, poetry and prose. Rozehnal. (HU)

ASIA 254. (REL 254) Buddhism and Ecology (4)
Buddhism’s intellectual, ethical, and spiritual resources are reexamined in light of contemporary environmental problems. Is Buddhism the most green of the major world religions? What are the moral implications of actions that affect the environment? Prerequisite: One prior course in religion, environmental studies, or Asian studies. Kraft. (HU)
ASIA 340. (HIST 340) History of Japanese Industrialization Since 1800 (3-4)
He late Tokugawa economic development, rise of an entrepreneurial class, importation of western technology, and the rise of social, political and economic which support industrial growth. Cooper. (SS)

ASIA 361. Internship in Asian Studies (1-4)
Internship in public or private agency involved in some aspect of Asian studies. Individual faculty mentor. Written report required. May be repeated for credit. Program permission required. (HU/SS depending on topic)

ASIA 364. (IR 364) International Relations of Pacific Asia (4)
Research-oriented seminar on contemporary international relations of Pacific Asia. Special emphasis on China, Japan and regional and global powers. Substantial research paper on topic of student’s own choice is required. Prerequisite: IR 61 or 161 or 163 or 164. Wylie. (SS)

ASIA 371. Advanced Readings in Asian Studies (1-4)
Directed course of reading and writing in advanced topic not covered in regular Asian Studies course offerings. May be repeated for credit. Program permission required. (HU/SS depending on topic)

ASIA 381. Special Topics in Asian Studies (1-4)
Advanced study of aspects of Asian studies not covered in regular course offerings. Individual faculty supervision. Research paper required. May be repeated for credit. Program permission required. (HU/SS depending on topic)

ASIA 386. (GCP 386) Chinese Culture in a Multinational Workplace (3)
Students explore the interaction between Chinese and non-Chinese cultures at a variety of work sites in the city of Shanghai, a port city that has involved people of many nationalities since its birth in the 1840s. This project-based course involves a faculty mentored practicum at one or more specific sites related to the student’s own field or major, assigned readings, weekly electronic blackboard discussions, and a written summary of the experience. (H/S)

ASIA 391. Senior Seminar in Asian Studies (1-4)
Advanced seminar focusing on discussion and research on specialized subjects in Asian studies. Variable subject matter. Offered by faculty on rotating basis. May be repeated for credit. Program permission required. (HU/SS depending on topic)

ASIA 399. Senior Thesis in Asian Studies (1-4)
Advanced, individual research project on topic agreed between faculty and student. Research paper and oral defense required. May be repeated for credit. Open to Asian studies majors only. Program permission required. (HU/SS depending on)

Astronomy and Astrophysics

Professors, George E. McCluskey, Jr., Ph.D. (Pennsylvania), head; Gary G. DeLeo, Ph.D. (Connecticut).

Astronomy and Astrophysics are offered in the department of Physics.

Astrophysicists apply physics and mathematics to the study of planets, stars, galaxies, pulsars, black holes, quasars and the universe, among many other fascinating objects in order to understand their origin, evolution and ultimate fate. Students who major in astronomy or astrophysics usually have very inquisitive minds and a good aptitude for physics and mathematics. The bachelor degree programs in astronomy and astrophysics provide the student with a solid background in laboratory and theoretical astrophysics as well as in the fundamentals of physics and mathematics. Research opportunities are available to supplement classroom instruction.

The bachelor of science degree in astrophysics is designed for students who wish to go on to graduate studies in astrophysics with the goal of becoming professional astronomers. Professional astronomers generally find positions at colleges, universities, national labs, NASA or its contractors and in various space industries. This degree also prepares you for many jobs in related fields such as computer science, mathematics or physics. The bachelor of arts degree in astronomy is intended for students who desire a broad background in astronomy, mathematics and physics but do not plan to do graduate work in astrophysics. With this broad background, the student is well prepared in many fields of endeavor, including planetarium and museum work, teaching astronomy at colleges and universities, secondary education, science writing, or, in fact, in many professions in which the ability to learn is critical. Both of these degrees can be profitably combined with physics, mathematics, and other sciences producing excellent double majors or double degrees.

A minor program in astronomy is also available for students who wish to enlarge their potential for a career choice or who may be eager to learn more about astrophysics than an introductory course can provide.

Astronomy and Astrophysics Degree

Programs

Requirements for the Bachelor of Arts degree in astronomy:

Mathematics
MATH 21, 22, 23, and 205 [15]

Basic and Intermediate-Level Science
ASTR 7/8 (4)
PHY 11/12 or 10/12 (5)
PHY 21/22 or 13/14 (4-5)
PHY 31, 262 (5)
CHM 21/22 or 75/76 (5-8)
EES 21 (4)
EES 113 or 2-4 cr. hr. at 100 level or above (2-4) [29-35]

Intermediate - Advanced Astronomy/Astrophysics
ASTR/PHY/EEES 105 (4)
ASTR/PHY 110 (1)
ASTR/PHY 201 or 202 (4) [9]

Approved Electives
Two additional physics/astrophysics courses at the 200 level or above (6)
Two additional science or mathematics courses at the 200 level or above (6) [12]
Approved Electives are subject to the approval of the student’s advisor, and should be chosen to provide a coherent program.

Recommended courses are MATH 12, PHY 212, EES 31, BIOS 31.

Requirements for the Bachelor of Science degree in Astrophysics

Mathematics

MATH 21, 22, 23, 205, (320 or 332) [18]

Basic and Intermediate-Level Science

PHY 11/12 or 10/12 (5)
PHY 21/22 or 13/14 (4-5)
PHY 31, 212, 215, (262 or 352) (12-13)
CHM 21/22 or 75/76 (5-8)
EES 21 (4)
EES 113 or 2-4 cr. hr. at 100 level or above (2-4)

Intermediate - Advanced Astronomy/Astrophysics

ASTR/PHY/EES 105 (4)
ASTR/PHY 110 (1)
ASTR/PHY 201, 202 (8)
ASTR/PHY (332 or 342 or 350) (3) [16]

Approved Electives

Three additional physics/astronomy courses at the 200 level or above (9)
One additional science course (not physics or astronomy) at the 100 level or above (3) [12]

Recommended sequence of courses for the first two years:

<table>
<thead>
<tr>
<th>B.A. Astronomy</th>
<th>B.S. Astrophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Fall Spring</td>
</tr>
</tbody>
</table>

Freshman year

ENGL 1 (3)        ENGL 2.4 (3) 
ENGL 1 (3)        ENGL 2.4 (3) 
EES 21 (4)        PHY 11(4) 
PHY 11(4)         EES 21 (4) 
MATH 21 (4)       PHY 12 (1) 
PHY 12 (1)        MATH 22 (4) 
ASTR 7(8)         MATH 22 (4) 
MATH 22 (4)       MATH 21 (4) 
Col Sem and/or    Dist req  (3-6) 
Dist req  (3-6)   Col Sem or 
Dist req  (3-4)   Coll Ment (1) 

[16] [15-16] [16-17] [14-17]

Sophomore Year

PHY 21 (4)        PHY 31 (3) 
PHY 21 (4)        PHY 21 (4) 
PHY 31 (3)        PHY 31 (3) 
PHY 22 (1)        MATH 205 (3) 
MATH 22 (1)       PHY 22 (1) 
MATH 205 (3)      MATH 205 (3) 
MATH 23 (4)       ASTR 110 (1) 
MATH 23 (4)       MATH 23 (4) 
ASTR 105 (4)      CHM 21 (4) 
ASTR 105 (4)      ASTR 105 (4) 
CHM 21 (4)        CHM 21 (4) 
Dist req  (3-4)   Dist req  (3-4) 
Dist req  (3-4)   Dist req  (3-4) 
[16-17] [15-16] [16-17] [15-16]

If the College Seminar is deferred until spring, students may choose to select ASTR 7 by deferring a distribution requirement.

Students may wish to select EES 113 or another course that satisfies the EES requirement by deferring a distribution requirement.

Departmental Honors in Astronomy or Astrophysics. Students receiving a BA in Astronomy or a BS in Astrophysics may earn Departmental Honors by satisfying the following requirements:

1. Academic Performance: Minimum grade point average of 3.50 in astronomy and physics courses used to satisfy the major degree requirements.
2. Research or Project-Based/creative Activity: completion of approved special topics courses in astronomy that include written reports, or completion of 6 credits of PHY 273 (research) or equivalent, or completion of a summer research project with written report and oral presentation.
3. Additional Course Work: Completion of at least one approved 300-level course in either physics or astronomy beyond those required in the student’s degree program. This course may not be selected from special topics or research courses such as ASTR/PHY 350 or PHY 372.

Specific approvals are granted by the Program Director.

The minor program in Astronomy. The requirements for a minor in astronomy are:

PHY 11/12 and 21/22

ASTR 105, 201, and 202

One ASTR course at the 300 level

Two courses (minimum of 6 credit hours) selected from the following:

Any ASTR course (except ASTR 7 or 8) CSC 17, MATH 208, 231, PHY 31, 213, 348, 362.

The minor program must be designed in consultation with the program director.

Undergraduate Courses in Astronomy/Astrophysics

ASTR 7. (PHY 7) Introduction to Astronomy (3) fall

Introduction to planetary, stellar, galactic, and extragalactic astronomy. An examination of the surface characteristics, atmospheres, and motions of planets and other bodies in our solar system. Properties of the sun, stars, and galaxies, including the birth and death of stars, stellar explosions, and the formation of stellar remnants such as white dwarfs, neutron stars, pulsars, and black holes. Quasars, cosmology, and the evolution of the universe. May not be taken by students who have previously completed ASTR/PHY 105, 201, or 202. (NS)

ASTR 8. (PHY 8) Introduction to Astronomy Laboratory (1) fall

Laboratory to accompany ASTR/PHY 7. (NS)
ASTR 105. (PHY 105, EES 105) Planetary Astronomy (4) fall  
ASTR 110. (PHY 110) Methods of Observational Astronomy (1)  
Techniques of astronomical observation, data reduction, and analysis. Photometry, spectroscopy, CCD imaging, and interferometry. Computational analysis. Examination of ground-based and spacecraft instrumentation, and data transmission, reduction, and analysis. (NS)  
For Advanced Undergraduates and Graduate Students  
ASTR 201. (PHY 201) Modern Astrophysics I (4) fall  
Physics of stellar atmospheres and interiors, and the formation, evolution, and death of stars. Variable stars. The evolution of binary star systems. Novae, supernovae, white dwarfs, neutron stars, pulsars, and black holes. Stellar spectra, chemical compositions, and thermodynamic processes. Thermonuclear reactions. Interstellar medium. Prerequisites: PHY 10 and 13, or PHY 11 and 21, MATH 22 or 52. (NS)  
ASTR 202. (PHY 202) Modern Astrophysics II (4) spring  
The Milky Way Galaxy, galactic morphology, and evolutionary processes. Active galaxies and quasars. Observed properties of the universe. Relativistic cosmology, and the origin, evolution and fate of the universe. Elements of General Relativity and associated phenomena. Prerequisites: PHY 10 and 13, or PHY 11 and 21, MATH 22 or 52. (NS)  
ASTR 332. (PHY 332) High-Energy Astrophysics (3) spring, odd-numbered years  
Observation and theory of X-ray and gamma-ray sources, quasars, pulsars, radio galaxies, neutron stars, black holes. Results from ultraviolet, X-ray and gamma-ray satellites. Prerequisites: MATH 23 or 33 previously or concurrently, and PHYS 21. McCluskey (NS)  
ASTR 342. (PHY 342) Relativity and Cosmology (3) spring, even-numbered years  
Special and general relativity. Schwarzschild and Kerr black holes. Supermassive stars. Relativistic theories of the origin and evolution of the universe. Prerequisites: MATH 23 or 33 previously or concurrently, and PHY 21. McCluskey (NS)  
ASTR 350. Topics in Astrophysics (3) fall-spring  
For science or engineering majors who desire to study an active area of research in astrophysics. Individual supervision. Prerequisites: ASTR 201, and MATH 23 or 33 and PHY 21. May be repeated for credit with the consent of the program director. (NS)  
Biochemistry  
An interdepartmental B.S. biochemistry major is offered in the College of Arts and Sciences. The B.S. in biochemistry degree is managed by an interdepartmental committee composed of biochemists, bioorganic chemists, and molecular/cellular biologists. The committee administers the degree, monitors the academic program, provides research opportunities, and advises students. The director of the program is currently Linda J. Lowe-Krentz. Faculty in both Biological Sciences (Lowe-Krentz and Iovine) and Chemistry (Schray) serve as advisors. Majors should be declared in Biological Sciences.  
Bachelor of Science Degree in Biochemistry  
I. College and University Requirements (26)  
a. ENGL 1, 2 (6)  
b. ARTS 1 (1)  
c. First Year Seminar (3)  
d. Non-science electives: 16 hours to be broadly distributed in fields of thought other than natural science and mathematics, including at least 8 hours each in humanities and social sciences.  
II. Collateral Science Requirements at least (24)  
a. Physics 10, 12, 13, 22 (or 11, 12, 21, 22) (9 or 10)  
b. Mathematics 51, 52, 53, 58 (or 21, 22, 23) and a statistics course at least (12)  
c. Survey of Computer Science 12 or Engineering 1 (3)  
III. Required Chemistry Courses (25 to 26)  
a. Introductory Chemistry 75, 76 (8*)  
b. Organic Chemistry 51, 52, 53, 58 (8)  
c. Inorganic Chemistry 307 (3)  
d. Physical Chemistry 194 (3)  
e. Analytical Chemistry 332 (3)  
*The Chemistry 25/26/31 sequence may be substituted.  
IV. Required Biological Science courses (24)  
a. Biology Core I: Cellular and Molecular Laboratory 41, 42 (4)  
b. Biology Core II: Genetics 115 (3)  
c. Biochemistry 371, 372, 377 (9)  
d. Advanced Laboratory (4)  
e. Electives in Biological Sciences (3 hours minimum)*  
f. Technical Writing (2 hours minimum)  
*The three credit hours of biological sciences electives are chosen with the approval of the advisor.  
Model Pattern Roster  
freshman year  
CHM 75,76 Concepts, Models, and Experiments I and II (8)  
BIOS 41,42 Biology Core I: Cell and Molecular and Laboratory (4)  
MATH 51,52 Survey of Calculus I and II (7) or MATH 21,22 Calculus I and II (8)  
Dept 90 College Seminar (3)  
ARTS 1 Choices & Decisions (1)  
ENGL 1,2 Composition and Literature (6)  
PHY 10,12 General Physics I and Laboratory (5) or PHY 11,12 Introductory Physics I and Laboratory (5)
Bioengineering Program

Professor Anand Jagota, Director, Department of Chemical Engineering at 610-758-4936 or an60@lehigh.edu

Professor H.D. Ou-Yang, Associate Director, Department of Physics at 610-758-3920 or hdo6@lehigh.edu

Program Associated Professors: Maria Bykhovskaia, Ph.D. (Russian Academy of Sciences), Biological Sciences; Lynne Cassimeris, Ph.D. (North Carolina), Biological Sciences; Manoj Chaudhury, Ph.D. (SUNY Buffalo), Chemical Engineering; Derick Brown, Ph.D. (Princeton), Civil and Environmental Engineering; Samir Ghadiali, Ph.D. (Tulane), Mechanical Engineering and Mechanics; Mitadis Hatalis, Ph.D. (Carnegie Mellon), Electrical Engineering; James T. Hsu, Ph.D. (Northwestern), Chemical Engineering; Ian Laurenzi, Ph.D. (University of Pennsylvania), Chemical Engineering; Mary Katherine Iwine, Ph.D. (Washington, St. Louis), Biological Sciences; Anand Jagota, Ph.D. (Cornell), Chemical Engineering; Himanshu Jain, Eng.Sc.D. (Columbia), Materials Science and Engineering; Daniel Lopresti, Ph.D. (Princeton), Computer Science; Linda Lowe-Krentz, Ph.D. (Northwestern), Biological Sciences; A.J. McHugh, Ph.D. (Delaware), Chemical Engineering; Sudhakar Neti, Ph.D. (Kentucky), Mechanical Engineering and Mechanics; Wojciech Z. Misiolek, Ph.D. (Poland), Materials Science and Engineering; Karl Norian, Ph.D. (Imperial College, London), Electrical and Computer Engineering; John Ochs, Ph.D. (Pennsylvania State) Mechanical Engineering and Mechanics; Boon-Siew Ooi, Ph.D. (Glasgow, United Kingdom), Electrical and Computer Engineering; H. Daniel Ou-Yang, Ph.D. (UCLA) Physics; Padma Rajagopalan, Ph.D. (Brown), Chemical Engineering; Eric P. Salathe, Ph.D., (Brown), Mathematics; Neal G. Simon, Ph.D. (Rutgers), Biological Sciences; Svetlana Tatic-Lucic, Ph.D. (California Institute of Technology), Electrical and Computer Engineering; Arkady S. Voloshin, Ph.D. (Tel-Aviv University, Israel), Mechanical Engineering and Mechanics; Marvin H. White, Ph.D. (Ohio State)

Electrical Engineering

The mission of the Bioengineering Program is to prepare undergraduate students to be critical thinkers, problem solvers, innovators, leaders, and life-long learners who can make a positive impact at the interfaces among the physical and life sciences, and engineering.

To achieve its educational mission, the Bioengineering Program has established the following set of Program Educational Objectives. Graduates of our program will be able to:

1. formulate and synthesize innovative solutions to biomedical and biotechnology problems using modern engineering methodologies
2. incorporate physical and life sciences, and mathematics as part of their problem solving processes
3. contribute and function well in the collaborative and interdisciplinary environments required to solve complex biomedical and biotechnology problems
4. incorporate contemporary and ethical issues in the solution of bioengineering problems
5. communicate effectively in both oral and written forms
6. engage in life long learning processes during their professional careers.

The B.S. in Bioengineering degree provides a structured curriculum comprised of three tracks.

**Biopharmaceutical Engineering** is for students whose interests lie in genomics, proteomics, bioinformatics, recombinant DNA, protein engineering, bioprocessing, drug synthesis and delivery. The **Bioelectronics/Photonics** track covers education and research dealing with signal processing, biosensors, MEMs, biochips for DNA sequencing, laser and fiber based optical technology for biomedical applications. The **Cell and Tissue Engineering** encompasses biomaterials and biomechanics, from cells and tissue to organs and systems.

The B.S. in Bioengineering will prepare students for careers in established and emerging fields that require combining engineering principles with the life sciences. Potential paths open to students include the health care, biomedical, pharmaceutical, biomaterials, and other biotechnology-related industries through careers in medicine or graduate studies.

An integral part of the program is Longitudinally Integrated Experiential Learning (LIEL). LIEL facilitates research and direct interaction with industry and clinical partners. It is intended to teach the value of a team approach to problem solving, including two summers of internships at relevant sites. As part of the curriculum, students also are encouraged to participate in Lehigh’s Integrated Product Development (IPD) program.

The College of Arts and Sciences offers a program in Applied Life Sciences that provides a complementary flexible curriculum for students interested in bridging life sciences with other disciplines in the liberal arts framework. Please consult the catalog under Applied Life Sciences for more details.

The courses listed are offered in the program and new ones are currently under development in a number of subject areas. (Consult the Registrar’s Schedule of classes for specific offerings in any particular semester.)
Bioengineering Core Requirements

General Requirements (27 credits)
Engl 1 Composition and Literature (3)
Engl 2 Composition and Literature: Fiction, Drama, Poetry (3)
Phil 116 Bioethics (4)
SSP 135 Human Communication (4)
Engr 1 Engineering Computations (3)
Eco 1 Principles of Economics (4)
Electives to satisfy HSS requirements (6)

Mathematics (18 credits)
Math 21 Calculus I (4)
Math 22 Calculus II (4)
Math 23 Calculus III (4)
Math 205 Linear Methods (3)
Math 231 Probability and Statistics (3)

Chemistry (14 credits)
Chem 25 Intro. Chemical Principles and Laboratory (4)
Chem 31 Chemical Equilibria in Aqueous Systems (3)
Chem 51,53 Organic Chemistry I and Lab (4)
Chem 187 Physical Chemistry I (3)

Physics (10 credits)
Physics 11,12 Intro. Physics I and Lab (5)
Physics 21,22 Intro. Physics II and Lab (5)

Biological Sciences (8 credits)
BioS 41 and 42 Biology Core I: Cellular and Molecular and Lab (4)
BioS 115/116 Biology Core II: Genetics and Lab (4)

Engineering (12-15 credits)
(Require four out of the following six categories)
1. ECE 81 Principles of Electrical Engineering (4)
2. Mat 33 Engineering Materials and Processes (3)
3. ChE 31 Materials and Energy Balances of Chemical Processes (5)
5. ChE 44 Fluid Mechanics (4) or ME 231 Fluid Mechanics (3) or CEE 121 Mechanics of Fluids (3) or ECE 123/ Electronic Circuits (3)/Electronics (3)
6. ChE 210 Chemical Engineering/Thermodynamics (4) or Mat 205 Thermodynamics and Phase Diagrams (3) or ME 104 Thermodynamics I (3) or PHY 340 Thermal Physics (3)

Suggested courses for each track to meet educational goals particular to that track:

Biopharmaceutical Engineering Track – (14 credits)
Mat 33 Engineering Materials and Processes (3)
ChE 31 Material and Energy Balance (3)
ChE 210 Chemical Engineering
ChE 44 Chemical Engineering/Thermodynamics (4)

If ChE 210 is taken, then ChE 211 is recommended instead of Chm 187 (and satisfies that Chemistry requirement).

Bioelectronic/Biophotonics Track – (13 credits)
ECE 81 Principles of Electrical Engineering (4)
ECE 123 Electronic Circuits (3) or Phy 190 Electronics (3)
Mech 2 Elementary Engineering Mechanics (3)
Mat 33 Engineering Materials and Processes (3)
ME 104 Thermodynamics (3)
ME 231 Fluid Mechanics (3)

Integrated Bioengineering (9 credits)
Required by all Three Tracks
BioE 110 Elements of Bioengineering (4)
BioE 225 Introduction to Bioengineering Design (3)
BioE 210 Bioengineering Physiology (4)

Biopharmaceutical Engineering Track
Required courses
BioS 371 Elements of Biochemistry (same as Chm 371) (3)
ChE 341 Biotechnology I (3)
ChE 342 Biotechnology II (3)
BioS 345-346 Molecular Genetics and Lab (5)
BioE 350 Special Topics

Bioelectronics/Biophotonics Engineering Track
Required courses
ECE 108 Signals and Systems (4)
BioE 331 Integrated Bioelectronics/Photonics Laboratory (2)

Recommended electives (minimum of 6 credits)
BioS 371 Elements of Biochemistry (same as Chm 371) (3)
ChE 341 Biotechnology I (3)
ChE 342 Biotechnology II (3)
BioS 345-346 Molecular Genetics and Lab (5)
BioE 350 Special Topics

Cell and Tissue Engineering Track
Required courses
BioE 120,121 Biomechanics and Laboratory (4)
BioE 357 Biostuctural Mechanics Laboratory (2)

Recommended electives (minimum of 6 credits)
BioS 177 Intro. Behavior Neuroscience (3)
BioS 277 Experimental Neuroscience Laboratory (4)
ChE 388 Polymer Synthesis and Characterization Laboratory (3) (Chm 388, Mat 388)
ChE 391 Colloid and Surface Chemistry (Chm 391) (3)
BioS 367 Cell Biology (3)
BioS 371 Elements of Biochemistry (same as Chm 271) (3)
Chm 192 Physical Chemistry Lab (2)
Chm 352 Analytical Chemistry (3)
BioE 350 Special Topics

Suggested courses for each track to meet educational goals particular to that track:

Biochemical Engineering Track – (14 credits)
Mat 33 Engineering Materials and Processes (3)
ChE 31 Material and Energy Balance (3)
ChE 210 Chemical Engineering
ChE 44 Chemical Engineering/Thermodynamics (4)

If ChE 210 is taken, then ChE 211 is recommended instead of Chm 187 (and satisfies that Chemistry requirement).

Bioelectronic/Biophotonics Track – (13 credits)
ECE 81 Principles of Electrical Engineering (4)
ECE 123 Electronic Circuits (3) or Phy 190 Electronics (3)
Mech 2 Elementary Engineering Mechanics (3)
Mat 33 Engineering Materials and Processes (3)

Suggested courses for each track to meet educational goals particular to that track:

Biochemical Engineering Track – (14 credits)
Mat 33 Engineering Materials and Processes (3)
ChE 31 Material and Energy Balance (3)
ChE 210 Chemical Engineering
ChE 44 Chemical Engineering/Thermodynamics (4)

If ChE 210 is taken, then ChE 211 is recommended instead of Chm 187 (and satisfies that Chemistry requirement).

Bioelectronic/Biophotonics Track – (13 credits)
ECE 81 Principles of Electrical Engineering (4)
ECE 123 Electronic Circuits (3) or Phy 190 Electronics (3)
Mech 2 Elementary Engineering Mechanics (3)
Mat 33 Engineering Materials and Processes (3)
### Bioengineering Program

#### Typical four-year course schedule for BS in Bioengineering

<table>
<thead>
<tr>
<th>Freshman year, first semester (same for all three tracks) (16 credits)</th>
<th>Senior year, first semester (14 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioE 1 Freshman Seminar (1)</td>
<td>BioE 132 Bioengineering Research 1 (2) (not required if following IPD trade)</td>
</tr>
<tr>
<td>Chm 25 Introductory Chemical Principles and lab (4)</td>
<td>Eng 211 Integrated Product Development (IPD) Projects I (3)</td>
</tr>
<tr>
<td>Math 21 Calculus I (4)</td>
<td>Summer Internship 2 (0)</td>
</tr>
<tr>
<td>Engr 1 Engineering Computations (3)</td>
<td>Eng 212 Integrated Product Development (IPD) Projects II (2)</td>
</tr>
<tr>
<td>English 1 Composition and Literature (3)</td>
<td>BioE 290 Seminar, Thesis Presentation (1-3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman year, second semester (same for the three tracks) (17 credits)</th>
<th>Senior year, second semester (14-16 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioE 2 Freshman Seminar 2 (1)</td>
<td>BioE 242 Bioengineering Research 3 (2) or ENG 212 Integrated Product Development II (2)</td>
</tr>
<tr>
<td>BioS 41/42 Biology Core I: Cellular and Molecular and Lab (4)</td>
<td>BioE 343 Integrated Biotechnology Laboratory (3)</td>
</tr>
<tr>
<td>Math 22 Calculus II (4)</td>
<td>Phil 116 Bioethics (4)</td>
</tr>
<tr>
<td>Phy 11/12 Introductory Physics I and Lab (5)</td>
<td>Electives (6)</td>
</tr>
<tr>
<td>Engl 2 Composition and Literature II (3)</td>
<td><strong>Bioelectronics/Biophotonics Track</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore year, first semester (17 credits)</th>
<th>Senior year, first semester (17-18 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioE 110 Elements of Bioengineering (4)</td>
<td>Math 205 Linear Methods (3)</td>
</tr>
<tr>
<td>BioS 115/116 Biology Core II: Genetics and Lab (4)</td>
<td>BioE 132 Bioengineering Research 1 (2) or Elective (3)</td>
</tr>
<tr>
<td>Math 23 Calculus II (4)</td>
<td>Chm 51, 53 Organic Chemistry I and Lab (4)</td>
</tr>
<tr>
<td>Math 23 Principles of Economics (4)</td>
<td>ECE 121/123 Electronic Circuits and Lab (5)</td>
</tr>
<tr>
<td>BioE 210 Introduction to Engineering Physiology (4)</td>
<td><strong>Summer 1 Internship (0)</strong></td>
</tr>
<tr>
<td>Chm 31 Chemical Equilibria in Aqueous Systems (3)</td>
<td>Junior year, first semester (17-18 credits)</td>
</tr>
<tr>
<td>Phy 21/22 Introductory Physics II and Lab (5)</td>
<td>Math 205 Linear Methods (3)</td>
</tr>
<tr>
<td>ChE 210 Chemical Engineering Thermodynamics (3)</td>
<td>BioE 132 Bioengineering Research 1 (2) or Elective (3)</td>
</tr>
<tr>
<td>Chm 31 Chemical Equilibria in Aqueous Systems (3)</td>
<td>Chm 51, 53 Organic Chemistry I and Lab (4)</td>
</tr>
<tr>
<td><strong>Summer 1 Internship 1 (0)</strong></td>
<td>ECE 121/123 Electronic Circuits and Lab (5)</td>
</tr>
<tr>
<td>Junior year, first semester (15-16)</td>
<td><strong>Summer 2 Internship (0)</strong></td>
</tr>
<tr>
<td>Math 205 Linear Methods (3)</td>
<td>Senior year, first semester (12 credits)</td>
</tr>
<tr>
<td>BioE 132 Bioengineering Research 1 (2) or Elective (3)</td>
<td>BioE 142 Bioengineering Research 2 (2) or ENG 212 Integrated Product Development II (2)</td>
</tr>
<tr>
<td>Chm 51 &amp; 53 Organic Chemistry I and Lab (4)</td>
<td>Phil 116 Bioethics (4)</td>
</tr>
<tr>
<td>Engr 33 Engineering Materials and Processes (3)</td>
<td>Electives (6)</td>
</tr>
<tr>
<td>ChE 341 Biotechnology I (3)</td>
<td><strong>Bioelectronics/Biophotonics Track</strong></td>
</tr>
<tr>
<td><strong>Junior year, second semester (18-19 credits)</strong></td>
<td>Sophomore year, first semester (17 credits)</td>
</tr>
<tr>
<td>Math 231 Probability and Statistics (3)</td>
<td>BioE 110 Elements of Bioengineering (4)</td>
</tr>
<tr>
<td>BioE 142 Bioengineering Research 2 (2) or ENG 211 Integrated Product Development I (3)</td>
<td>BioS 115/116 Biology Core II: Genetics and Lab (4)</td>
</tr>
<tr>
<td>ChE 44 Fluid Mechanics (4)</td>
<td>Math 23 Calculus III (4)</td>
</tr>
<tr>
<td>ChE 211 Chemical Reactor Design (3)</td>
<td>Phy 21/22 Introductory Physics II and Lab (5)</td>
</tr>
<tr>
<td>Chm 52 Organic Chemistry II (3)</td>
<td><strong>Sophomore year, second semester (16 credits)</strong></td>
</tr>
<tr>
<td>Elective (3)</td>
<td>BioE 210 Introduction to Engineering Physiology (4)</td>
</tr>
<tr>
<td><strong>Summer 2 Internship 2 (0)</strong></td>
<td>Math 205 Linear Methods (3)</td>
</tr>
<tr>
<td>Chm 51 Chemical Equilibria in Aqueous Systems (3)</td>
<td><strong>Cell and Tissue Engineering Track</strong></td>
</tr>
</tbody>
</table>
Aqueous Systems (3)
Mech 2 Elementary Engineering Mechanics (3)
Mat 33 Engineering Materials and Processes (3)
Summer 1 Internship (0)

**BioE 120/121 Biomechanics and Biomechanics Laboratory (4)**

BioE 132 Bioengineering Research 1 (2) or Elective (3)
Chm 51, 53 Organic Chemistry I and Lab (4)
BioE 357 Integrated Biostuctural Mechanics Laboratory (2)

Eco 1 Principles of Economics (4)

**BioE 132 - Bioengineering Research 1 (2) fall**
Research on a topic chosen by students, with the help of a faculty advisor from among the three bioengineering tracks (biopharmaceutical engineering, bioelectronic/biophotonics or cell and tissue engineering). Independent meetings with advising professor will track progress. Includes written report and oral presentation.
Prerequisite junior standing and permission of instructor.

**BioE 142 – Bioengineering Research 2 (2) spring**
Continuation of research initiated in BioE 132, Research 1. Topic chosen by student, with the help of a faculty advisor from among the three bioengineering tracks (biopharmaceutical engineering, bioelectronic/biophotonics or cell and tissue engineering). Independent meetings with advising professor will track progress. Includes written report and oral presentation. Prerequisite BioE 132 or permission of instructor.

**BioE 210 – Introduction to Engineering Physiology (4) spring**
Mammalian physiology for bioengineering students, with an emphasis on control mechanisms and engineering principles. Basic cell function; biological control systems; muscle; neural; endocrine, circulatory, digestive, respiratory, renal, and reproductive systems; regulation of metabolism and defense mechanisms. Includes laboratory work. Prerequisite BioE 110.

**BioE 225 Bioengineering Design (3) spring**
Bioengineering design, including examples of engineering analysis and design applied to representative topics in biomechanics, bioinstrumentation, biomaterials, biotechnology and related areas. Technological needs, design methodology, testing procedures, statistical analysis, governmental regulation, evaluation of costs and benefits, quality of life and ethical issues. Prerequisite BioE 110.

**BioE 242 - Bioengineering Research 3 (2) fall**
Continuation of research initiated in BioE 132 and 142. Topic chosen by student, with a faculty advisor from among the three bioengineering tracks (biopharmaceutical engineering, bioelectronic/biophotonics or cell and tissue engineering). Written and oral reports approved by research advising professor will track progress. Prerequisite BioE 142 or permission of instructor.

**BioE 290 – Bioengineering Thesis (1-3) spring**
Thesis, guided by a faculty advisor, based on work conducted in BioE 132, 142, 242, or in ENG 211, 212. Includes written report and oral presentation. Prerequisite BioE 242 or ENG 212 or permission of instructor.

**BioE 331 – Integrated Bioelectronics Laboratory (2) spring**
Experiments in design and analysis of bioelectronic circuits, micropatterning of biological cells, micromanipulation of biological cells using electric fields, analysis of pacemakers, instrumentation and computer interfaces, ultrasound, optic, laser tweezers and advanced
imaging and optical microscopy techniques for biological applications. Prerequisites Phy 13/22 or Phy 21/22 and ECE 81 or Phy 190, or permission of instructor.

BIOE 343 – Integrated Biotechnology Laboratory (3) fall and spring

Biosafety, sterilization, media formulation, biochemical and enzyme assays, recombinant DNA technique, protein and DNA isolation and purification, for microbial fermentation and animal cell culture. Integration of biotechnology techniques for biopharmaceutical production. Prerequisite BioE 110, CHE 341, and permission of instructor.

BIOE 350 – Special Topics (1-4) spring

Special topics of study in bioengineering. Permission of Instructor.

BIOE 357 – Integrated Biostructural Mechanics Laboratory (2) fall

Basic concepts of bioengineering design through experimental designs and procedures involving cells and tissues and their interface with synthetic implants. Experimental techniques include surface characterization and interactions, spectroscopy, and advanced techniques in microscopy. Nerve action, electrocardiography, mechanics of muscle, membranes and other model systems in vitro. Prerequisite BioE 110, and permission of instructor.

Biological Sciences

Professors. Jeffrey A. Sands, Ph.D. (Penn State), Chairperson; Linda J. Lowe-Krentz, Ph.D. (Northwestern), Associate Chairperson; Barry Bean, Ph.D. (Rockefeller); Michael J. Behe, Ph.D. (Pennsylvania); Lynne Cassimeris, Ph.D. (North Carolina); David Cundall, Ph.D. (Arkansas); Murray Itzkowitz, Ph.D. (Maryland); Steven Krawiec, Ph.D. (Yale); John Nyby, Ph.D. (Texas); Jill Schneider, Ph.D. (Wesleyan); Neal Simon, Ph.D. (Rutgers).

Associate Professors. Michael R. Kuchka, Ph.D. (Carnegie Mellon); Robert V. Skibbens, Ph.D. (North Carolina); Jennifer Swann, Ph.D. (Northwestern); Vassie C. Ware, Ph.D. (Yale).

Assistant Professors. Michael Burger, Ph.D. (Texas); Maria Bychkovskaya, Ph.D. (Russian Academy of Sciences); Matthias Falk, Ph.D. (Heidelberg); Mary Kathryn Iovine, Ph.D. (Washington); Stefan Maas, Ph.D. (Heidelberg); Colin J. Saldanha, Ph.D. (Columbia).

Professor of Practice. Jutta Marzillier, Ph.D. (Heidelberg)

The biological sciences include the study of living systems at levels ranging from the structure and function of molecules to the behavior and evolution of communities of organisms. The department offers four different routes to mastering skills and knowledge in this broad area. The B.A. and B.S. programs in biology provide a broad introduction to biology with opportunities for students to create a program of study suited to their specific interests. Programs of study focused on particular aspects of biology are the B.A. and B.S. degree in the areas of behavioral neuroscience and molecular biology. For programs in biochemistry, bioengineering and applied life sciences, see those separate sections in the catalog. The Department of Biological Sciences strongly supports the positions of both the American Association for the Advancement of Science and the National Academy of Sciences that intelligent design is not scientific and should not be presented as science in science classes.

The requirements for the B.A. and B.S. in biology, behavioral neuroscience, and molecular biology are listed below. Research interests of the faculty and instrumentation are described in the section on graduate education.

B.A. with Major in Biology

College and university requirements for all majors (26 credit hours)

ENGL 1, 2 Composition and Literature (6)

ARTS 1 Choices and Decisions (1)

First Year Seminar (3)

Social Sciences (8)

EES 53, EES 255, EES 259, EES 265, EES 351)

Mathematics (7-8 credit hours)

MATH 51 Survey of Calculus I (4)

MATH 52 Survey of Calculus II (3) or

MATH 12 Basic Statistics (4) or

Biosafety, sterilization, media formulation, biochemical and enzyme assays, recombinant DNA technique, protein and DNA isolation and purification, for microbial fermentation and animal cell culture. Integration of biotechnology techniques for biopharmaceutical production. Prerequisite BioE 110, CHE 341, and permission of instructor.

BIOE 350 – Special Topics (1-4) spring

Special topics of study in bioengineering. Permission of Instructor.

BIOE 357 – Integrated Biostructural Mechanics Laboratory (2) fall

Basic concepts of bioengineering design through experimental designs and procedures involving cells and tissues and their interface with synthetic implants. Experimental techniques include surface characterization and interactions, spectroscopy, and advanced techniques in microscopy. Nerve action, electrocardiography, mechanics of muscle, membranes and other model systems in vitro. Prerequisite BioE 110, and permission of instructor.

Biology (30 credit hours)

BIOS 41 Biology Core I: Cellular and Molecular (3)

BIOS 42 Biology Core I: Cellular and Molecular Laboratory (1)

BIOS 115 Biology Core II: Genetics (3)

BIOS 116 Biology Core II: Genetics Laboratory (1)

BIOS 120 Biology Core III: Integrative and Comparative (4)

Electives *Biology electives

*Approved electives (18 credit hours, no more than 3 cr. from the following courses: 161, 261, 262, 391, 393, College scholar project, not BIOS 130 and no more than 1 course from the following courses: EES 253, EES 255, EES 259, EES 265, EES 351.

Collateral Sciences (13 credit hours)

CHM 25 Introduction to Chemical Principles (4)

CHM 26 Biochemical Applications of Chemical Principles (1)

CHM 51,53 Organic Chemistry I and lab (3,1)

CHM 52,58 Organic Chemistry II and lab (3,1)

The B.S. in Biology

The bachelor of science in biology offers broad scientific preparation in biology to facilitate advanced work in the life sciences. Progression through the program is best served through early commitment.

Requirements for the B.S. in Biology

College and university requirements as above (26 credit hours)

Major Program (76 credit hours)

Biology (37 credit hours)

BIOS 41 Biology Core I: Cellular and Molecular (3)

BIOS 42 Biology Core I: Cellular and Molecular Laboratory (1)

BIOS 115 Biology Core II: Genetics (3)

BIOS 116 Biology Core II: Genetics Laboratory (1)

BIOS 120 Biology Core III: Integrative and Comparative (4)

BIOS 317 Evolution (3)

Electives* Biology electives (22)
*Biology electives must include one course from list A, one course from list B and at least four credits of laboratory experience (e.g. two 2 credit laboratory courses) and may include no more than one course from the following courses: EES 253, EES 255, EES 259, EES 265, EES 351). These will be chosen in consultation with the major advisor.

**List A**
- BIOS 276 Behavioral Neuroscience II (3)
- BIOS 313 Vertebrate Histology (4)
- BIOS 314 Vertebrate Development (3)
- BIOS 335 Animal Behavior (3)
- BIOS 337 Behavioral Ecology (3)
- BIOS 382 Endocrinology of Behavior (3)

**List B**
- BIOS 324 Bacteriology (3)
- BIOS 345 Molecular Genetics (3)
- BIOS 353 Virology (3)
- BIOS 356 Human Genetics and Reproduction (3)
- BIOS 367 Cell Biology (3)
- BIOS 371 Elements of Biochemistry I (3)

**Mathematics (14 credit hours minimum)**
either
- MATH 51, 52 Survey of Calculus I, II, and
- MATH 43 Linear Algebra (10)
  or
- MATH 21, 22, 23 Calculus I, II, III (12)
  and
- BIOS 130 BioStatistics (4)

**Collateral Sciences (25 credit hours)**
- CHM 75,76 Concepts, Models and Experiments I and II (8) or CHM 25, 26, 31
- CHM 51, 52 Organic Chemistry I and II (6)
- CHM 53, 58 Organic Chemistry Laboratory I and II (2)
- PHY 10 General Physics I (4) or
- PHY 11 Introductory Physics I (4)
- PHY 12 Introductory Physics Laboratory I (1)
- PHY 13 General Physics II (3)
- PHY 22 Physics Lab II (1)

**Recommended B.S. Biology Sequence**

**freshman year**
- BIOS 41 Biology Core I: Cellular and Molecular (3)
- BIOS 42 Biology Core I: Cellular and Molecular Laboratory (1)
  or
- MATH 51, 52 Survey of Calculus I and II (7)
- CHM 75, 76 Concepts, Models and Experiments I and II (8)
  or
- Dept 90 First Year Seminar (3)
- ARTS 1 Choices & Decisions (1)

**sophomore year**
- BIOS 115 Biology Core II: Genetics (3)
- BIOS 116 Biology Core II: Genetics Laboratory (1)
- CHM 51, 52,53, 58 Organic Chemistry and Laboratory (8)
- MATH 43 Survey of Linear Algebra
- BIOS 120 Biology Core III: Integrative and Comparative (4)
- BIOS 130 BioStatistics (4)

**junior year**
- PHY 10, 12 General Physics I and Laboratory (5)
- PHY 13, 22 General Physics II and Laboratory (4)

**Approved biology electives including one from list A and one from list B (9-12)**
- senior year
  - BIOS 317 Evolution (3)
  - Electives Biology electives including at least 4 credits of laboratory (10-14)

**Minor in Biology**
A minor in biology may be achieved by completing the following requirements (18 credits):
- BIOS 41, 42 Biology Core I: Cellular and Molecular Laboratory (4)
- BIOS 115, 116 Biology Core II: Genetics and Laboratory (4)
- BIOS 120 Biology Core III: Integrative and Comparative (4) or
- BIOS 177 Behavioral Neuroscience I (3)
- CHM 51 Organic Chemistry (3)
  - Elective Biology electives at the 200 or 300 level (3 or 4)

**B.A. with major in Behavioral Neuroscience**
The B.A. in Behavioral Neuroscience is a natural science major for B.A. distribution purposes.

**Required Major Courses**
- BIOS 41 Biology Core I: Cellular and Molecular (3)
- BIOS 42 Biology Core I: Cellular and Molecular Laboratory (1)
- BIOS 115 Biology Core II: Genetics (3)
- BIOS 116 Biology Core II: Genetics Laboratory (1)
- BIOS 120 Biology Core III: Integrative and Comparative (4) or
- BIOS 177 Behavioral Neuroscience I (3)
- BIOS 276 Behavioral Neuroscience II (3)
- BIOS 277 Experimental Neuroscience Laboratory (1)
- BIOS 382 Endocrinology of Behavior (3)

**Major Electives (6 credits)**
- BIOS 234 Comparative Vertebrate Anatomy (4)
- BIOS 313 Vertebrate Histology (4)
- BIOS 314 Vertebrate Development (3)
- BIOS 317 Evolution (3)
- BIOS 324 Bacteriology (3)
- BIOS 328 Immunology (3)
- BIOS 335 Animal Behavior (3)
- BIOS 337 Behavioral Ecology (3)
- BIOS 345 Molecular Genetics (3)
- BIOS 353 Virology (3)
- BIOS 356 Human Genetics and Reproduction (3)
- BIOS 367 Cell Biology (3)
- BIOS 368 Cell Biology Laboratory (2)
- BIOS 369 Comparative Physiology of Vertebrate Systems (3)
- BIOS 371 Elements of Biochemistry I (3)
- BIOS 372 Elements of Biochemistry II (3)
- BIOS 377 Biochemistry Laboratory (3)
- BIOS 385 Neurophysiology and Memory (3)
- CHM 31 Chemical Equilibria in Aqueous Systems (3)
- PSYC 117 Cognitive Psychology (3)
- PSYC 153 Personality (4)
- PSYC 154 Introduction to Clinical Psychology (3)
- PSYC 176 Mind and Brain (4)
PSYC 305 Abnormal Psychology (4)
PSYC 307 Seminar in Cognition (4)

**Required Collateral Courses**

MATH 51, 52 Survey of Calculus I and II (7) or MATH 21, 22 Calculus I and II (8)

CHM 25 Introduction to Chemical Principles (4)
CHM 26 Biochemical Applications of Chemical Principles (1)
CHM 51, 52 Organic Chemistry (6)
CHM 53, 58 Organic Chemistry Laboratory I and II (2)
PSYC 1 Introduction to Psychology (4)

**Other Options**
The B.A. in Behavioral Neuroscience can be structured for a wide variety of possibilities (see listing of recommended elective courses). By using free electives to take additional science, the B.A. also can serve as a preprofessional degree for many graduate and professional schools.

Students interested in a particular career-based program should consult their advisor or the program director, Professor John Nyby.

**B.S. in Behavioral Neuroscience**

B.S. majors are required to take the core courses of the B.A. program and to fulfill the elective requirements of the B.A. program. An early commitment to the B.S. is desirable to meet all the requirements of this program. Additional requirements are shown below.

**Math and Science Requirements for the B.S.**

MATH 51, 52, 43 Survey of Calculus I, II and Linear Algebra (10)

CHM 25 Introduction to Chemical Principles (4)
CHM 26 Biochemical Applications of Chemical Principles (1)
CHM 51, 52 Organic Chemistry I and II (6)
CHM 53, 58 Organic Chemistry Laboratory I and II (2)
PSYC 1 Introduction to Psychology (4)

**B.S. in Molecular Biology**

Requirements for the B.S. in Molecular Biology

**Major Program (93 credit hours)**

**Mathematics (12 credit hours)**

MATH 21, 22, 23 Calculus I, II and III (12 credit total) or
MATH 51, 52, 43 and one of MATH 12, or 231 or BIOS 130 (13-14, credit total)

**Chemistry (16 credit hours)**

CHM 25 Introduction to Chemical Principles (4)
CHM 26 Biochemical Applications of Chemical Principles (1)
CHM 51, 52 Organic Chemistry I and II (6)
CHM 53, 58 Organic Chemistry Laboratory I and II (2)
CHM 31 Chemical Equilibria in Aqueous Systems (3)

**Physics (9-10 credit hours)**

PHY 10 (or 11) General Physics I (4)
PHY 12 Introductory Physics Laboratory I (1)
PHY 13 (or 21) General Physics II (3 or 4)
PHY 22 Physics Lab II (1)

**Molecular Biology (37-39 credit hours)**

BIOS 41 Biology Core I: Cellular and Molecular (3)
BIOS 42 Biology Core I: Cellular and Molecular Lab (1)
BIOS 115, 116 Biology Core II: Genetics (3) and Lab (1)
BIOS 120 Biology Core III: Integrative and Comparative (4)
BIOS 324 Bacteriology (3) or
BIOS 328 Immunology or
BIOS 353 Virology
BIOS 325 Bacteriology Lab (2) or
BIOS 368 Cell Biology Lab (2) or
BIOS 377 Biochemistry Lab (3)
BIOS 371 Elements of Biochemistry I (3)
BIOS 345, 346 Molecular Genetics (3) and Lab (2)
BIOS 367 Cell Biology (3)
BIOS approved electives (6 credit hours)

**Math (8-10 credit hours)**

MATH 21 and 22 Calculus I & II (8) or
MATH 51, 52, & 43 Survey of Calculus I & II, and Linear Algebra (10)

**Chemistry (16 credit hours)**

CHM 25 Introduction to Chemical Principles (4)
CHM 26 Biochemical Applications of Chemical Principles (1)
CHM 51, 52 Organic Chemistry I, II and Lab I & II (8)

**Physics (9 credit hours)**

PHY 10, 12 General Physics I and Lab I (5)
PHY 11, 12 Introductory Physics I and Lab (5)
PHY 13, 22 General Physics II and Lab (4)
BIOS 372 Elements of Biochemistry II (3)
BIOS 381 Physical Biochemistry (3)
Approved Molecular Biology Electives (12)

Recommended sequence for the B.S. in Molecular Biology

fresman year
BIOS 41 Biology Core I: Cellular and Molecular (3)
BIOS 42 Biology Core I: Cellular and Molecular Laboratory (1)
MATH 21, 22 Calculus I and II (8)
CHM 25 Introduction to Chemical Principles (4)
CHM 26 Biochemical Applications of Chemical Principles (1)
CHM 31 Chemical Equilibria in Aqueous Systems (3)
sophomore year
BIOS 115 Biology Core II: Genetics (3)
BIOS 116 Biology Core II: Genetics Laboratory (1)
BIOS 120 Biology Core III: Integrative and Comparative (4)
MATH 23 Calculus III (4)
CHM 51, 52 Organic Chemistry (6)
CHM 53, 58 Organic Chemistry Laboratory (2)
PHY 10, 12 General Physics I and Lab (5)
PHY 13, 22 General Physics II and Laboratory (4)

junior year and senior year
BIOS 324 Bacteriology (3) or
BIOS 328 Immunology (3) or
BIOS 353 Virology (3)
BIOS 325 Bacteriology Laboratory (2) or
BIOS 368 Cell Biology Laboratory (2) or
BIOS 377 Biochemistry Laboratory (3)
BIOS 345 Molecular Genetics (3)
BIOS 346 Molecular Genetics Laboratory (2)
BIOS 371, 372 Elements of Biochemistry I and II (6)
BIOS 367 Cell Biology (3)
BIOS 381 Physical Biochemistry (3)
Approved Molecular Biology Electives (12)

Molecular Biology Minor
The molecular biology minor program consists of BIOS 41 (3), 42 (1), 115 (3), 116 (1), 345 (3), 346 (2), and a minimum of 4 additional credits of BIOS coursework at the 200 or 300 level. Collateral coursework must include: MATH 51 or 21 (4 credit hours), CHM 25 (4), CHM 26 (1), and CHM 51 (3).

Departmental Honors
A student may apply for admission to the departmental honors program through a potential thesis advisor. Requirements for Departmental Honors include a major GPA of 3.25 and at least 2 semesters of research for a minimum of 6 cr. The student must write a research proposal for their project and a thesis at the conclusion of their research. This work must be presented in a symposium at the end of the project. Students must meet regularly to discuss their research progress either in BIOS 387 and BIOS 388 or with their advisor and research group to facilitate progress in the research project.

Undergraduate Courses in Biological Sciences
Courses with numbers below 010 are intended for non-majors and may not be used to satisfy any life science major or minor requirement.

BIOS 1. Biology for Non-Majors (3 or 4)
Basic and applied biology for non-science majors. May not be used in satisfaction of life science major or minor programs. Focus of topics at the discretion of the instructor. May be taught with (4 credits) or without (3 credits) a laboratory. (NS)

BIOS 7. Human Reproduction (3)
Basic and applied human reproductive biology for non-science majors. May not be used in life science major or minor programs. (NS)

BIOS 8. Drugs and Behavior (3)
Basic principles of drug action in the central nervous system. Effects of stimulants, depressants, intoxicants and drug abuse on behavioral function. Clinical use of drugs in the treatment of various psychological and psychiatric disorders. (NS)

BIOS 9. Anatomy and Physiology (4)
Introduction to the structure and function of the major systems of the body. (NS)

BIOS 41. Biology Core I: Cellular and Molecular (3)
Basic building blocks and higher-order structures required for cellular processes. Topics include the character of membranes, the molecular/cellular basis of energy production, cell cycle progression, DNA replication, gene expression, signal transduction, and cell division. Pre- or co-requisite: CHM 25 or 75. (NS)

BIOS 42. Biology Core I: Cellular and Molecular Lab (3)
Experiments, observations, and discussions related to the principal topics covered in BIOS 41. Corequisite: BIOS 41.

BIOS 115. Biology Core II: Genetics (3)
The structure, function, and continuity of hereditary information. Classical genetic analysis. Molecular biology of genes and genomes. Population genetics and evolution. Genetics of complex traits. Prerequisite: BIOS 41. (NS)

BIOS 116. Biology Core II: Genetics Laboratory (1)
Laboratory work that demonstrates major principles of genetics: included are experiments on microorganisms and the common fruit fly, Drosophila melanogaster. Prerequisite: BIOS 115, preferably concurrently.

BIOS 120 Biology Core III: Integrative and Comparative (4)
Experimental and historical approaches to the analysis of structural and functional properties in organisms. Use of scientific method to study species diversity. Introduction to the analysis of organismal attributes that explain behavioral repertoire and ecological relationships. Prerequisites: BIOS 115, 116 (NS).

BIOS 130. BioStatistics (4)
Elements of statistics and probability theory with emphasis on biological applications. Statistical analysis of experimental and observational data. Prerequisite: BIOS 41 (ND)
BIOS 161. Supervised Research (1-3) fall-spring
Apprenticeship in ongoing faculty research program. Literature review, experimental design, data collection and analysis, and professional writing under faculty sponsor supervision. May be repeated but only 3 credits can be counted toward any life science major. Prerequisite: BIOS 41 and consent of instructor. (ND)

BIOS 177. Behavioral Neuroscience I (3)
Nervous system functioning with varying emphasis on neurophysiology, neuroanatomy, behavior genetics, information transmission, research techniques, sensory and motor functions. Prerequisite: BIOS 41. (NS)

BIOS 202. Biomedical Externship (1-3)
Analysis of individualized experiences at external biomedical clinical or research sites. Limited enrollment. May not be taken for pass-fail grading. May be taken only once and may not be used to satisfy any life science major or minor requirement. Prerequisite: Consent of department. (NS)

BIOS 233. Invertebrate Zoology (4)
Survey of representative invertebrates. Structure and behavior of selected types and concepts of evolutionary relationships among the major groups. Two lectures and two laboratory periods. Prerequisite: BIOS 120. (NS)

BIOS 234. Comparative Vertebrate Anatomy (4)
A course in vertebrate zoology with emphasis on the study of homologous body structures in the various vertebrate classes and their relationship to the functional demands of habit and environment in each class. Detailed dissections of representative vertebrates are made in the laboratory. Two lectures and two laboratory periods. Prerequisite: BIOS 120. (NS)

BIOS 241. Vertebrate Natural History (4)
An introduction to the ecology, behavior, distribution and evolution of vertebrates, with emphasis on the North American fauna. Two lectures, one tutorial and one laboratory and field trip. This course may be used to fulfill junior writing requirements with the permission of the instructor. Prerequisite: BIOS 120. (NS)

BIOS 251. Writing and Biological Sciences (3)
A course designed to acquaint students with some of the intellectual foundations of science, with attention to the distinctiveness of the biological sciences. Format includes readings, intensive writing, extemporaneous speaking, and discussion. May not be used to fulfill biology BA elective requirements. Prerequisite: Major status and consent of department. (NS)

BIOS 261. Special Topics in Biological Sciences (1-3)
Research, conferences and reports on selected topics not covered in the general undergraduate offerings. May be taken more than once for credit. Prerequisite: Major status and consent of the instructor. (NS)

BIOS 262. Research Proposal (3)
Literature and methods of research in area of department faculty expertise. Requires development of detailed proposal for research to be performed in senior year. Prerequisites: Major in any biological sciences degree program; junior standing; GPA of 3.0 in major; and consent of department. (NS)

BIOS 276. Behavioral Neuroscience II (3)
Neuronanatomy and neurophysiology of animal and human behavior. Feeding, thirst, sleep, emotions, learning, and psychopathology. Prerequisite: BIOS 177. (ND)

BIOS 277. Experimental Neuroscience Laboratory (I)
This laboratory course examines the specialized properties of the neuron which shape its function within neural networks, the development and structure of the nervous system, and the preparation of neural tissue for microscopic examination. Included are experiments and demonstrations utilizing important biochemical, cellular and molecular techniques used in modern neurobiology. Prerequisites: BIOS 177 and consent of department chair. (NS)

For Advanced Undergraduates and Graduate Students

BIOS 307. Male Reproductive Biology (3)
Molecular, cellular, and genetic aspects of the mammalian male reproductive system. Prerequisites: BIOS 120 and consent of instructor. (NS)

BIOS 313. Vertebrate Histology (3)
Microstructural and ultrastructural properties of vertebrate cells and tissues. Techniques of tissue preparation. One lecture and two labs. Prerequisite: BIOS 120. (ND)

BIOS 314. Vertebrate Development (3)
Germ cell formation, fertilization, early development, and the origin of the principal organ systems. Location, structure, and regulation of information from molecular to organismal levels of organization. Prerequisite: BIOS 120. (NS)

BIOS 317. Evolution (3)
Mechanisms of evolution, emphasizing generic structure and variation of populations, and isolation. Origin of species and higher taxa. Rates of evolution, extinction. Prerequisite: BIOS 120. (NS)

BIOS 324. Bacteriology (3)
The structure, physiology, growth, genetics and taxonomy of prokaryotes. Prerequisites: CHM 51 and BIOS 120 and consent of instructor. (NS)

BIOS 325. Bacteriology Laboratory (2)
Standard procedures and metabolic tests used in determinative bacteriology; aseptic technique, sterilization, enumeration, and control of bacterial growth; other selected topics. Corequisite: BIOS 324.

BIOS 328. Immunology (3)
Distinction of "self" and "non-self" through humoral and cellular mechanisms. Antigens; biochemical structures, cellular mechanisms, genetic control and processing, phylogenetic distribution, diseased states. Prerequisite: BIOS 120. (NS)

BIOS 329. Herpetology (3)
Biology of amphibians and reptiles. Two lectures, one laboratory or field trip per week. Prerequisite: BIOS 120. (ND)

BIOS 334. Species and Speciation (3)
Consideration of the origin of species. Discussion of a variety of "species" definitions and exploration of the evolutionary mechanisms by which new species arise. Alternation between lecture and discussion, drawing on the textbook and on current and classical literature. Prerequisite: BIOS 317.

BIOS 335. (PSYC 335) Animal Behavior (3)
Discussion of the behavior of invertebrates and vertebrates and analysis of the physiological mechanisms responsible for behavioral stimuli, and adaptive value of specific behavior patterns. Prerequisite: BIOS 120. (NS)
BIOS 336. Animal Behavior Laboratory (2)
Experiments and field observations illustrating principles discussed in BIOS 335. Emphasis on observing animals, performing experiments, collecting and analyzing data, and individual research. Six hours of laboratory per week. Corequisites: BIOS 335 or 337.

BIOS 337. Behavioral Ecology (3)
Social systems of vertebrate and invertebrate groups. Emphasis on ecological and evolutionary factors that influence social behavior. Prerequisite: BIOS 120. (NS)

BIOS 345. Molecular Genetics (3)
The organization and replication of genetic material; mutagenesis; mechanisms of regulation; mechanisms of gene transmission involving prokaryotes and eukaryotes and their viruses; techniques for intervention into genetic organization and expression. Prerequisite: BIOS 120. (NS)

BIOS 346. Molecular Genetics Laboratory (2)
Laboratory experiments related to the topics covered in BIOS 345. Emphasis is on molecular characterization of DNA and the principles of gene isolation and transfer. Corequisite: BIOS 345.

BIOS 347. Advanced Topics in Genetics (3)
Lectures and student projects on selected aspects of genetics such as the genetics and evolution of particular organisms, regulation of gene expression and transmission, human genetics, gene therapy, etc. Prerequisites: BIOS 345 or consent of department. (NS)

BIOS 353. Virology (3)
Structure and replication of viruses. Emphasis on the organization, replication, and regulation of expression of viral genomes; the mechanisms of virus assembly and release; and on virus-host interactions. Special attention given to human pathogenic viruses. Prerequisite: BIOS 120 and CHM 52. (NS)

BIOS 356. Human Genetics and Reproduction (3)
Frontiers in human genetics, including simple and complex genetic diseases, cancers. Emphasis on genes and structures that enable reproductive processes; genetic functions of mammalian germ lines. Analysis of current publications. Prerequisite: BIOS 120. (NS)

BIOS 367. Cell Biology (3)
Molecular aspects of cell biology. Emphasis on membrane structure and function, organelle biogenesis, cell motility, the cytoskeleton, and extracellular matrix. Prerequisite: BIOS 120. (NS)

BIOS 368. Cell Biology Laboratory (2)
Basic methods used in cell biology laboratories around the world and the opportunity to carry out an independent research project. Techniques include histology and microscopy (both white and fluorescent light), tissue culture and sterile procedures, cellular fractionation, nuclear import assays, and immunological probing. Co- or prerequisite: BIOS 367. Consent of Department. (NS)

BIOS 369. Comparative Physiology of Vertebrate Systems (4)
Functional analysis of energy balance in vertebrate animal models. Digestion, respiration, circulation, and excretion, across aquatic and terrestrial vertebrates. Homeostatic mechanisms of salt, water, and gas exchange. Ionotropic and metabotropic signal transduction. Hormonal and electrical cellular communication among muscles, glands, and neurons. Sensory systems, movement and reproduction. Physiological adaptations to extreme environments. Includes one laboratory meeting per week. Prerequisite: BIOS 120. (NS)

BIOS 371. (CHM 371) Elements of Biochemistry I (3) fall
A general study of carbohydrates, proteins, lipids, nucleic acids and other biological substances and their importance in life processes. Protein and enzyme chemistry are emphasized. Prerequisite: one year of organic chemistry. (NS)

BIOS 372. (CHM 372) Elements of Biochemistry II (3) spring
Dynamic aspects of biochemistry; enzyme reactions including energetics, kinetics and mechanisms; metabolism of carbohydrates, lipids, proteins and nucleic acids; photosynthesis, electron transport mechanisms, coupled reactions, phosphorylations, and the synthesis of biological macromolecules. Prerequisite: BIOS 371 and BIOS 41 or consent of the instructor. (NS)

BIOS 377 (CHM 377). Biochemistry Laboratory (3) fall
Laboratory studies of the properties of chemicals of biological origin and the influence of chemical and physical factors on these properties. Laboratory techniques used for the isolation and identification of biochemicals. Prerequisite: BIOS/CHM 371 previously or concurrently and BIOS 41 or consent of instructor. (ND)

BIOS 378 (CHM 378). Biochemical Preparations (1-3) spring
A laboratory course involving the preparation or isolation, purification and identification of chemicals of biological origin. Prerequisites: BIOS/CHM 377 and 372, previously or concurrently. (ND)

BIOS 381 Physical Biochemistry (3)
Topics include: thermodynamics of biological systems; Forces acting on and between biological molecules; Principles of macromolecular structure; Physical methods used to characterize biomolecules; and other topics to be determined. Prerequisite: BIOS/CHM 371 and 41. (NS)

BIOS 382. (PSYC 382) Endocrinology of Behavior (3)
Hormonal effects upon animal and human behavior. Emphasis on neuroendocrinology of steroid hormone involvement in reproductive behaviors. Prerequisite: BIOS 177. (NS)

BIOS 383. Biological Sciences Colloquia (1)
Analysis of weekly colloquia in the biological sciences. For senior majors in the biological sciences. May be taken twice for credit. (ND)

BIOS 384. Eukaryotic Signal Transduction (3)
Signal transduction between cells of multi-cellular eukaryotic organisms examined in the context of specialized functions that include; nutrition, hormones and neurotransmitters, vision, muscle contraction, adhesion, and the immune system. The evolution of cancer based
on mutations in these signaling systems. Prerequisite BIOS 367 or 372.

BIOS 385. Neurophysiology and Memory (3) Lectures and seminars on mechanisms of neuronal communication, the ability of neuronal networks to store and retrieve information, cellular basis for memory. Prerequisite: BIOS 177 and PHY 13, or consent of the instructor. (NS)

BIOS 387. Biological Sciences Honors Seminar (1) Development, presentation and implementation of research proposals, and discussions of research. Required for senior biology and molecular biology majors pursuing departmental honors. Departmental permission required. (ND)

BIOS 388. Biological Sciences Honors Seminar (1) Continuation and extension of BIOS 387. Departmental permission required. (ND)

BIOS 391. Undergraduate Research (1-3) Laboratory research under tutorial with a faculty member. May be taken more than once for credit. Prerequisites: junior standing, and consent of instructor. (ND)

BIOS 393. Thesis (3) Required courses: BIOS 387 or 388. Development, presentation and implementation of the project, final report and presentation. Prerequisite: consent of instructor. (NS)

Special Health Professions Programs

Students may apply for admission to an accelerated B.A.-Doctor of Medicine program and a B.A.-Doctor of Medical Dentistry program. A six-year B.A.-M.D. program is offered in conjunction with Drexel University College of Medicine, and a seven-year B.A.-D.M.D. program is offered in conjunction with the University of Pennsylvania School of Dental Medicine. Students in these programs receive a B.A. from Lehigh and a graduate degree from the designated professional school within a six- or seven-year period. For details concerning admission to these programs, see Health Professions, Section III.

Graduate Study in the Biological Sciences

Rigorous, research-oriented graduate programs leading to a Doctor of Philosophy are offered in three divisions of the Department of Biological Sciences: biochemistry, integrative biology, and molecular biology. To complete the program students must successfully complete core courses, pass a qualifying exam, prepare, submit, and successfully defend a written research proposal, complete the research described in the proposal, and submit a written dissertation and defend the completed research to the department.

Once students enter the department, their progress is monitored by the graduate committee until they are admitted to candidacy. Members of the committee meet with the student each semester to assess the student’s progress towards the degree and to assist students in choosing the appropriate courses to provide a solid scientific foundation and an up-to-date understanding of the discipline. This will be assessed by the qualifying exam. The qualifying exam generally should be taken after the third semester and no later than the fourth semester of course work. It will be prepared, administered and graded by the faculty associated with the specific graduate program in which the student is enrolled. It consists of a two-day written exam and an oral examination. The exam can be repeated once. Admission to candidacy is granted after successful completion of the qualifying exam and the thesis proposal. The proposal is a written description of an original research project developed under the guidance of a faculty member chosen by the student to be his/her advisor. The proposal will be presented orally to the thesis committee, typically after the fifth semester. Following the presentation of the proposal, an oral examination will take place in which the thesis committee will question the student about general science related to the project. This will constitute the general examination.

Core requirements for each division are listed below. The graduate school requires students to register for at least 72-post baccalaureate credits to earn the Ph.D. In addition, all students must take BIOS 408 (0 credits) Responsible Conduct of Science within their first year of graduate study. All students must also attend departmental seminars and enroll in BIOS 406 (1 credit) Biological Sciences Seminar at least twice in the first four semesters. A minimum of 24 course credits may be chosen from upper level courses in biochemistry, molecular biology, cell biology, behavioral biology and evolutionary biology, and neuroscience. At least 12 of these credits must be at the 400 level.

In the biochemistry program, research areas include DNA structure and function, regulation of protein synthesis, and signal transduction. Students admitted to graduate study in biochemistry will typically have an undergraduate degree in chemistry or biochemistry. Students with an undergraduate degree in a related discipline will be expected to have the following undergraduate preparation for graduate study beyond introductory chemistry and a year of organic chemistry: at least one semester of analytical chemistry and one semester of physical chemistry - thermodynamics and kinetics, with appropriate math. Students without that background will be expected to take courses to fulfill those requirements as part of their graduate study.

Required courses: BIOS 371, 372 Elements of Biochemistry I and II, BIOS 469, 470 Biochemical Problem Solving I and II, CHM 423 Bio-Organic Chemistry, BIOS 345 Molecular Genetics, and a seminar course. BIOS 408 or CHM 400 must also be completed before beginning research.

The graduate program in integrative biology is designed to train students in advanced organismal biology with the emphasis on behavioral ecology, evolution, functional morphology, endocrinology, and neurobiology of animals. The mission of the program is to create students who are broadly trained and uniquely capable of asking questions and solving problems at the interface of these traditionally defined fields. Students admitted to the program should have a basic knowledge of evolution, anatomy, physiology, behavioral neuroscience, and/or behavioral ecology. Students will begin by taking core courses providing a broad foundation in integrative biology at the graduate level and work toward a Ph.D. with a concentration in either behavioral neuroscience or behavioral and evolutionary biology. Regardless of con-
The integrative program consists of two tracts: (I) Animal Behavior and Evolution, and (II) Neuroscience. The Animal Behavior and Evolution tract requires that students take 4 core courses with at least one course taken from each of the following three core areas: (1) Behavioral/Endocrinology (courses include BIOS 409, 439, 334), (2) Developmental/Endocrinology (BIOS 450, 457), (2) Animal Behavior/Evolution (BIOS 409, 439, 334), (3) Cell/Molecular Neuroscience (411, 421, 422, 431, 432). BIOS 401 and two semesters of BIOS 406 are required. Depending on the student's background, additional courses may be required.

In the molecular biology program, research areas include microbial evolution and genetics, plant and animal molecular genetics, eukaryotic cell biology, and regulation of gene expression. Required core courses include BIOS 345 Molecular Genetics, BIOS 371 Elements of Biochemistry II, BIOS 411 Advanced Cell Biology, BIOS 421 Molecular Cell Biology I, and BIOS 422 Molecular Cell Biology II. Additional courses to reach 24 credits are chosen from upper level electives in molecular biology, cell biology, and biochemistry.

Facilities available for research in the biological sciences include core facilities with equipment (for example, for DNA synthesis, confocal microscopy, digital imaging, chromatography, cell culture, centrifugation, controlled environments, gamma and scintillation counting, flow cytometry, and rodent surgery). Individual research laboratories and advanced teaching laboratories contain a variety of additional equipment. Ongoing interactions with a variety of private companies contribute additional opportunities for student experiences.

**Graduate Courses in the Biological Sciences**

**BIOS 401. Professional Skills for Biological Sciences Graduate Students (3)**

Students learn expectations and fundamental skills related to success in the biological sciences. The course is designed to help students make the most out of their graduate education. Students learn the underpinnings of fundable, publishable research, and how these general principles can be applied to their specific research area. They learn to write and review manuscripts and grant proposals by serving on a mock editorial board and scientific review panel. They gain experience in giving oral presentations. Readings are from texts on scientific writing and research styles, and from original journal articles and grant proposals written by the faculty. No prerequisites. Required of all Integrative Biology graduate students.

**BIOS 404. (PSYC 404) Behavioral Neuroscience (3)**

Theoretical and empirical issues in biopsychology. Prerequisite: Graduate standing or consent of instructor.

**BIOS 405. Special Topics in Molecular Biology (1-3)**

Research, conferences, and reports on selected topics not covered in the general graduate offerings. May be taken more than once for credit.

**BIOS 406. Biological Sciences Seminar (1)**

An advanced seminar in current developments including departmental research. Required for candidates for graduate degrees in molecular biology. May be taken more than once for credit.

**BIOS 407. Research in Biological Science (1-9)**

Laboratory investigations in one of the department's research areas.

**BIOS 408. Responsible Conduct of Science (0)**

Responsible practice in research. Training in general laboratory methods; human subjects concerns; radiation safety; chemical hazards; aseptic technique: physical, mechanical, biological, and fire hazards; animal welfare. Occupational and workplace considerations. Recombinant DNA guidelines; patent and proprietary rights; controversies over applications of science. Appropriate aspects required of investigators in all departmental research projects.

**BIOS 409. Evolutionary and Functional Morphology (3)**

Readings in the current literature, demonstrations and laboratory exercises exploring the applications of comparative methods to the analysis of evolutionary patterns at a range of morphological levels (molecular and macroscopic). Students will also learn experimental approaches to testing relationships between form and function in vertebrates. Emphasis will be on the musculoskeletal and nervous systems. Prerequisite BIOS 234 Comparative Vertebrate Anatomy, BIOS 317 Evolution, or permission of instructor.

**BIOS 410. Special Topics in Behavioral and Evolutionary Bioscience (1-3)**

Readings and discussions on selected topics not covered in the general graduate offerings. May be taken more than once for credit.

**BIOS 411. Advanced Cell Biology (3)**

Cell structure and biochemistry, as related to specialized cell functions.

**BIOS 412. Metabolic Influences on Behavior (3)**

Sensory systems that detect metabolic energy availability and affect the behavior of humans and other animals: food intake and body weight regulation, sexual and parental behavior, aggression, learning, and body temperature regulation. Prerequisite: BIOS 404 and consent of instructor.

**BIOS 414. Sexual Differentiation (3)**

Genetic and hormonal events mediating the development and expression of sexual dimorphisms in physiology and behavior. Current theoretical models; emphasis on biochemical, neuroanatomical and molecular biological considerations. Prerequisite: BIOS 404 and consent of instructor.

**BIOS 415. Neuropharmacology (3)**

Mechanism of drug action in the central nervous system, including cell surface receptors and second messenger systems. Drug use/abuse and cellular changes mediating behavioral effects. Drug use in clinical therapy. Prerequisite: BIOS 404 and consent of instructor.
BIOS 416. Neurophysiology and Memory (3)  
Lectures and seminars on mechanisms of neuronal communication, the ability of neuronal networks to store and retrieve information, cellular basis for memory. Prerequisites: Background in neuroscience and undergraduate physics or consent of instructor.

BIOS 418. Analysis of Reproduction and Mating Systems (3)  
Study of reproduction and sexuality in plants and animals with emphasis on current hypotheses as reported in the literature. Topics include hermaphroditism, neoteny, larval forms, parental investment, complex life cycles, population structure. Readings from primary source material and review articles. One review paper and one research proposal are required, and together with readings forms the basis for discussion sections and examinations. Prerequisite: Consent of the department.

BIOS 420. Pheromonal Communication (3)  
Mechanisms of pheromone synthesis, biochemistry, sensory transduction, neuroanatomy/neuroendocrinology, and adaptive significance. Prerequisite: BIOS 404 and consent of instructor.

BIOS 421. Molecular Cell Biology I (3)  
Molecular aspects of cell structure, cell motility, intracellular transport; and biomembrane dynamics. Prerequisite: BIOS 411 or equivalent.

BIOS 422. Molecular Cell Biology II (3)  
Molecular aspects of gene expression, including genome structure and replication, RNA synthesis/processing, and protein synthesis. Prerequisite: BIOS 345 or equivalent.

BIOS 425. Male Reproductive Biology (1-3)  
Molecular, cellular, and genetic aspects of the mammalian male reproductive system. Prerequisite: Permission of instructor.

BIOS 427. Techniques in Cell and Molecular Biology (3)  
Laboratory experiences in three or more cell and molecular biological techniques: gel electrophoresis of nucleic acids/proteins; polymerase chain reaction; DNA/RNA sequencing; molecular hybridization techniques; fluorescence microscopy; confocal microscopy; flow cytometry; electron microscopy tissue preparation; immunological detection methods; molecular cloning techniques; oocyte microinjection techniques; tissue culture methods; and autoradiography.

BIOS 429. Advances in Herpetology (3)  
Lectures and readings from the primary literature on current research in amphibian and reptilian biology. Two lectures, one discussion session and one laboratory or field trip. Not open to students who have received credit for BIOS 329.

BIOS 431. Advanced Topics in Cell Biology (3)  
Current research problems in cell biology. May be repeated when a different topic is offered. Prerequisite: BIOS 367 or equivalent.

BIOS 432. Advanced Topics in Molecular Genetics (3)  
Current research in molecular genetics. May be repeated when a different topic is offered. Prerequisite: BIOS 345 or equivalent.

BIOS 433. Advanced Topics in Developmental Biology (3)  
Current research problems in developmental biology.
BIOS 464. Molecular Biology of Eukaryotic Organisms (3)
Comparative analysis of several eukaryotes as model systems in cell biology, developmental biology, genetics, and molecular biology. Prerequisite: BIOS 345 or equivalent.

BIOS 466. Structure and Function of RNAs and Ribonucleoprotein Complexes (3)
Biochemistry and function of small nuclear RNPs, RNase P, ribosomes, self-splicing introns, signal recognition particle, RNA viruses. Functions of RNA in DNA replication, in regulation, as an enzyme, and as a repressor. Prerequisite: BIOS 345 or equivalent.

BIOS 467. (CHM 467) Principles of Nucleic Acid Structure (3) alternate years
An examination of the principles underlying nucleic acid structure including stereochemistry, electrophoresis, hydration, torsional constraints, sequence specific effects, and interaction with nuclear proteins. Special emphasis will be placed on DNA structure. Prerequisite: one year of biochemistry and one year of physical chemistry or permission of the department.

BIOS 468. (CHM 468) Principles of Protein Structure (3) alternate years
An examination of the principles underlying protein structure including stereochemistry, preferred tertiary structures, protein homology, excluded volume effects, time dependent structural fluctuations, and prediction of protein structure from sequence information. Prerequisite: one year of biochemistry and one year of physical chemistry or permission of the department.

BIOS 469. (CHM 469) Biochemical Problem Solving I (1) fall
Applications of material covered in BIOS/CHM 371 including techniques used in research. Prerequisite: BIOS/CHM 371 previously or concurrently.

BIOS 470. (CHM 470) Biochemical Problem Solving II (1) spring
Applications of concepts covered in BIOS/CHM 372 including techniques used in research. Prerequisite: BIOS/CHM 372 previously or concurrently.

BIOS 471. (CHM 471) Eukaryotic Signal Transduction (3) alternate years
Signal transduction between and within cells of multicellular organisms examined in the context of specialized functions that include: nutrition, hormones and neurotransmitters, vision, muscle contraction, adhesion and the immune system. The evolution of cancer based on mutations in these signaling systems. Lecture, discussion, and student presentations. Prerequisite: BIOS/CHM 372 or BIOS 411.

BIOS 472. (CHM 472) Lipids and Membranes (3) alternate years
Structure, physical properties and functions of lipids and their biological aggregates. Techniques for studying lipid assemblies, enzymes which act on lipids, membrane proteins and lipoproteins will also be discussed. Prerequisite: BIOS/CHM 372 or consent of department.

BIOS 473. (CHM 473) Biochemistry of Complex Carbohydrates (3) alternate years
Consideration of the structure, function and metabolism of complex carbohydrates (glycolipids, glycoproteins and proteoglycans) with particular emphasis on glycoproteins.

The first part of the course will consist of lectures to familiarize the student with basic terms, concepts and processes. The second part will involve critical readings, presentation and discussion of the current primary research literature by class participants.

BIOS 479. (CHM 479) Biochemical Techniques (3)
Laboratory studies of the techniques and principles involved in the isolation, identification, and biochemical transformation of carbohydrates, lipids, nucleic acids and proteins. Prerequisite: BIOS 371 or its equivalent previously or concurrently.

BIOS 480. (CHM 480) Advanced Biochemical Preparations (1-3)
An advanced laboratory course in the preparation, isolation, purification, and identification of biochemically produced materials. Emphasis is placed on materials and procedures of current interest in biochemistry. Prerequisite: consent of the department.

BIOS 483. Special Topics in Behavioral Neuroscience (3)
Examination of the biological substrates of behavior. Topics may include animal communication, sociobiology, behavioral endocrinology, or behavior genetics. May be repeated for credit. Prerequisite: BIOS 404 or consent of department.

BIOS 488. Seminar in Neuroscience, Behavior, and Evolution (1)
Advanced seminar in current research developments. May be taken more than once for credit.

Biology
Biology, life science, and related courses at Lehigh University are offered in a variety of settings that reflect the various levels of organization in life science and different orientations relating to areas of application. The College of Arts and Sciences offers degree programs in Applied Life Science, Behavioral Neuroscience, Biochemistry, Biology, Earth and Environmental Science, and Molecular Biology. The P.C. Rossin College of Engineering and Applied Science offers a degree program in Bioengineering. Refer to the catalog entries below for complete descriptions.

Major and minor programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Catalog entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Life Science</td>
<td>Applied Life Science</td>
</tr>
<tr>
<td>Behavioral Neuroscience</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Bioengineering (BS only)</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>Biology (BA or BS)</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Earth and Environmental Sciences</td>
<td>Earth and Environmental Sciences</td>
</tr>
<tr>
<td>Molecular Biology (BA or BS)</td>
<td>Biological Sciences</td>
</tr>
</tbody>
</table>

Courses related to life science interest can be found under the catalog entries above as well as in other departments, including Chemical Engineering, Chemistry, Mathematics, Physics, Psychology, and Sociology and Anthropology.
Bioscience and Biotechnology Program

For additional information, students should contact Professor Amand Jagesh, Department of Chemical Engineering at 610-758-4396 or amj6@lehigh.edu

The Bioscience and Biotechnology program is designed to meet the goals of students seeking educational opportunities at the interface of life science with engineering, humanities, business, social science, or other natural sciences. Two degree programs are offered: Applied Life Science in the College of Arts & Sciences and Biotechnology in the P.C. Rossin College of Engineering and Applied Science. The programs were developed jointly by faculty from both Colleges and were motivated by the anticipated societal impact of the human genome and proteome projects. They share several common courses, lab facilities, faculty participation, and opportunities for undergraduate research while retaining distinct identities and educational goals. Degrees available to students are: Bachelor of Arts or Bachelor of Science in Applied Life Science (Arts & Sciences) or Bachelor of Science in Biotechnology (Engineering and Applied Science) and are listed in the catalog by program.

Business

The designation of “business” refers to general business courses.

Undergraduate Courses

BUS 1. Introduction to Business (3)

An introduction to business, emphasizing critical issues impacting the business world, such as globalization, technology, ethics, and diversity. Provides an overview of the various functional areas of business and how they fit together. Stress experiential learning and develops team-building skills. Strengthens written and oral communications skills. Provides an introduction to career opportunities and curriculum choices in business and economics. Course is offered only in the fall and is open only to College of Business and Economics freshmen.

BUS 173. Non-Major Summer Internship (1)

CBE internships expose students to the business world, enriching their understanding of ideas and problems encountered in their business courses. This course is available summers and open to students in the College of Business & Economics and those in the following programs: CSB, IBE, and Business Minor. Students are evaluated on a directed writing assignment and on a detailed evaluation provided by the work supervisor. A minimum of 150 hours of work must be completed in the internship, and verified by work supervisor. Course registration and related arrangements must be made in advance of the work experience. This course does not satisfy any major requirements. Prerequisite: completion of a minimum of 24 college credits.

BUS 211. Integrated Product Development (IPD) (3) spring

Business, engineering, and design arts students work in cross-disciplinary teams of 4-6 students on conceptual design including marketing, financial and economic planning, economic and technical feasibility of new product concepts. Teams work on industrial projects with faculty advisors. Oral presentations and written reports. Prerequisite: Junior standing in business, economics, arts or engineering.

BUS 212. Integrated Product Development (IPD) (2) fall

Business, engineering, and design arts students work in cross-disciplinary teams of 4-6 students on the detailed design including fabrication and testing of a prototype of the new product designed in IPD course 1. Additional deliverables include a detailed production plan, marketing plan, detailed base-case financial models, project and product portfolio. Teams work on industrial projects with faculty advisors. Oral presentations and written reports. Prerequisite: Bus 211/ENGR 211.

BUS 347 – Practicum in Real Estate I (2) fall

This course is an interdisciplinary study of the creation of value in commercial real estate. Organized into groups, with each group assigned a different subject commercial real property, the class engages in the study of the physical and locational characteristics of commercial real estate as they relate to value including: property history; architecture; physical attributes that add to or detract from value; tenant mix; the immediate neighborhood environment; and, the specific market in which the real property competes for tenants. Each group submits a written report of their findings and produces a 10-minute video documentary on their subject property. Prerequisites: Eco 145 (or its equivalent), Accnt 151 (or its equivalent), Fin 225 (or its equivalent), and permission of the instructor. Students enrolling in this course must also commit to enrolling in the follow-on course – Bus 348 – Practicum in Real Estate II.

BUS 348 – Practicum in Real Estate II (2) spring

This course is a continuation of the interdisciplinary study of the creation of value in commercial real estate begun in Bus 347 – Practicum in Real Estate I. Organized into groups, with each group continuing with the subject commercial real property assigned to them in Bus 347, the class engages in the study of the market and financial characteristics of commercial real estate as they relate to value through: a financial analysis of the market in which their property is located to include market trends, market vacancy rates and market absorption rates; and, financial analysis of the subject property to include both historical results, and pro forma estimates of revenues, expenses, cash flow and residual value. Each group also studies the financial characteristics of comparable properties. The course culminates in an end-of-semester written and oral presentation by each group before a panel of academic and practitioner judges. The group judged to have performed the most outstanding analysis is awarded a cash prize. Prerequisites: Bus 347 – Practicum in Real Estate I.

Business Minor

The purpose of the business minor program is to enable non-CBE students to pursue a course of business studies that will enable them to supplement their major studies and add to increase their career options upon graduation. The overall learning objective of the program is to provide non-CBE students with the knowledge and skills with which to make more informed business decisions. Courses offered in the business minor program are not open to students currently in the CBE nor may these classes count as substitutes for CBE core classes should a student later decide to transfer into the CBE.
Program of Studies: The business minor consists of 14 credit hours. These courses are integrated across the entire program and must be taken in a stepped sequence. These 14 credit hours plus the prerequisite consist of the following courses:

Required prerequisite course:
ECO 1 – Principles of Economics (4 credit hours). ECO 1 can be taken in either the freshman or sophomore year and must be completed prior to entering the business minor program.

Required courses:
- BUS 125 – Behavioral Skills Workshop (1 credit hour. Fall.). Prerequisite: ECO 1
- BUS 126 – Information Analysis and Financial Decision Making I (3 credit hours. Fall.). Co-requisite: BUS 125.
- BUS 127 – Information Analysis and Financial Decision Making II (3 credit hours. Spring.) Prerequisite: BUS 126.
- BUS 225 – Developing, Producing, and Marketing Products and Services I (3 credit hours. Fall.). Prerequisite: BUS 127.
- BUS 226 – Developing, Producing, and Marketing Products and Services II (3 credit hours. Spring.) Prerequisite: BUS 225.
- BUS 326 – Business Strategy (1 credit hour. Spring.)

Recommended courses:
- Probability Theory and Statistics (e.g., ECO 145, MATH 12, IE 111, PSYC 110, etc.)
- An Integrated Learning Experience (e.g., ME/BUS 211, MGT 311, or internship)

The courses required in the business minor program will be offered in a stepped sequence requiring completion of each course in the sequence before being able to continue with the next course. That is, students must first complete BUS 126 before taking BUS 127, BUS 127 before taking BUS 225, and BUS 225 before taking BUS 226. BUS 125 and BUS 326 are to be taken in conjunction with BUS 126 and BUS 226, respectively.

Program admission requirements: Each spring, 80 students will be accepted into the business minor program for the following fall. Application into the program will be made by students and submitted to the program director by the first Monday in March. An admissions committee comprised of the business minor program director, associate dean for the undergraduate CBE program, and the business minor curriculum committee will make admission decisions based on G.P.A., experience, and interest in pursuing business opportunities upon graduation from Lehigh (to be evaluated on the basis of a written essay). Students will be notified of admissions decisions prior to registration for the fall semester. Entrance into business minor classes will be controlled by restricted overrides by the director of business minor program, Professor Geraldo M. Vasconcellos.

Undergraduate Courses

BUS 125 – Behavioral Skills Workshop (1 credit hour. Fall.)
BUS 125 is a course that will have as its aim to equip students to work with others in a business setting in making business decisions. The focus of the class will be on effective decision making and will include such topics as group and team decision making, conflict resolution and negotiation, ethical decision making, and creative problem solving. This course will be offered as an intensive, two-day workshop at the beginning of each fall semester and will heavily focus on experiential learning. Prerequisite: ECO 1.

BUS 126 – Information Analysis and Financial Decision Making I (3) fall
An integrated introduction to business, accounting and finance. Students are introduced to the goals, people and activities of business, before focusing on the fundamental elements of accounting and finance, including financial statement construction and analysis, time value of money, financing and investing with equity and debt, and the impact of various operating decisions on business. Experiential learning, and development of team/communication skills are encouraged through portfolio simulation and financial analysis projects. Prerequisite: ECO 1. Co-requisite: BUS 125.

BUS 127 – Information Analysis and Financial Decision Making II (3) spring
This course builds upon the foundational teachings of BUS 126 through examination of topics in portfolio management, capital investment decision making, business planning, analysis and reporting, and various specialized topics such as: entrepreneurship, business law, ethics and internal control systems and E-business. Experiential learning, and development of team/communication skills are encouraged through group projects and guest speakers. Prerequisite: BUS 126.

BUS 225 – Developing, Producing, and Marketing Products and Services I (3) fall
Introduction to the key elements in the marketing framework of a corporation. Focus on defining marketing, analyzing the market and competitors, developing effective marketing strategies, segmenting the market, creating customer value, satisfaction, and loyalty, analyzing consumer and business markets, creating brand equity, and managing an effective marketing program to deliver the right products and services to the right audience at the right place at the right price and the right time. Emphasis on business writing skills. Experiential learning through the development of a product or service marketing plan. Prerequisite: BUS 127.

BUS 226 – Developing, Producing, and Marketing Products and Services II (3) spring
This course extends the marketing management principles initiated in BUS 225 with the creation, development, and delivery of new product ideas to the marketplace. Comprehensive overview of the new product development process including how to develop an effective development strategy, manage cross-functional teams across the organization, generate and evaluate concepts, manage the technical development of a product, develop the marketing plan, and manage the financial aspects of a project. As product innovation is a multi-disciplinary field, this course, while focusing on marketing's...
role in product innovation, relies heavily on techniques that encompass engineering, research and development, management, production, and design. Emphasis on business writing skills and creativity. Experiential learning through the implementation of a new product idea and the performance assessment of both the supporting marketing and business plan. Prerequisite: BUS 225.

BUS 326 – Business Strategy (1 credit hour. Spring.)

Business Strategy is a capstone course covering total enterprise problems in determination, execution, and control within a global setting. The course integrates the theories of production, marketing, finance and organization and provides an opportunity to study the function of higher level management as related to the total business environment through a team-based business simulation. Students will develop business strategy and make decisions that impact performance metrics of the firm. Co-requisite: BUS 226.

Business Information Systems

Professor, Susan A. Sherer, Ph.D. (Pennsylvania), BIS program director and Kenan Professor of Information Technology Management.

Associate Professor. James A. Hall, Ph.D. (Oklahoma State)

Assistant Professors. Lin Lin Ph.D. (Arizona); Catherine M. Ridings, Ph.D. (Drexel); Yuliang Yao, Ph.D. (Maryland)

Professor of Practice. Dennis S. Praedin, B.A. (Muhlenberg)

Lecturer. Chitra Nayar, M.B.A. (Iowa)

The Business Information Systems program offered through the College of Business and Economics provides an opportunity to prepare students to work with information technology in today’s business environment. As businesses seek to make themselves more productive and competitive, they have become more reliant on information technology. Students who have a good understanding of information systems can help businesses enhance their use of this technology. The information systems program is designed to provide requisite technical skills along with a strong business foundation, developing students’ abilities to apply information technology to business problems. Career opportunities include systems analyst/designer, information systems manager, information systems consultant, and computer auditor.

The information systems major requires five (5) courses and two (2) electives beyond the core requirements of the College of Business and Economics. Students are required to take BIS 111, Management Information Systems, as part of the business and economics core. Other courses are as follows:

**Required Courses (5):**

- BIS 120 Business Applications in Java (4)
- or CSE 17 Structured Programming and Data Structures (4)
- BIS 311 Managing Information Systems Analysis and Design (3)
- BIS 324 Business Data Management (3)
- BIS 333 Business Data Communications (3)
- BIS 350 Project Management in IS (3)

**Elective Courses (Choose 2):**

- ACCT 311 Accounting Information Systems (3)
- BIS 331 E-commerce (3)
- BIS 342 E-business Enterprise Applications (3)
- BIS 372* Special Topics in Information Systems (3)
- BIS 360 BIS Practicum (3)
- or CSB 312 Design of Integrated Business Applications (3)

*Courses focusing on different applications of IS in business, including: Data Warehousing and Mining, HR Applications in IS, Numerical Methods of Business Decisions, etc. Consult Professor Sherer for other related courses.

Undergraduate Courses

**BIS 120. Business Applications of Java (4)**

Business applications and programming in Java. Control structures, arrays, object-oriented programming, string manipulation, graphics, graphical user interfaces, web-based applets. Some previous experience with programming helpful but not required. Lectures plus one two-hour computer lab. Prerequisite: ACCT 151 previously or concurrently.

**BIS 111. Introduction to Information Systems (3)**

This course examines the fundamental role of information systems in supporting and managing all business functions and enabling firms to compete effectively. Both technical and managerial aspects of information systems are introduced. The course integrates technical infrastructure, database concepts, management decision-making, and business process issues critical to the understanding of operational and strategic information systems. It introduces business applications that support accounting, finance, supply chain management, and marketing. Prerequisite: Excel competency.

**BIS 311. Managing Information Systems Analysis and Design (3)**

This course focuses on managing the requirements analysis and system design methodology and techniques for business information systems. Students learn current methods and techniques for system requirement analysis as well as system design, and apply them to real world projects. It covers cost benefit analysis and risk management of business systems development, JAD and structured walkthroughs, structured and object oriented methodologies, and software package evaluation. It emphasizes the factors for effective communication and integration with users and user systems and encourages interpersonal skill development with client users, team members, and others associated with development, operation, and maintenance of the system. Prerequisite: BIS 111 or consent of instructor.

**BIS 324. Business Data Management (3)**

This course covers the fundamentals of database management systems (DBMS), including database development, processing, logical and physical design, access, implementation and administration. Students will gain extensive experience in developing data models, creating relational databases, and formulating and executing complex queries. The focus in the course will be on analyzing the connections between data and business organization information needs and decisions, and understanding the principles of managing organizational data. The course includes a project with hands-on experience with a large scale database and SQL. Prerequisite: BIS 311
BIS 331 (MKT 331). Electronic Commerce (3)
This course covers how businesses and consumers use the Internet to exchange information and complete transactions. Both theoretical concepts and practical skills will be addressed with the scope of the class. Topics include advertising and marketing, e-commerce business and revenue models, online consumer behavior, web site design, Internet security, electronic payments, infrastructure issues, privacy issues, and overall electronic commerce strategy. Students will get hands-on experience designing e-commerce web sites using web authoring software. Prerequisite: BIS 111, MKT 211 or consent of instructor.

BIS 333. Business Data Communications (3)
This course covers modern data communication technologies and how they are used in business. It provides an exposure to current and emerging networking and telecommunications technologies, introduces software and hardware fundamentals for various computer/network architectures, and provides an understanding of the business context of these technologies. Students will learn how to evaluate, select, and implement different communication options within an organization. The course emphasizes the business context of data communication technologies. Prerequisite: BIS 311.

BIS 342 (SCM 342). e-Business Enterprise Applications (3)
Introduction to the implications of key information technologies used within and across businesses to conduct e-business. The course covers the functionality of various enterprise applications and their integration: customer relationship management, enterprise resource planning, supply chain management, supplier relationship management, data warehousing and mining, business intelligence, and product lifecycle management. Prerequisites: BIS 111 or consent of the instructor.

BIS 350. Project Management in Information Systems (3)
This course covers the factors necessary for successful management of information systems development, enhancement, and implementation projects. Both technical and behavioral aspects of project management are applied within the context of an information systems implementation project. The course covers managing the systems life cycle, including systems implementation, testing, quality assurance, delivery, training, post implementation review, configuration management, maintenance. Topics include managing expectations of managers, clients, team members and others; staffing; cost analysis; reporting and presentation techniques; change management. Software tools for project tracking and monitoring, Team collaboration techniques and tools. Prerequisites: BIS 120 or CSE 17, BIS 324 and BIS 333.

BIS 360. Business Information Systems Practicum (3)
The business information systems practicum provides an opportunity for students to work on an intensive consulting engagement with a business. Students work with client firms on individual or team projects, which focus on information systems activities such as developing requirements, designing, and implementing systems. Students complete written reports and make formal presentations to clients. May not be taken concurrently with MGT 311. Prerequisites: Junior standing in the College of Business and Economics.

BIS 371. Directed Readings (1-3)
Readings and research in information systems; designed for superior students who have special interest in some topic(s) not covered by the regularly scheduled courses. Written term paper(s) required. May be repeated. Prerequisite: preparation in information systems acceptable to program coordinator.

BIS 372. Special Topics in Information Systems (1-3)
Special problems and issues in information systems for which no regularly scheduled course work exists. When offered as group study, coverage varies according to interests of the instructor and students. May be repeated. Prerequisite: preparation in information systems acceptable to program coordinator.

BIS 373. Business Information Systems Internship (1-3)
Based upon a student's work experience, a sponsoring faculty member shall direct reading, projects and other assignments - including a "capstone report." It should be noted that the work experience, by itself, is not the basis for academic credit. The faculty-directed activity may be provided concurrent with the work or as a follow-up to the work experience. In the latter case, arrangements must be made in advance of the work engagement so as to enhance the follow-up experience (keeping logs, concurrent reading assignments, etc.) Student effort is expected to be at least 40 hours per credit. Prerequisites: CSC 17, IE 224 or CSC 241, junior standing in the College of Business and Economics.

Course descriptions for the College of Business and Economics graduate courses can be found in this section (Section V) under the heading of Business and Economics Graduate Courses.

Business information systems technology minor
This minor provides an overview of the major technical functions in IS, such as databases, networks, analysis and design, and programming. This minor is available only to students with a declared major in the College of Business and Economics.

Program of Studies: The BIS Technology minor consists of 4 courses equaling 13 credit hours. These credit hours consist of the following courses:

- Required Courses:
  - BIS 120 Business Applications of Java (4)
  - or CSE 17 Structured Programming and Data Structures (4)
  - BIS 311 Managing Information Systems Analysis and Design (3)
  - BIS 324 Business Data Management (3)
  - BIS 333 Business Data Communications (3)

Business Information Systems Applications Minor
This minor provides an opportunity for CBE students in each of the majors to benefit from understanding more about the information systems that primarily support their business functions as well as other enterprise business applications that will interface with their own business disciplines. Students will be able to select four courses covering e-commerce strategies and development, enterprise business applications strategies and technolo-
gies, financial applications of IS, accounting applications, and additional special topics that will focus on applications in other areas such as data mining for marketing or HR systems.

Program of Studies: The BIS Applications minor consists of 3 courses equaling 9 credit hours. These 9 credit hours consist of the following courses:

Required Courses (3 courses chosen from the following):
- BIS 331 Electronic Commerce (3)
- BIS 342 E-Business Enterprise Applications (3)
- BIS 372 Special Topics in IS (3)
- ACCT 311 Accounting Information Systems (3)

Business and Economics

Graduate Courses

MBA Prerequisites

GBUS 401. Financial Reporting for Managers and Investors (3)

ECO 401. Basic Statistics for Business and Economics (3)
Descriptive statistics, probability and probability distributions, estimation, hypothesis testing, correlation and regression, chi-square analysis and analysis of variance. Computer applications.

MBA Program Core Courses

MBA 401. Introduction to the Organization and its Environment (2)
This MBA Core Course will provide a thorough understanding of business organizations and will clarify ways middle and senior managers can create and sustain organizational competitive advantage. The course examines the organization from an overall perspective within the context of the firm’s internal and external environment. The second aspect of this course deals with the ability to communicate effectively in today’s business and professional environment. Students will examine and practice written and verbal communications strategies and skills that are essential to their success in business.

MBA 402. Managing Financial and Physical Resources (4)
An MBA core course designed to integrate financial and managerial concepts into operations decisions. Disciplines of accounting, finance and economics are combined to provide substantive foundations for discussing and analyzing data. Implications of analysis are applied to facilitate decision-making in other areas such as marketing, operations (manufacturing, logistics and engineering), human resources, information technology and general management. The major learning objectives will be applied through a series of "living" cases that are centered on analyzing historical financial performance, preparing a business plan, and valuing a business. Prerequisites: MBA 401, GBUS 401 or equivalent.

MBA 403. Managing Information (4)
An MBA core course dealing with concepts and methods involved in the collection, organization and dissemination of information that helps managers make operational and strategic decisions. The course also deals with attributes of information and examines enterprise-wide impacts of local decisions. Revenue, cost, time and quality-based information are accorded equal emphasis, while students are exposed to alternative evaluation methods for decisions related to different parts of the value chain. Topics include: activity-based costing; activity-based management; transaction analysis; operational and strategic decisions such as outsourcing, design partnerships, etc.; investment analysis for short life-cycle investments; evaluation of uncertainty, risk and ambiguity; metrics development; compensation policies; segment evaluation methods; target costing and functional analysis; quality function deployment; total cost of ownership; and transfer pricing. In addition, the course deals with information technology enablers which allow firms to improve value delivered to customers; and evaluation and management of emerging forms of cooperation, such as joint ventures and project based strategic alliances. Prerequisites: MBA 401, GBUS 401 and ECO 401 or equivalents.

MBA 404. Managing Products and Services (4)
An MBA core course focusing on the management of products and services within a firm’s value chain. The course addresses exceeding customer expectations, establishing total quality as the core foundation, developing a strong customer focus, creating value through supply chain management, developing new products for competitive advantage, matching aggregate supply with customer demand, and designing market channels and influencing customers. Prerequisite: MBA 401.

MBA 405. Managing People (4)
An MBA core course that examines how effective organizations are created, maintained, and improved. The course will focus on how good people are attracted to an organization and how to make them productive. Topics include: organizational design, job design, staffing, training and development, performance, teams, influence, diversity, change, ethical decision-making, and current people issues facing today’s organizations. The course includes a comprehensive simulation (to be conducted on a Saturday during the semester) and a group project which allows students to apply the principles and concepts covered in the course. Prerequisite: MBA 401.

MBA 406. Integrative Experience (3)
An MBA course where students apply the body of knowledge acquired in MBA 401 through 405 through a simulation, case presentations and the cross core project. This course places an emphasis on strategic management and takes the point of view of the general manager to view the organization from an overall perspective in the context of the firm’s internal and external environment. In doing so, students examine historical perspectives, contemporary theories, and practical applications all in the spirit of helping them develop a broad understanding of strategic management issues and solutions. By combining high-level class discussions, case analyses, a computer simulation competition and the cross-core project this course exposes students to rigorous theoretical analysis while providing hands-on, simulated real world business experiences. Prerequisites: MBA 401, MBA 402, MBA 403, MBA 404, MBA 405.
Accouting Electives

GBUS 413. Advanced Management Accounting (3)
Issues in management accounting including activity-based costing, activity-based management, strategic cost management, theory of constraints, advanced manufacturing technologies, cost of quality and life-cycle costing. Readings and cases. Prerequisite: MBA 403 or a course in cost accounting.

GBUS 414. Financial Statement Analysis and Interpretation (3)
This course focuses on analysis of financial statements. It develops the skills necessary to interpret and use financial statement information effectively to assess profitability and risk and is intended for individuals likely to become intensive users of financial accounting information. Requirements include readings, case studies, presentations, and written analysis of actual financial statements. Prerequisite: GBUS 401 and MBA 402 or permission of the instructor.

GBUS 437. Federal Taxation and Business Decisions (3)
Impact of federal taxation on the structure and timing of business decisions. Problem-solving methods and research techniques from a managerial perspective. Prerequisite: GBUS 401 or a basic course in accounting.

Finance Electives

GBUS 419. Financial Management (3)
An intermediate level course in corporate finance. Coverage includes capital budgeting techniques including real options, decision tree analysis, risk analysis, advanced cost of capital theories, capital structure theory, dividend policy, working capital management, mergers and acquisitions, restructuring, and bankruptcies. The course emphasizes both theory and practice through lectures, cases, and financial modeling exercises. Prerequisite: MBA 402 or equivalent background. Students not possessing the relevant prerequisites must obtain waivers from the designated finance faculty representative.

GBUS 420. Investments (3)
A survey course in investments. Overview of financial institutions and markets involved in the issuance and trading of securities. Emphasis on valuation and risk assessment of fixed income and equity securities. Construction of optimal portfolios and examination of performance measures. Prerequisite: MBA 402 or equivalent background. Students not possessing the relevant prerequisites must obtain waivers from the designated finance faculty representative.

GBUS 421. Advanced Investments (3)
Advanced topics relating to valuation/security analysis and portfolio/risk management. Prerequisites: GBUS 420 or designated finance faculty representative approval.

GBUS 422. Derivatives and Risk Management (3)
The theory and application of a variety of derivative instruments (options, futures contracts, etc.) used in corporation finance and the financial services industry. The focus is on the risk management application vs. a rigorous development of option pricing theory and similar topics. Prerequisites: GBUS 420, or Designated Finance Faculty Representative Approval.

GBUS 424. Advanced Topics in Financial Management: (description to change each time course is offered) (3)
Advanced topics relating to specific areas of corporate finance such as: theoretical and empirical examination of recent developments in financial management; asset valuation and capital budgeting including the role of uncertainty, imprecise forecasts, risk preferences, inflation, market conditions, and the global marketplace; working capital management, leasing, mergers, and financing. The course content may vary between instructors and over time. Prerequisite: GBUS 419 or designated finance faculty representative approval.

GBUS 425. Real Estate Financing and Investing (3)
An upper-level course in modern real estate financing techniques from the perspectives of both the borrower and the lender. Subject matter encompasses the following areas: The principles of financing decisions; financing methods and techniques; institutional sources of funds for real estate; and real estate financing decisions. Prerequisites: GBUS 420, or designated finance faculty representative approval.

GBUS 426. Financial Markets and Institutions (3)
Functions and portfolios of financial intermediaries. Sectoral demand and supply of funds, nature and role of interest rates, term structure and forecasting, impact of inflation and regulations on financial intermediaries and markets, and current developments in the financial system. Management of assets and liabilities within the U.S. financial institutions' legal and economic constraints. Prerequisite: GBUS 420, or designated finance faculty representative approval.

GBUS 431. Quantitative Finance (3)
Relationship of quantitative models to financial theory and applications. Capital budgeting, portfolio selection, security evaluation, cash management, inventory policy and credit analysis. Prerequisite: GBUS 419 or designated finance faculty approval.

Management Electives

GBUS 440. Human Resource Management (3)
A survey of personnel management activities in organizations. Topics include human resource planning, recruitment, selection, equal employment opportunity, performance appraisal, compensation, career planning, safety and health, and quality of work life issues. Course consists of lectures, discussion, and case analysis.

GBUS 442. Seminar in Management Consulting (3)
A study of consulting practices in general and their application to small business. Processes include a field study/counseling service to a local business. Emphasis is on the identification and analysis of multidisciplinary problems and opportunities and the implementation of recommendations. Prerequisites: completion of MBA background courses (or equivalent) and permission of the instructor.

GBUS 444. Managerial Communication Skills (3)
Organization, style and strategy of language to inform, direct and persuade. Application of writing, reading, speaking and listening skills to managerial problems. Case studies.
GBUS 445. Labor-Management Administration (3)
A study of the U.S. system of industrial relations, including the evolution and present status of labor law; union organizing efforts; the strategy of negotiations; the substantive provisions of collective bargaining and the administration of collective agreements. Also considered is the role of unions in the implementation of programs for employee self-management and other workplace innovations.

GBUS 446. Commercial Potential Assessment (3)
A study of the process of bringing an invention to market with emphasis on commercial potential. Industrial analysis, competitor intelligence and strategic issues will be emphasized along with the development of market strategy and an overall business plan. Extensive research including data base searches will be included. Instructor permission required.

GBUS 447 Negotiation (3 credits)
The class examines the behavioral foundations of the negotiation process. Topics include: The negotiation process, negotiation planning, power in negotiations, communications in negotiations, tactics, concepts of win-win and win-lose, social styles, individual and team negotiations, ethical considerations, cultural differences, negotiating in sole source (customer) situations, using third parties. The concepts will be exposed through both lectures and simulations.

GBUS 450. Strategic Supply Management (3)
A survey course designed to introduce the MBA/MSE student to the vital role played by supply management in achieving overall effectiveness for the firm in today's global economy. The course starts by examining the traditional purchasing process and then moves on to an examination of the evolution of purchasing into supply management and, finally, to the role purchasing plays in improving effectiveness of the entire value chain. Course consists of lectures, discussion and case analysis.

GBUS 451. Analytical Methods in Management (3)
Application of management science methods to industrial and commercial problems. Scientific method, decision theory, linear programming, inventory control, regression analysis, forecasting, simulation, and related areas are examined in the context of accounting, finance, marketing and manufacturing.

GBUS 453 Transportation and Logistics Management (3)
The control of physical distribution and inventories: the flow of information, products and cash through the integrated supply chain.

Information Systems Electives

GBUS 454 E-Commerce and Marketing Strategy (3)
Impact of e-commerce technologies on firms, industries, and markets. Covers the technologies used in e-commerce, changes in organization structure, industry and behavior, and sales and marketing strategies such as attracting visitors to websites, promotion, distribution, service, pricing, branding, advertising, consumer behavior, measuring effectiveness, societal effects, disintermediation, reintermediation, and strategy implementation. Prerequisite: MBA 403.

GBUS 455 E-Business Enterprise Applications (3)
Implications of key information technologies used within and across businesses to conduct e-business, including customer relationship management, enterprise resource planning, on-line ordering and inventory management, supply chain management, and e-procurement systems, data warehousing, data mining, intra-extranets, and knowledge management. Prerequisite: MBA 403.

GBUS 456 Business Process Redesign with Information Systems (3)
Current topics on the principles, implementation and critical success factors of deploying information systems enabled quality management and process innovation within organizations. Techniques and tools used in implementing quality and process innovation from a managerial and practical perspective. Prerequisite: MBA 403.

GBUS 457 Managing the IS Resource (3)
The issues and management techniques involved in administering the information systems/resource activities in the organization. Management of IS professionals, development and management of project teams, user client relationships, managing vendors, emerging technologies and planning processes. Prerequisite: MBA 403.

GBUS 458 Strategic Information Systems (3)
Understanding the various types of computer based information systems and developing an ability to identify and exploit information technologies to gain competitive advantage, at the individual, group and organizational levels. Prerequisite: MBA 403.

GBUS 459 Survey of Project Management (3)
Provides an overview of the project management framework and knowledge areas. It deals with the day-to-day, hands-on problems of managing a project (defined as a temporary structure within a permanent organization, set up to achieve a specific objective). Areas covered will include: project integration, project scope, project planning and implementation, project control and evaluation, project cost and risk management, project resource management and organization, and project communication. Cases will be used to illustrate problems and the techniques to solve them. A basic project management software tool will be introduced and utilized in this course. This course is designed for MBA students who want a general exposure to project management concepts. This course may not be used in the Project Management Certificate Program.

Marketing Electives

GBUS 460 Strategic Marketing Management (3)
The course studies the management of contemporary organizations from the perspective of a marketing manager. While the course content addresses the activities required to maintain a strategic fit between an organization's environment and its particular set of objectives and resources, the central focus is on designing strategic marketing actions for various types of organizations. The course pedagogy emphasizes the application of marketing and other business principles through either seminars, simulations, or case discussion.

GBUS 462 Pharmaceutical Marketing
The course provides an introduction and overview of the various healthcare system components as they relate to the pharmaceutical industry. This course will (1) focus
on product decisions of the firm, requiring an occasional shift in focus from that of corporate management to that of operating managers of new product activities or established brands; (2) recognize the importance of marketing research as input to product decisions; (3) take a managerial orientation; (4) recognize the need to tailor product policy approaches to the characteristics of the decision maker and the firm. The course will be a mixture of lectures, discussions, case analyses, and group exercises. Prerequisites: Graduate students only.

GBUS 464 Business-to-Business Marketing (3)
This course focuses on marketing strategies and tactics in firms whose customers are other institutions, not individuals. Topics covered include organizational buying behavior, managing strategic buyer-seller relationships, sales force deployment, communication strategies, and so on. Specific attention is given to the impact of information technology and globalization in the business-to-business context.

GBUS 465 Creating Breakthrough Innovations (3)
Most products and services either fail or do average business, but some are phenomenally successful. Such products and services that provide phenomenal financial returns and become market leaders can be called “Breakthrough Products and Services”. The main objective of the course is to improve our understanding of the process of creating breakthrough products and services. It is accomplished by in-class discussions of cases, assignments, and the state-of-the-art research work in academia and industry. The course concludes with a term paper that integrates the concepts learned from class discussions, reference books, and research papers and applies them to a real product. Prerequisites: Graduate student status plus two years of post-graduate work experience.

GBUS 466 Marketing Research and Analysis (3)
This course focuses on procedures for collecting and analyzing relevant information for informed decision making by managers. The process of identifying research questions, developing instruments for collecting information, appropriate interpretation of information, and appropriateness of research methods are some of the topics discussed in this course. The course focuses on the process of doing marketing research as well as the techniques for analyzing information. Discussion of concepts and cases, developing data collection instruments, and doing actual marketing research projects will form the key elements of this course.

GBUS 470 Marketing Communications Strategies (3)
This course focuses on how various elements of communications are integrated to achieve various organizational objectives. In addition to the traditional communication media such as advertising and point of purchase media, emphasis will also be placed on new media and strategies made possible due to the advances in technology. The course will involve discussion of concepts, case analysis and discussion, insights from practitioners, and group projects.

GBUS 471 Strategic Brand Management (3)
This course will focus on theories, models, and other tools to manage brands, products, and product lines. Specific attention will be focused on building, measuring, and managing brand equity. The course will be a mixture of lectures, discussions, case analyses, and group exercises. Prerequisite: MBA 404.

GBUS 472 Strategies for Services Marketing (3)
The course focuses on the challenges of marketing and managing services (whether in a manufacturing or service business) and discusses the development of strategies for addressing these challenges. The need for cross-functional integration to provide effective service is stressed. Illustrative topics include service quality gap analysis, relationship between superior service and profitability, service encounter analysis, customer lifetime value analysis, services guarantees, and service demand and capacity management.

International Business Electives

GBUS 473 International Finance (3)
Consideration of problems arising from the risks associated with international investing and multinational corporation finance (currency, political, etc.). Focus is on (a) investing in international market given the institutional constraints and differences between domestic markets, and (b) managerial issues relating to corporations, investors, and financial institutions. Prerequisites: GBUS 419, or designated finance faculty representative approval.

GBUS 474. Legal Aspects of International Business (3)
Various legal problems of engaging in business abroad, including contracts, technology transfer, property ownership, business organizations and labor, using a case and problem-solving approach.

GBUS 475 Global Marketing Strategies
The course is designed to provide a framework within which global marketing operation can be analyzed, understood, and undertaken. The course focuses on the issues that are being faced by firms in today's global marketplace, particularly those that are related to strategy formulation and implementation. The learning experience in this course is placed on global business decision-making, through the use of case studies, projects, and lectures.

GBUS 476. Globalization and Management of Technology (3)
Management of science and technology in the context of international business and the globalization of markets, competition and corporations. Management of global industrial R & D; technology-based global strategic alliances; global external technology sourcing, complex human resources and cross-cultural issues; etc. Develops an appreciation of the scientific and technical capabilities available globally and the potential for global cooperative and/or competition in this regard.

Management of Technology Courses

GBUS 481. Technology, Operations and Competitive Strategy (3)
Develops an understanding and appreciation of the interrelationships among technology, operations and the competitive strategy of the firm. Industry analysis and competitiveness; competitive strategy formulation and implementation; value chain analysis; operations strategy and technology strategy; operations’ contributions to competitive advantage; cost, quality and variety and new product introduction.

GBUS 482. R, D & E Project Management (3)
Management of cross-functional project teams for introducing technological innovations in the manufacturing
GBUS 483. R & D Management (3)
Developing R&D programs to achieve strategic business objectives; selecting, staffing and managing R&D projects; and transferring research results to commercial functions.

GBUS 484. Science and Technology Policies and Institutions (3)
The science and technology institutional infrastructure and its relationships with management decision-making, including private, public (government) and quasi-public institutions; R&D, regulatory, and policy institutions; and U.S., foreign and international institutions.

GBUS 485. Diffusion and Implementations of Technology (3)
Classical macro-study of adoption and diffusion of innovation, and managing the implementation/utilization/application of new technology in the organization/corporate culture.

GBUS 486. Qualitative Research Methodology (3)
Study of techniques that describe, decode and translate social phenomena. Explores how interpretive researchers plan and conduct studies and present findings. Studies investigators' roles, data sources, observation methods, data-analysis methods and trustworthiness of findings. A field research project is required.

GBUS 494. Field Projects (1-4)
The field projects course will provide MBA students with an opportunity to apply MBA concepts with an employer, corporate partner or other suitable organization. Students will work with a supervising professor and a corporate representative on a project designed by the student. Students must prepare a written proposal for the project including the expected outcomes and an estimate of the hours required for completion. Students will present their proposal to a faculty member of their choice for approval. The academic rigor and time required to complete the project will determine the number of credits earned.

vSeries (Corporate Entrepreneurship)

GBEN 401. The Business Plan I: Strategic Considerations (2)
This course is first of a two-part sequence that focuses on the initial steps necessary to design and build a high-impact business plan for the start-up company or new enterprise within an existing firm. The development process is integrative, complex, and time-consuming for the entrepreneur. Foundation or strategic-level issues that impact the formation and growth of the new enterprise are addressed. The goal in this first phase is to complete various sections of the business plan that deal with market opportunity, industry trends and developments, company positioning, competitive advantage, and core competencies. This course is project-oriented and makes extensive use of one-on-one instruction between class meetings. Students identify a market opportunity, develop the product/service offering, target potential customers and users, assess market demand, analyze market penetration, and determine the revenue potential of the new venture. 2 Credits

GBEN 402. The Business Plan II: Operating Strategies and Implementation (2)
This course is the second of a two-part sequence that focuses on the final steps necessary to complete the business plan. This phase concentrates on designing the appropriate operational framework and business processes, including technology and infrastructure, that are required to successfully launch the new enterprise. The business plan must also demonstrate that the venture will have strong leadership and a capable management team to deal with uncertainty and drive results. Finally, the business plan must incorporate detailed financial forecasts and financing methods, and should address equity valuation and investor exit strategies. Like its predecessor, this course is project-oriented and makes extensive use of one-on-one instruction between class meetings. Additional emphasis is placed on developing an effective format and packaging of the written document. 2 Credits

GBEN 403. Anatomy of Entrepreneurship: Start-ups and Established Companies (1)
This interactive seminar focuses on understanding the true meaning of entrepreneurship. The new venture opportunity is profiled from the perspective of the individual entrepreneur who is starting a business and embarking on a new career path involving high risk and reward. Different entrepreneurial management styles are analyzed and highlighted. Course emphasis is also placed on managing innovation and creativity in a corporate environment. Successful implementation of entrepreneurial activities for the large company makes special demands on management to promote discovery and create internal stakeholders. Both start-ups and established companies are placed under the microscope through guest speakers, panel discussion, selected readings, and case analysis. 1 Credit

GBEN 404. Market Opportunity: Targeting Strategies and Selling Tactics (1)
The focal point of any business plan is identifying and understanding the target customer that will be served. The product/service offering must have strong buyer appeal and capture immediate attention in the marketplace. The need to rapidly penetrate a market demands that a marketing mix be designed, built, and implemented in a manner that leads to differentiation and superior positioning. Maximizing marketing firepower with severely limited financial and organizational resources is a major challenge that confronts today's entrepreneurs. Market segmentation strategies, the target marketing process, forming market alliances, and managing the selling process are viewed from the perspective of seed and early stage ventures. 1 Credit

GBEN 405. Intellectual Property: Management and Valuation (1)
New technologies create new markets and new venture possibilities. Their discovery and success rate, along with the ability of an enterprise to leverage these assets in markets, depends on how the firm views and manages its investment in intellectual property. Obtaining the necessary legal protection of intellectual property can also serve as an effective barrier to entry and may be a source of competitive advantage. This seminar focuses on the strategic management of intellectual property as a commercial enterprise, covers methods of valuation, and examines various accounting and legal issues that must be considered in strategic-level decision making. 1 Credit
GBEN 406. Performing a Business Enterprise Audit: Developing an Industry Perspective (1)
New ventures must position themselves for long-term growth and market development. Entrepreneurs create enterprises, define their organizations, and build business models based on changes in technology, government regulation, demographics, and shifts in other exogenous variables. A strategy must be crafted that is sustainable over the long run. Success or failure is often predicated on market cycles, market saturation, supply/demand imbalances and other forces that are not controllable. This seminar places emphasis on assessing the market potential and valuation of start-ups from an industry or macro-opportunities objective, particularly from the view of an outside investor. It also focuses on how to gather and make effective use of competitive intelligence. 1 Credit

GBEN 407. Processes and Infrastructure: Creating Production and Delivery (1)
This course provides an overview of the internal capabilities and the process and technology platform required to fully operationalize the business plan. Critical business activities and functions are dissected, such as establishing needed back-end procurement, production, and distribution services that focus on supply chain dynamics and management; determining the scope of front-end call center and e-commerce activities; managing logistics; and utilizing information systems and web-based solutions that effectively link customers, elements of the supply chain, and employees. These topics are explored from the perspective of the start-up and emerging company as well as the large corporation engaged in new venture creation. 1 Credit

GBEN 408. The New Venture Organization: Management, Design, and Governance (1)
Managing a new enterprise presents unique and difficult challenges for its leadership. Expanding workloads and the increased complexity of tasks resulting from the rapid and sustained growth of the business create the need for a smooth transition from entrepreneurial-style management to professional management. Timing is critical, and for many start-ups it is not an easy bridge to cross. This course dissects the design and characteristics of small organizations, and the need to correctly align structure with strategy. It also considers how entrepreneurial activities should be seeded, managed, organized, and executed within the context of an established company. Under scrutiny are the heavy demands placed upon entrepreneurs and corporate managers to effectively lead and manage under highly uncertain conditions where change is a constant. Additional course emphasis is placed on comprehending the critical role that boards of directors play for start-up companies. 1 Credit

GBEN 409. Financial Forecasting: Developing Pro Forma Financial Statements (1)
No business plan would be complete without providing detailed financial projections and identifying the key assumptions that help shape the numbers. The financial translation of business models is expressed through pro forma income statements, balance sheets, and sources and uses of funds. Having this information allows management, investors, and lenders to measure and evaluate future financial performance. This exercise also establishes the capitalization required to launch the venture, support operations, and meet interim goals as the enterprise progresses through the beginning stages of its development. Course emphasis is placed on the use of forecasting methods and breakeven analysis, working capital and cash flow management, and identification of accounting and financial issues that impact on profit measurement and financial risk. 1 Credit

GBEN 410. Financing Start-Ups: Seeking Outside Venture Capital (1)
This course provides an overview of the venture capital market, examines the nature and role of the venture capitalist, and analyzes whether and how venture capital financing may be the preferred approach in raising outside capital. Venture deals are closely examined in terms of types of equity instrument, methods of valuation, milestones and staged release of funds, special provisions that may include antidilution measures and other protective arrangements, and developing term sheets. Emphasis is also given to dissecting the process and criteria used to seek and attract venture capitalists, including angel investors. Various scenarios and trade-offs are covered in this intensive course. 1 Credit

GBEN 411. Establishing Credit Facilities: Asset-Based and Cash Flow Financing (1)
Borrowing from a commercial bank or a credit intermediary can provide outside funding for working capital and equipment purchases in many situations. For seed and early stage firms, attention is often given to asset-based lending programs that make use of first liens on accounts receivable and inventory or fixed assets to provide added legal protection to creditors. For later stage firms, traditional line-of-credit financing may be feasible and desirable from a cash flow standpoint. Various borrowing alternatives, including leasing, are covered in this course along with covenants and restrictions that often apply. Government loan programs, especially those of the Small Business Administration, are also given emphasis. 1 Credit

GBEN 412. Developing Exit Strategies: Concepts and Approaches (1)
Sophisticated equity investors require that an exit or harvest plan be developed and that it be viable and capable of being executed within the foreseeable future. Venture capitalists and angel investors anticipate their future departure and a positive financial outcome at the very point the deal is struck in the present. Various planned and unplanned exit strategies are analyzed in this course which include: an initial public offering, offering the business for sale, merging with another company, franchising, acquisition of shares by some investors, or liquidation of the business. Valuation methods, financial and tax implications, and due diligence are also examined. 1 Credit

GBEN 413. Integrative Experience/New Venture Internship (1–4)
Only students enrolled in the Entrepreneurial concentration may elect one of these hands-on, project-orientated courses. Integrative Experience must meet the requirements of formal independent study and involve a new venture situation with a start-up or existing company. Students employed in a New Venture Internship may also qualify for course credit if the same requirements are satisfied.
Project Management

PMGT 401. Project Management: Course Framework & Project Leader Assessment (1)
Introduction to the Project Management Certification Course; syllabus, requirements and deliverables. Students will become acquainted with: the terminology, nine knowledge areas, relationships to other disciplines, project management context and processes. Introduction to the logistical vehicles for course delivery and the tools to be used. Students will also assess themselves as project leaders and explore project leader competencies, roles, responsibilities and stakeholder relationships.

PMGT 402. Project Management: Skills and Abilities for Effective Leadership of Teams (1)
Students will enhance project team leadership skills, define the work environment of project teams, team selection, develop a team charter, clearly define the roles and responsibilities of all project team members, set team guidelines, learn methods to promote teamwork, understand the stages of development, manage team dynamics. Additional skills covered: delegation, managing accountability without direct authority over project team members, managing dysfunctional teams, performance improvement, input to performance appraisals, rewards, recognitions, celebrations. Prerequisite: PMGT 401.

PMGT 403. Project Management: Initiating the Project and Planning Scope and Schedule (2)
Students will learn techniques for deciding whether to undertake a project and for planning project outcomes and schedules. The relationship of projects to organizational planning and budgeting, information and performance appraisals systems will be discussed. Approaches will be shared for identifying and classifying project stakeholders and designing and conducting a cost benefit analysis. How to define desired project outcomes clearly and completely and how to determine project work to be performed using decomposition and templates will be addressed. Students will learn how to develop a project charter, a scope statement, a Work Breakdown Structure, a WBS dictionary and a Linear Responsibility Chart. How to create a network diagram and analyze schedule possibilities using the Critical Path Method (CPM) and the Program Evaluation and Review Technique (PERT) will be explained. Fast tracking and crashing a schedule will also be explored. Displaying a schedule with a Gantt Chart, key events list and activities will be illustrated. How to support these activities using MS Project will be demonstrated. Prerequisites: PMGT 401, PMGT 402

PMGT 404. Project Management: Planning Resources, Communication, Quality and Risk Management (2)
In this course, students will learn how to estimate the needs for personnel and other types of projects resources, to develop a project budget and to plan for additional project support activities. Determining the type, amount and timing of resource needs will be emphasized. Approaches to resource leveling will be discussed. The different types of project costs will be explained. The use of analogous estimating, parametric modeling, bottom-up estimating and computerized tools to estimate costs will be explored. Planning to ensure project quality and coordinate project communications will be addressed. Identifying, assessing, and preparing a plan to manage project risks will also be discussed. Planning for project procurement and associated solicitations will be explained. Students will learn how to develop resource matrices, loading charts and garchs and a project budget. How to support these activities using MS Project will be demonstrated. Prerequisites: PMGT 401, PMGT 402, PMGT 403

PMGT 405. Project Management: Project Leader Communications Expertise and Evaluating Team Performance (1)
The purpose of this weekend seminar is to strengthen the project leader’s communication skills, change-management skills, conflict resolutions skills, and team evaluation skills. Focus areas will also include the following: understanding the art and science of effective listening, managing multiple expectations, communicating “bad news,” and learning tools and techniques for project team evaluation. Prerequisites: PMGT 401, PMGT 402, PMGT 403, PMGT 404

PMGT 406. Project Management: Implementing and Managing Projects (2)
Students will learn techniques and processes to start and perform the actual project work. Suggestions for working successfully in a matrix management environment will be discussed. Information systems to track schedule performance, labor charges and project expenditures will be expressed. Developing escalation procedures to address project conflicts issues will be emphasized. Procedures for controlling labor and fund charges to a project will be introduced. Key project review and decision meetings will be identified. Planning and implementing quality assurance activities will be addressed. Planning for, awarding and administering contracts will be discussed. How to support these activities using MS Project will be demonstrated. Prerequisites: PMGT 401, PMGT 402, PMGT 403, PMGT 404, PMGT 405

PMGT 407. Project Management: Controlling Performance and Assessing Outcomes (2)
Students will learn how to monitor and control project activities in progress and how to bring a project to closure. Approaches for assessing project products and services produced will be explored. Techniques for evaluating schedule and cost performance will be introduced. Variance analysis and earned value analysis will be explained. Quality control and risk monitoring and control will be discussed. Change control systems and procedures will be explained. How to prepare focused progress reports and conduct effective project meetings will be discussed. Requirements for closing out contracts and procurements will be detailed. Obtaining user acceptance, closing labor and fund charge accounts and other administrative activities will be discussed. Designing and conducting a post-project review will be explored. How to support these activities using MS Project will be demonstrated. Prerequisites: PMGT 401, PMGT 402, PMGT 403, PMGT 404, PMGT 405, PMGT 406

PMGT 408. Project Management: Problem Solving, Decision Making and Ethics (1)
This 2-day seminar focuses on developing problem solving and ethical decision-making skills. Students will learn to recognize project problems, frame the problem, assess risk, manage risk, plan contingencies, recognize
the escalation points, and apply alternate methods. Students will also participate in ethical exercises to strengthen their ability to recognize ethical dilemmas and evaluate decisions. Prerequisites: PMGT 401, PMGT 402, PMGT 403, PMGT 404, PMGT 405, PMGT 406, PMGT 407

Accounting

M.S. Core Courses

MACC 401. Professional Issues in Accounting (3)
This course consists of three modules designed to provide students with an overview of professional accounting topics. The first module introduces business case analysis. Cases will be dissected, analyzed and discussed. A range of business topics will be used to demonstrate the case method. The second module examines the behavioral foundations of the negotiation process. Topics include planning, tactics, power, integrative and distributive bargaining, behavioral styles and individual and team negotiations. The third module examines ethical issues as they relate to business. Through debate and case studies, students will be challenged to determine what are acceptable and ethical business practices, primarily in an international environment, and how these practices relate to the highly diverse elements that comprise today's complex, global enterprises. Open only to MSAIA students.

MACC 412. Information Systems Auditing (3)
This course deals with a number of issues related to modern information technology auditing. Computer control issues and their impact on both operational efficiency and the auditor's attest responsibility under Sarbanes-Oxley legislation and other authoritative pronouncements are dealt with in depth. The course focuses on identifying key threats and describes the audit tests and procedures in the following areas: Operating Systems (mainframes and PCs), Data Management, Systems Development, Electronic Commerce (including networks, EDI and Internet risks), Organizational Structure, Computer Center Operations, ERP systems, and Computer Applications (Revenue and Expenditure cycle). Emerging issues in fraud prevention and detection are examined. A key learning objective in this course is to develop proficiency in the use of data extraction software for auditing. Towards this end, the course integrates ACL into relevant auditing problems, projects and cases. Prerequisites: Accounting 311, Accounting 320, and MACC 401 or permission of instructor.

MACC 413. The Corporate Financial Reporting Environment (3)
Uses theory and research results to study financial reporting's role in providing decision-useful information to capital market participants. Examines the financial reporting revolution, efficient markets theory and research, economic consequences, positive accounting theory, owner/manager conflict, executive compensation, earnings management, international concerns, standard-setting, the FASB's conceptual framework, and current issues. Prerequisites: Accounting 316 or equivalent and MACC 401.

MACC 420. Consulting Process and Practice in Professional Accounting (3)
This course provides an overview of the consulting and advisory process as it relates to accounting firms and internal consultation industry. The course focuses on various aspects of the consulting process life cycle such as gaining and retaining clients, developing proposals and engagement letters, defining client needs and diagnosing problems, utilizing effective data collection and analysis methodologies, documenting information gathered, developing solutions, presenting recommendations, and managing project requirements. Several types of consulting services and related issues are addressed through the use of case studies and outside speakers. Students gain experience in basic consulting skills by completing a real life consulting project and presenting their findings orally and in writing. Prerequisite: MACC 401.

MACC 424. Corporate Governance and Business Risk (3)
Focuses on assurance and risk management services offered by public accounting firms. Integrating topics from accounting, auditing, ethics, economics, risk management, internal control, and business strategy, the course develops an in-depth understanding of how corporate governance and business risk issues relate to assurance practice in today's post-Sarbanes-Oxley environment. Students complete an assurance and risk management engagement for a "real-life" small-to-medium size client. Prerequisite: MACC 401 and MACC 412 or concurrent.

MACC 427. Analyzing Accounting Information (3)
Focuses on accounting information as an enabler of business solutions. The course exposes students to the interaction of accounting information, business models, financial analysis, and information technology to bring about the resolution of complex business problems. Topics include using control systems as guides to business strategies, creating performance measurement systems, evaluating strategic profit performance, linking internal operations to external markets, and balancing the dynamics of profit, growth, management attention and control. Issues relating to Enterprise Resource Planning (ERP) are addressed. Prerequisite: MACC core or concurrent. (To be taken during the last semester of the program.)

Economics

M.S. And Ph.D. Core Courses

ECO 402. Managerial Economics (3)
Selected topics in the history of economic thought, with special attention to the origins of modern economic theory. Prerequisite: a graduate course in economic theory.

ECO 412. Mathematical Economics (3)
Applications of various mathematical techniques in the formation and development of economic concepts and theories. Prerequisite: consent of the chair.

ECO 413. Advanced Microeconomics Analysis (3)
A survey of methods of decision-making at the microeconomic level; price theory and econometric applications. Prerequisite: ECO 402 or equivalent.
ECO 414. Advanced Topics in Microeconomics (3)
Resource allocation and price determination. Theories of choice of consumers, firms and resource owners under various market forms. Prerequisites: ECO 401 and ECO 413 or equivalents.

ECO 415. Econometrics I (3)
Computer applications of standard econometric techniques using regression analysis in a single-equation context. Discussion of problems of multicollinearity, heteroscedasticity and autocorrelation. An introduction to simultaneous equation models, identification and estimation problems. Prerequisite: ECO 401 or equivalent.

ECO 416. Econometric Theory (3)
Mathematical and statistical specification of economic models. Statistical estimation and tests of parameters in single and multiple equation models. Prediction and tests of structural changes. Prerequisites: ECO 401 (or equivalent) and calculus.

ECO 417. Advanced Macroeconomics Analysis (3)
Macroeconomic theory and policy. Emphasis on theoretical models and policy implications.

ECO 418. Advanced Topics in Macroeconomics (3)
Models of employment, income and growth in monetary economies. Policies for economic stability and growth. Prerequisite: ECO 417 or equivalent.

ECO 423 Real Options (3)
This is an introductory graduate level course in financial economics. It is intended for students with strong technical backgrounds who are comfortable with mathematical arguments. The course is divided into three main parts: deterministic finance, single-period uncertainty finance and options theory and its applications. Prerequisite: GBUS 420.

ECO 424 Advanced Numerical Methods (3)
This course focuses on techniques that apply directly to economic analysis. A particular emphasis is on problems in finance. The course teaches students how to use EXCEL macros and advanced VBA (the industry standard). It is designed for decision making in business settings.

Economics Electives

ECO 404. Technology, Trade and Economic Growth (1) (required for MOT and MBA-MOT students only)
Overview of the role of technology in economic systems. Productivity and growth effects, relationships to industry structure, impacts on international trade and competitiveness. Prerequisite: intended to be taken concurrently with ECO 402.

ECO 423. Real Options (3)
This is an introductory graduate level course in financial economics. It is intended for students with strong technical backgrounds who are comfortable with mathematical arguments. The course is divided into three main parts: deterministic finance, single-period uncertainty finance and options theory and its applications. Prerequisite: GBUS 420.

ECO 424. Advanced Numerical Methods (3)
This course focuses on techniques that apply directly to economic analysis. A particular emphasis is on problems in finance. The course teaches students how to use EXCEL macros and advanced VBA (the industry standard). It is designed for decision making in business settings.

ECO 425. Cost-Benefit Analysis (3)
Theory and methods of cost-benefit analysis; efficiency and equity as criteria in program evaluation; proper measurement of market and non-market costs and benefits; consideration of risk, uncertainty, appropriate discounting techniques and distributional consequences; applications include the evaluation of health care policies and therapies.

ECO 428. (GBUS 428) Capital and Interest Theory (3)
Theories of interest and capital. Annuities; applications of present value theory; investment valuation under uncertainty and risk; term structure of interest rates; the theory of savings, cost of capital and capital formation. Prerequisite: MBA 402 or equivalent.

ECO 429. (GBUS 429) Monetary Theory (3)
The role of money in the economy from theoretical and empirical perspectives. The influence of money and prices, interest rates, output and employment. Prerequisite: ECO/GBUS 427 or equivalent.

ECO 430. (GBUS 430) Public Finance (3)
The economics of public spending and taxation; principles of government debt management; theories of budgeting and cost-benefit analysis and public choice.

ECO 436. Economic History of the United States (3)
Analysis of the colonial economy, transition to industrialization, and the role of trade and transportation in America's development. A consideration of the importance of slavery to the 19th-century American economy and other New World economies. Origin and development of banking and financial markets. Prerequisites: ECO 401 and ECO 402 or equivalents.

ECO 440. Labor Economics (3)
The economics of labor markets and various labor-market institutions with emphasis on current theoretical and empirical research. Prerequisites: ECO 401 and ECO 402 or equivalents.

ECO 447. Economic Analysis of Market Competition (3)
Mathematical models based on game theory and industrial organization. Cases are used to analyze the strategic interaction of firms and governments as competitors and partners.

ECO 451. Urban Economics (3)
The application of traditional and spatial economics to the location of economic activity focusing on the urban economic problems of business location, housing, land value, land use and intra-urban transportation.

ECO 453. Government Regulation of Business (3)
Analysis of the economic justification for government regulation of private enterprise. Topics include antitrust policy, utilities, and health, safety and environmental regulation. Prerequisite: ECO 402 or equivalent.

ECO 454. Economics of Environmental Management (3)
Economic theory of natural resources. Optimal policies for the development of renewable and nonrenewable resources and environmental quality. Prerequisite: ECO 402 or equivalent.
ECO 455. Health Economics (3)  
Economic theory of health care delivery systems.  
Financing health care services. Case studies of specific  
economic-financing problems and/or international  
comparisons of health care delivery. Prerequisite: ECO 401  
or ECO 402 or equivalents or permission of the instruc-  
tor.

ECO 456. Industrial Organization (3)  
The goal of the course is to review theoretical and  
empirical attempts by economists to understand market  
structures lying between the extremes of perfect competi-  
tion and monopoly. The course will focus first on  
describing the current U.S. industrial structure and  
reviewing models of imperfect competition. The course  
then shifts to a closer study of individual firm behavior.  
The final segment of the course is an overview of two  
significant relationships between government and indus-  
try caused by the existence of imperfect competition.

ECO 457. Bio-Pharmaceutical Economics (3)  
Characteristics of the market for pharmaceuticals; barri-  
ters to entry, competitions and innovation; pricing and  
regulation; physician prescribing behavior; commercializ-  
ation and financing of biotech startups; international  
comparisons of public policy.

ECO 460. Time Series Analysis (3)  
Classical decomposition of time series, trend analysis,  
exponential smoothing, spectral analysis and Box-Jenkins  
autoregressive and moving average methods.

ECO 461. Forecasting (3)  
Methods of economic and business forecasting.

ECO 462. Advanced Statistics for Business  
and Economics (3)  
An expanded development of statistical concepts neces-  
sary for business and economic research. Topics include  
probability theory, sets, density functions and distribu-  	ions, sampling distributions, point estimation, moment  
generating functions, maximum likelihood, classical sta-  
tistical inference, power functions, likelihood ratio tests  
and non-parametric tests. Prerequisite: calculus.

ECO 463 (IE 458). Topics in Game Theory (3)  
A mathematical analysis of how people interact in strat-  
egic situations. Topics include normal-form and  
extensive-form representations of games, various types of  
equilibrium requirements, the existence and characteriza-  
tion of equilibria, and mechanism design. The analysis is  
applied to micro-economic problems including industrial  
organization, inter-national trade, and finance.  
Prerequisites: Two semesters of calculus, ECO 414 and  
ECO 412, or permission of the instructor.

ECO 472 Special Topics in Economics (1-3)  
Extended Study of an approved topic not covered in  
scheduled courses. May be repeated for credit.

ECO 471. International Economic Development (3)  
An introduction to the basic theoretical concepts in  
international economic development and an evaluation  
of their application by means of a representative sample  
of the literature.

ECO 472. International Trade Theory (3)  
Theories of comparative advantage, factor-price equaliza-  
tion, trade and welfare, tariffs, trade and factor  
movements. Prerequisite: ECO 413 or consent of the  
chair.

ECO 473. International Monetary Economics (3)  
Theory of the balance of payments, the microeconomics  
of international finance, various approaches to balance-  
of-payments adjustments, theories of foreign  
exchange-rate determination and macroeconomic policy  
under fixed and flexible exchange rates. Prerequisite:  
ECO 417 or consent of the chair.

ECO 480. Economics of Technological Change (3)  
Explores theoretical models and empirical evidence on  
the economics of innovation and technical change.  
Includes examination of: the role of technology in com-  
petitiveness, industrial structure and economic growth;  
alternative models of the innovative process; incentives  
for and other conditions affecting research and develop-  
ment; the evaluation of the justifications for government  
support of R&D. Prerequisite: ECO 402 or equivalent.

ECO 490 Master's Thesis  
ECO 492 Special Topics in Economics (1-3)  
Extended study of an approved topic not covered in  
scheduled courses. May be repeated for credit.

ECO 499 Dissertation  

Chemical Engineering

Professors. Philip A. Blythe, Ph.D. (Manchester,  
England); Hugo S. Caram, Ph.D. (Minnesota); Manoj  
K. Chaudhury, Ph.D. (SUNY-Buffalo); Franklin J.  
Howes Jr. Professor; Mohamed S. El-Aasser, Ph.D.  
(McGill), Provost; Gregory C. Farrington, Ph.D.  
(Harvard), President; James T. Hsu, Ph.D.  
(Northwestern); Anand Jagota (Cornell), Director of  
Bioengineering; Andrew Klein, Ph.D. (North Carolina  
State); William L. Luyben, Ph.D. (Delaware); Anthony  
J. McHugh, Ph.D. (Delaware), Ruth H. and Sam  
Madrid Professor, Chair; Arup K. Sengupta, Ph.D.  
(Houston); Cesar A. Silebi, Ph.D. (Lehigh); Harvey G.  
Stenger, Jr., Sc.D. (M.I.T.); Israel E. Wachs, Ph.D.  
(Stanford), G. Whitney Snyder Professor.

Associate Professor. Mayuresh V. Kothare, Ph.D.  
(California Institute of Technology) R. L. McCann  
Professor.

Assistant Professors. James F. Gilchrist, Ph.D.  
(Northwestern); Ian Laurenzi, Ph.D. (UPenn);  
Padminavathy Rajagopalan, Ph.D. (Brown).

Professor of Practice. Shiva Ji Sircar, Ph.D.  
(Pennsylvania); Kemal Tuzla, Ph.D. (Istanbul Technical  
University), Associate Chair

Principal research scientists. Eric S. Daniels, Ph.D.  
(Lehigh); E. David Sudol, Ph.D. (Lehigh).

Emeritus professors. Marvin Charles, Ph.D. (Brooklyn  
Polytechnic); John C. Chen, Ph.D. (Michigan); Arthur  
E. Humphrey, Ph.D. (Columbia); provost emeritus;  
William E. Schiesser, Ph.D. (Princeton); Leslie H.  
Sperling, Ph.D. (Duke); Fred P. Stein, Ph.D. (Michigan)

The mission of the undergraduate program is “to educate  
students in the scientific principles of chemical engineer-  
ing and provide opportunities to explore their  
applications in the context of a humanistic education  
that prepares them to address technological and societal  
challenges.”

Chemical engineers serve a wide variety of technical and  
managerial functions within the chemical processing  
industry. For a lifetime of effectiveness they need a
sound background in the fundamental sciences of chemistry and physics; a working capability with mathematics, numerical methods, and application of computer solutions; and a broad education in humanities, social sciences, and managerial techniques. These bases are applied in a sequence of chemical engineering courses in which logical and mathematical manipulation are applied to chemical processing problems. With the resulting habits of precise thought coupled to a broad base in scientific and general education, Lehigh graduates have been effective throughout industry and in advanced professional education. No effort is made toward any specific industry, but adaptation is rapid and the fundamental understanding forms the base for an expanding career.

The program is also designed to prepare a student for graduate study in chemical engineering. Further study at the graduate level leading to advanced degrees is highly desirable if an individual wishes to participate in the technical development of the field. The increasing complexity of modern manufacturing methods requires superior education for men and women working in research, development, and the design fields or for teaching.

**Minor in Biotechnology**

The department of Chemical Engineering encourages engineering students to broaden their education by taking a minor. In this regard, a Biotechnology Minor is offered to students majoring in Chemical Engineering. The Biotechnology minor requires 15 credit hours. A detailed listing of the required courses for the Biotechnology Minor can be obtained from the Chemical Engineering Department.

**Minor in Chemical Engineering**

Minor in Chemical Engineering provides students Chemical Engineering knowledge that they do not acquire in their major, such as knowledge of bio-chemical systems, transport phenomena, reaction engineering. This will widen their skills and help to increase the cooperation between the disciplines, which will lead to increased possibilities for employment.

**Physical Facilities**

The chemical engineering department is the only engineering department located on Lehigh’s 780-acre Mountaintop Campus. Here the department occupies approximately one-third of Iacocca Hall, the 200,000-square-foot flagship building that contains offices, classrooms, and laboratories. Additional plant facilities, and the undergraduate chemical processing laboratory occupy approximately 10,000-square-feet in the nearby Imbt building.

These facilities provide excellent support for a wide range of general laboratory equipment for undergraduate and graduate studies of the behavior of typical chemical processing units; special equipment for bioengineering research; special equipment for biochemical engineering and for the study of polymers; digital computation for process dynamics study; and special equipment for the study of thermodynamics, kinetics, heat transfer, and mass transfer.

The chemical engineering department has established a senior design laboratory in Iacocca Hall featuring 20 PCs. In addition, a 10-PC university-maintained computing laboratory is available nearby.

**Career Opportunities**

Chemical engineers play important roles in all activities bearing on the chemical process industry. These include the functions of research, development, design, plant construction, plant operation and management, corporate planning, technical sales, and market analysis.

The industries that produce chemical and/or certain physical changes in fluids, including petroleum and petrochemicals, rubbers and polymers, pharmaceuticals, bioengineering, metals, industrial and fine chemicals, foods, and industrial gases, have found chemical engineers to be vital to their success. Chemical engineers are also important participants in pollution abatement, energy resources, national defense programs, and more recently in the manufacture of microelectronic devices and integrated circuits.

**Special Programs and Opportunities**

**Co-op Program:** The department, in conjunction with the College of Engineering and Applied Science, operates a cooperative program that is optional for specially selected students who are entering their junior year. This program affords early exposure to industry and an opportunity to integrate an academic background with significant periods of engineering practice. Our program is unique in offering two work experiences and still allowing the co-op students to graduate in four years with their class.

**OSI Program:** The Opportunities for Student Innovation (OSI) program seeks to develop students’ propensities for critical assessment and innovative solution of meaningful problems. The OSI program affords selected seniors an opportunity to experience team research leading toward technological benefits. Each project is hosted by a company and carried out under the supervision of a Lehigh faculty member.

**Minors and Specializations:** Technical minors are available in biotechnology, computer science, environmental engineering, manufacturing systems, materials science and engineering, and polymer science and engineering. Chemical Engineering also offers specialization certificates in polymer science, biotechnology, and process modeling and control. Minors are also available from the Business College and the College of Arts and Sciences.

**Overseas:** Study abroad is available in exchange programs that have been established by the department for the junior year at the University of Nottingham (United Kingdom) and for the summer following the junior year at the University of Dortmund (Germany).

**Requirements of the Major -** 133 credit hours are required for graduation with the degree of bachelor of science in chemical engineering.

**freshman year (see Recommended Freshman Year)**

**sophomore year, first semester (18 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 31</td>
<td>Material and Energy Balances of Chemical Processes (3)</td>
<td>3</td>
</tr>
<tr>
<td>CHM 31</td>
<td>Chemical Equilibria in Aqueous Systems (3)</td>
<td>3</td>
</tr>
<tr>
<td>PHY 21</td>
<td>Introductory Physics I (4)</td>
<td>4</td>
</tr>
<tr>
<td>PHY 22</td>
<td>Introductory Physics Laboratory I (1)</td>
<td>1</td>
</tr>
<tr>
<td>MATH 23</td>
<td>Calculus III (4)</td>
<td>4</td>
</tr>
<tr>
<td>elective (3)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

**sophomore year, second semester (18 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 32</td>
<td>Chemical Reaction Engineering (3)</td>
<td>3</td>
</tr>
<tr>
<td>CHM 41</td>
<td>Physical Chemistry (3)</td>
<td>3</td>
</tr>
<tr>
<td>CHM 42</td>
<td>Physical Chemistry Laboratory II (1)</td>
<td>1</td>
</tr>
<tr>
<td>PHY 23</td>
<td>Introductory Physics II (4)</td>
<td>4</td>
</tr>
<tr>
<td>PHY 24</td>
<td>Introductory Physics Laboratory II (1)</td>
<td>1</td>
</tr>
<tr>
<td>MATH 24</td>
<td>Calculus IV (4)</td>
<td>4</td>
</tr>
<tr>
<td>elective (3)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
CHE 44. Fluid Mechanics (4) spring

CHE 60. Unit Operations Survey (3) spring
The theory of heat, mass and momentum transport. Laminar and turbulent flow of real fluids. Heat transfer by conduction, convection, and radiation. Application to a wide range of operations in the chemical and metallurgical process industries.

CHE 151. Introduction to Heat Transfer (3) fall
Fundamental principles of heat transfer. Fourier's law. Conduction, convection and radiation. Analysis of steady and unsteady state heat transfer. Evaporation and condensation. Applications to the analysis and design of chemical processing units involving heat transfer. Prerequisite: CHE 44.

CHE 179. Professional Development (1) spring
Elements of professional growth, registration, ethics, and the responsibilities of engineers both as employees and as independent practitioners. Proprietary information and its handling. Patents and their importance. Discussions with the staff and with visiting Lecturers. A few plant trips.

CHE 185. Undergraduate Research I (3)
Independent study of a problem involving laboratory investigation, design, or theoretical studies under the guidance of a senior faculty member. Prerequisite: CHE 185 or consent of the department chair.

CHE 201. Methods of Analysis in Chemical Engineering (3) fall
Analytical and numerical methods of solution applied to dynamic, discrete and continuous chemical engineering processes. Laplace Transforms. Methods of analysis applied to equilibrium, characteristic value and non-linear chemical engineering problems. Prerequisite: MATH 205 and CHE 44.

CHE 202. Chemical Engineering Laboratory I (2) fall
The laboratory study of chemical engineering unit operations and the reporting of technical results. One three-hour laboratory and one lecture period per week. Independent study and both group and individual reporting. Prerequisite: CHE 185.

CHE 203. Chemical Engineering Laboratory II (2) spring
Laboratory experience with more complex chemical processing situations including processes involving chemical reactions and those controlled automatically. Prerequisite: CHE 244 and CHE 210.

CHE 207. (MATH 207) Introduction to Biomedical Engineering and Mathematical Physiology (3) fall
Topics in human physiology and mathematical analysis of physiological phenomena, including the cardiovascular and respiratory systems, biomechanics, and renal physiology; broad survey of bioengineering. Independent study projects. Prerequisites: MATH 205.
CHE 210. Chemical Engineering Thermodynamics (4) spring

CHE 211. Chemical Reactor Design (3) spring
The theory of chemical kinetics to the design and operation of chemical reactors. Plug flow and continuous stirred tank reactors. Homogeneous and heterogeneous reaction kinetics. Design of isothermal and adiabatic reactors. Prerequisite: CHE 151, CHE 210 or equivalent.

CHE 233. Process Design I (3) fall
Design of chemical plants incorporating traditional elements of engineering economics and synthesis of steady-state flowsheets with (1) both heuristic and rigorous optimization methods and (2) consideration of dynamic controllability of the process. Economic principles involved in the selection of process alternatives and determination of process capital, operating costs, and venture profitability. Energy conservation, pinch techniques, heat-exchanger networks, and separation sequences. Considerations of market limitations, environmental and regulatory restrictions, and process safety. Use of modern computer-aided software for steady-state and dynamic simulation and optimization. Group design projects. Prerequisites: CHE 211, CHE 242 and CHE 244.

CHE 234. Process Design II (3) spring
Continuation of CHE 233. Prerequisite CHE 233.

CHE 242. Introduction to Process Control and Simulation (3) spring

CHE 244. Mass Transfer and Separation Processes (3) spring
Diffusion, fluxes, and component conservation equations. Fick’s law. Unsteady state diffusion. Convective mass transfer. Interphase mass transport coefficients. Design of multicomponent-distillation, absorption, extraction, and fixed-bed processes. Prerequisites: CHE 31 and CHE 44.

CHE 281. Chemical Engineering Fundamentals I (4) fall
Fundamentals of material balances, fluid mechanics and heat transfer. Prerequisites: Undergraduate degree in a scientific or engineering discipline or one semester undergraduate level general chemistry, one semester undergraduate level physics (statics and dynamics), and two semesters undergraduate calculus and department permission.

CHE 282. Chemical Engineering Fundamentals II (4) spring
Fundamentals of heat and mass transfer, process energy balances and unit operations. Prerequisites: CHE 281, or equivalent, and department permission.

CHE 283. Chemical Engineering Fundamentals III (4) fall
Fundamentals of thermodynamics, reaction kinetics and reactor analysis, and applied mathematics. Prerequisites: CHE 281 and 282 and department permission.

For Advanced Undergraduates and Graduate Students

CHE 276 (CE 276). Environmental Engineering Processes (3) spring
Processes applied in environmental engineering for air pollution control, treatment of drinking water, municipal wastewater, industrial wastes, hazardous/toxic wastes, and environmental remediation. Kinetics, reactor theory, mass balances, application of fundamental physical, chemical and biological principles to analysis and design.

CHE 331. Separation Processes (3) fall, every other year

CHE 334. (MAT 334, EES 338) Electron Microscopy and Microanalysis (4) fall
Fundamentals and experimental methods in electron optical techniques including scanning electron microscopy (SEM) conventional transmission (TEM) and scanning transmission (STEM) electron microscopy. Specific topics covered will include electron optics, electron beam interactions with solids, electron diffraction and chemical microanalysis. Applications to the study of the structure of materials are given. Prerequisite: consent of the department chair.

CHE 341. Biotechnology I (3) fall
Applications of material and energy balances; heat, mass, and momentum transfer; enzyme and microbial kinetics; and mathematical modeling to the engineering design and scale-up of bio-reactor systems. Prerequisites: MATH 22, Phys 11, and CHM 187 or the equivalent of each; senior standing; and the consent of the instructor. Closed to students who have taken CHE 441.

CHE 342. Biotechnology II (3) spring
Engineering design and analysis of the unit operations used in the recovery and purification of products manufactured by the biotechnology industries. Requirements for product finishing and waste handling will be addressed. Prerequisite: CHE 341 or equivalent. Closed to students who have taken CHE 442.

CHE 346. Biochemical Engineering Laboratory (3) spring
Laboratory and pilot-scale experiments in fermentation and enzyme technology, tissue culture, and separations techniques. Prerequisites: CHE 341 and either CHE 444 or CHE 342, previously or concurrently. Closed to students who have taken CHE 446.

CHE 350. Special Topics (1-3)
A study of areas in chemical engineering not covered in courses presently listed in the catalog. May be repeated for credit if different material is presented.
CHE 364. Numerical Methods in Engineering (3)
Survey of the principal numerical algorithms for: (1) functional approximation, (2) linear and nonlinear algebraic equations, (3) initial and boundary-value ordinary differential equations and (4) elliptic, hyperbolic and parabolic partial differential equations. Analysis of the computational characteristics of numerical algorithms, including algorithm structure, accuracy, convergence, stability and the effect of computer characteristics, e.g., the machine epsilon and dynamic range. Applications of mathematical software in science and engineering.

CHE 373. (CE 373). Fundamentals of Air Pollution (3)
Introduction to the problems of air pollution including such topics as: sources and dispersion of pollutants; sampling and analysis; technology of economics and control processes; legislation and standards. Prerequisite: senior standing in the College of Engineering and Applied Science.

CHE 380. Design Projects (1-6) fall-spring
Design project work as a member of a team preferably including students from different disciplines. The project attacks a problem which, when possible, involves one of the local communities or industries. Specific projects are normally guided by faculty from several departments with consultants from off-campus. The course may be repeated for credit.

CHE 386. Process Control (3) fall
Open-loop and closed-loop stability analysis using root locus and Nyquist techniques, design of feedback controllers with time and frequency domain specifications. Experimental process identification. Control of multivariable processes. Introduction to sampled-data control theory. Prerequisite: CHE 242 or equivalent.

CHE 387. (ECE 387, ME 387) Digital Control (3) spring
Sampled-data systems; z-transforms; pulse transfer functions; stability in the z-plane; root locus and frequency response design methods; minimal prototype design; digital control hardware; discrete state variables; state transition matrix; Liapunov stability state feedback control (2 lectures and one laboratory per week). Prerequisite: CHE 386 or ECE 212 or ME 343 or consent of instructor.

CHE 388. (CHEM 388, MAT 388) Polymer Synthesis and Characterization Laboratory (3) spring
Techniques include: free radical and condensation polymerization; molecular weight distribution by gel chromatography; crystallinity and order by differential scanning calorimetry; pyrolysis and gas chromatography; dynamic mechanical and dielectric behavior; morphology and microscopy; surface properties. Prerequisite: senior level standing in CHE, CHM or MAT, or permission of the instructor.

CHE 389. (ECE 389, ME 389) Control Systems Lab (2) spring
Experiments on a variety of mechanical, electrical and chemical dynamic control systems. Exposure to state-of-the-art control instrumentation: sensors, transmitters, control valves, analog and digital controllers. Emphasis on comparison of theoretical computer simulation predictions with actual experimental data. Lab teams will be interdisciplinary. Prerequisite: CHE 242, ECE 212, or ME 343. (ES 1), (ED 1)

CHE 391. (CHEM 391) Colloid and Surface Chemistry (3)
Physical chemistry of everyday phenomena. Intermolecular forces and electrostatic phenomena at interfaces, boundary tensions and films at interfaces, mass and charge transport in colloidal suspensions, electrostatic and London forces in disperse systems, gas adsorption and heterogeneous catalysis.

CHE 392. (CHM 392) Introduction to Polymer Science (3) fall
Introduction to concepts of polymer science. Kinetics and mechanism of polymerization, synthesis and processing of polymers, characterization. Relationship of molecular conformation, structure and morphology to physical and mechanical properties. Prerequisite: CHM 187 or equivalent.

CHE 393. (CHEM 393, MAT 393) Physical Polymer Science (3) fall
Structural and physical aspects of polymers (organic, inorganic, natural). Molecular and atomic basis for polymer properties and behavior. Characteristics of glassy, crystalline, and paracrystal-line states (including viscoelastic and relaxation behavior) for single- and multi-component systems. Thermodynamics and kinetics of transition phenomena. Structure, morphology, and behavior. Prerequisite: senior level standing in CHE, CHEM, or MAT, or permission of the instructor.

CHE 394. (CHM 394) Organic Polymer Science I (3) spring
Organic chemistry of synthetic high polymers. Polymer nomenclature, properties, and applications. Functionality and reactivity or monomers and polymers. Mechanism and kinetics of step-growth and chain-growth polymerization in homogenous and heterogeneous media. Brief description of emulsion polymerization, ionic polymerization, and copolymerization. Prerequisites: one year of physical chemistry and one year of organic chemistry. (NS)

Graduate Programs
The department of chemical engineering offers graduate programs leading to the master of science, master of engineering, and doctor of philosophy degrees. The programs are all custom tailored for individual student needs and professional goals. These individual programs are made possible by a diversity of faculty interests that are broadened and reinforced by cooperation between the department and several research centers on the campus. A free flow of personnel and ideas between the centers and academic departments ensures that the student will have the widest choice of research activities. The student is also exposed to a wide range of ideas and information through courses and seminars to which both faculty and center personnel contribute. In addition, strong relationships with industry are maintained by the department and the research centers, some of which operate industrially-sponsored liaison programs whereby fundamental nonproprietary research is performed in areas of specific interest to participating sponsors.

While the department has interacted with most of the centers on campus, it has had unusually strong and continuing liaisons with Emulsion Polymers Institute, Process Modeling and Control Research Center, Biopharmaceutical Technology Institute and Materials Research Center. The Department also has a strong relation with the Bioengineering Program.
In addition to interacting with the centers, the department originates and encourages programs that range from those that are classical chemical engineering to those that are distinctly interdisciplinary. The department offers active and growing programs in adhesion and tribology; emulsion polymerization and latex technology; bulk polymer systems; process control; process improvement studies; rheology; computer applications; environmental engineering; thermodynamics; kinetics and catalysis; enzyme technology; and biochemical engineering.

Career Opportunities

Master of science, master of engineering, and doctor of philosophy graduates in the chemical engineering area are sought by industry for activities in the more technical aspects of their operations, especially design, process and product development, and research. Many of these graduates also find opportunities in research or project work in government agencies and in university teaching and research.

Physical Facilities

The department is well equipped for research in colloids and surface science, adhesion and tribology, polymer science and engineering, catalysis and reaction kinetics, thermodynamic property studies, fluid dynamics, heat and mass transfer, process dynamics and control, and enzyme engineering and biochemical engineering.

The departmental and university computing facilities include PCs and workstations, connected by a university-wide high speed network, which in turn provides worldwide networking via the Internet/WWW. All of these facilities can access a wide variety of general-purpose, and scientific and engineering software via the university and local networks, including software specifically for the steady state and dynamic simulation of chemical engineering systems. The networks are extended as needed to ensure the chemical engineering department has access to the latest computing technology.

Special Programs

Polymer Science and Engineering. The polymers activity includes work done in the Department of Chemical Engineering as well as the Departments of Chemistry, Materials Science, and Physics, the Materials Research Center, the Center for Polymer Science and Engineering, the Emulsion Polymers Institute, and the Polymer Interfaces Center. More than 20 faculty members from these organizations or areas have major interests in polymers and cooperate on a wide range of research projects. For students with deep interest in the area, degree programs are available leading to the master of science, master of engineering, and doctor of philosophy degrees in polymer science and engineering.

There are three major polymer research thrusts in which chemical engineering students and faculty are involved. These are polymer colloids (latexes), polymer interfaces, and polymer materials. The Emulsion Polymers Institute, with strong industrial support, sponsors projects in the preparation of monosize polymer particles, in mechanisms and kinetics of emulsion, miniemulsion and dispersion polymerization, in latex particle morphology and film-formation, and in rheological properties of latexes and thickener. The Polymer Interfaces Center has programs in adsorption/characterization, wetting/adhesion, and mechanical behavior. The Engineering Polymers Laboratory investigates the behavior of bulk polymer materials, focusing on multicomponent polymers and composites.

Distance Education

The Department offers some of its regular credit courses each semester via satellite and the World Wide Web for engineers in industry and government. These offerings, which are administered by the Distance Education Office, can lead to the Master of Engineering degree.

Major Requirements

All candidates for the Master of Science degree are required to complete a research report or thesis for which six hours of graduate credit are earned. Course selection is done individually for each student, although CHE 400, CHE 410, CHE 415 and CHE 461 are required. Candidates for the Master of Engineering degree do not do research; all 30 credit hours are fulfilled by course work. Course selection is done individually for each student within the University requirements for a master’s degree.

In addition to an approved course and thesis program, the Ph.D. student must pass a qualification examination given during the second year of residence.

Advanced Courses in Chemical Engineering

CHE 400. Chemical Engineering Thermodynamics (3) fall
Applications of thermodynamics in chemical engineering. Topics include energy and entropy, heat effects accompanying solution, flow of compressible fluids, refrigeration including solution cycles, vaporization and condensation processes, and chemical equilibria. Prerequisite: an introductory course in thermodynamics.

CHE 401. Chemical Engineering Thermodynamics II (3) spring, every other year
A detailed study of the uses of thermodynamics in predicting phase equilibria in solid, liquid, and gaseous systems. Fugacities of gas mixtures, liquid mixtures, and solids. Solution theories; uses of equations of state; high-pressure equilibria. Prerequisite: CHE 211.

CHE 410. Chemical Reaction Engineering (3) spring
The application of chemical kinetics to the engineering design and operation of reactors. Non-isothermal and adiabatic reactions. Homogeneous and heterogeneous catalysis. Residence time distribution in reactors. Prerequisite: CHE 211.

CHE 413. Heterogeneous Catalysis and Surface Characterization (3) fall, every other year
History and concepts of heterogeneous catalysis. Surface characterization techniques, and atomic structure of surfaces and adsorbed monolayers. Kinetics of elementary steps (adsorption, desorption, and surface reaction) and overall reactions. Catalysis by metals, metal catalysts, and sulfides. Industrial applications of catalysis: selective oxidation, pollution control, ammonia synthesis, hydrogenation of carbon monoxide to synthetic fuels and chemicals, polymerization, hydrocracking, and cracking.

CHE 415. Transport Processes (4) spring
A combined study of the fundamentals of momentum transport, energy transport and mass transport and the analogies between them. Evaluation of transport coeffi-
cients for single and multicomponent systems. Analysis of transport phenomena through the equations of continuity, motion, and energy. Prerequisite: CHE 461 or equivalent.

CHE 419. (MECH 419) Asymptotic Methods in the Engineering Sciences (3)

CHE 428. Rheology (3)
An intensive study of momentum transfer in elastic viscous liquids. Rheological behavior of solution and bulk phase polymers with emphasis on the effect of molecular weight, molecular weight distribution and branching. Derivation of constitutive equations based on both molecular theories and continuum mechanics principles. Application of the momentum equation and selected constitutive equations to geometries associated with viscometric flows.

CHE 430. Mass Transfer (3) fall, every other year
Theory and developments of the basic diffusion and mass transfer equations and transfer coefficients including simultaneous heat and mass transfer, chemical reaction and dispersion effects. Applications to various industrially important operations including continuous contact mass transfer, absorption, humidification, etc. Brief coverage of equilibrium stage operations as applied to absorption and to binary and multicomponent distillation.

CHE 433. (ECE 433, ME 433) State Space Control (3) fall
State-space methods of feedback control system design and design optimization for invariant and time-varying deterministic, continuous systems; pole positioning, observability, controllability, modal control, observer design, the theory of optimal processes and Pontryagin's Maximum Principle, the linear quadratic optimal regulator problem, Lyapunov functions and stability theorems, linear optimal open-loop control; introduction to the calculus of variations; introduction to the control of distributed parameter systems. Intended for engineers with a variety of backgrounds. Examples will be drawn from mechanical, electrical and chemical engineering applications. Prerequisite: ME 343 or ECE 212 or CHE 386 or consent of instructor.

CHE 434. (ECE 434, ME 434) Multivariable Process Control (3)
A state-of-the-art review of multivariable methods of interest to process control applications. Design techniques examined include loop interaction analysis, frequency domain methods (Inverse Nyquist Array, Characteristic Loci and Singular Value Decomposition) feed forward control, internal model control and dynamic matrix control. Special attention is placed on the interaction of process design and process control. Most of the above methods are used to compare the relative performance of intensive and extensive variable control structures. Prerequisite: CHE 433 or ME 433 or ECE 433 or consent of instructor.

CHE 436. (ECE 436, ME 436) Systems Identification (3)
The determination of model parameters from time-history and frequency response data by graphical, deterministic and stochastic methods. Examples and exercises taken from process industries, communications and aerospace testing. Regression, quasilinearization and invariant-imbedding techniques for nonlinear system parameter identification included. Prerequisite: CHE 433 or ME 433 or ECE 433 or consent of instructor.

CHE 437. (ECE 437, ME 437) Stochastic Control (3)
Linear and nonlinear models for stochastic systems. Controllability and observability. Minimum variance state estimation. Linear quadratic Gaussian control problem. Computational considerations. Nonlinear control problem in stochastic systems. Prerequisite: CHE 433 or ME 433 or ECE 433 or consent of instructor.

CHE 438. Process Modeling and Control Seminar (1) fall-spring
Presentations and discussions on current methods, approaches, and applications. Credit cannot be used for the M.S. degree.

CHE 440. Chemical Engineering in the Life Sciences (3)
Introduction of important topics in life sciences to chemical engineers. Topics include protein and biomolecule structures and characterization, recombinant DNA technology, immunofluorescence technology, combinatorial chemistry, metabolic engineering, bioinformatics. Prerequisite: Bachelor's degree in science or engineering.

CHE 441. Biotechnology I (3) fall
See the course description listed for CHE 341. In order to receive 400-level credits, the student must do an additional, more advanced term project, as defined by the instructor at the beginning of the course. Closed to students who have taken CHE 341.

CHE 442. Biotechnology II (3) spring
See the course description listed for CHE 342. In order to receive 400-level credits, the student must do an additional, more advanced term project, as defined by the instructor at the beginning of the course. Closed to students who have taken CHE 342.

CHE 444. Bioseparations (3)
Separation techniques for biomolecule isolation and purification. Theory and problems of bioaffinity chromatography, electromigration processes, and aqueous two-phase polymer extraction systems. Engineering principles for scaling-up bioseparation processes. Prerequisite: Consent of the instructor.

CHE 446. Biochemical Engineering Laboratory (3)
Laboratory and pilot-scale experiments in fermentation and enzyme technology, tissue culture, and separations techniques. Prerequisites: CHE 341 and CHE 444 or CHE 342 previously or concurrently. Closed to students who have taken CHE 346.

CHE 448. Topics in Biochemical Engineering (3)
Analysis, discussion, and review of current literature for a topical area of biotechnology. Course may be repeated for credit with the consent of the instructor. Prerequisite: Consent of the instructor.

CHE 450. Special Topics (1-12)
An intensive study of some field of chemical engineering not covered in the more general courses. Credit above three hours is granted only when different material is covered.
CHE 451. Problems in Research (1)  
Study and discussion of optimal planning of experiments and analysis of experimental data. Discussion of more common and more difficult techniques in the execution of chemical engineering research.

CHE 455. Seminar (1-3) fall-spring  
Critical discussion of recent advances in chemical engineering. Credit above one hour is granted only when different material is covered.

CHE 460. Chemical Engineering Project (1-6)  
An intensive study of one or more areas of chemical engineering, with emphasis on engineering design and applications. A written report is required. May be repeated for credit.

CHE 461 (ME 442/ENGR 452). Mathematical Methods in Engineering (3) Fall  
Analytical techniques are developed for the solution of engineering problems described by algebraic systems, and by ordinary and partial differential equations. Topics covered include: linear vector spaces; eigenvalues, eigenvectors, and eigenfunctions. First and higher-order linear differential equations with initial and boundary conditions; Sturm-Liouville problems; Green's functions. Special functions: Bessel, etc. Qualitative and quantitative methods for nonlinear ordinary differential equations: phase plane. Solutions of classical partial differential equations from the physical sciences; transform techniques; method of characteristics.

CHE 464. Numerical Methods in Engineering (3)  
See the course description listed for CHE 364. In order to receive 400-level credits the student must do an additional, more advanced term project, as defined by the instructor at the beginning of the course.

CHE 473. (CE 473) Environmental Separation and Control (3)  
Theory and application of adsorption, ion exchange, reverse osmosis, air stripping and chemical oxidation in water and wastewater treatment. Modeling engineered treatment processes. Prerequisite: CE 470 or consent of the instructor.

CHE 480. Research (3)  
Investigation of a problem in chemical engineering.

CHE 481. Research (3)  
Continuation of CHE 480.

CHE 482. (CHM 482, MAT 482) Engineering Behavior of Polymers (3)  
A treatment of the mechanical behavior of polymers. Characterization of experimentally observed viscoelastic response of polymeric solids with the aid of mechanical model analogs. Topics include time-temperature superposition, experimental characterization of large deformation and fracture processes, polymer adhesion, and the effects of fillers, plasticizers, moisture and aging on mechanical behavior.

CHE 483. (CHM 483) Emulsion Polymers (3) fall  
Examination of fundamental concepts important in the manufacture, characterization, and application of polymer latexes. Topics to be covered will include colloidal stability, polymerization mechanisms and kinetics, reactor design, characterization of particle surfaces, latex rheology, morphology considerations, polymerization with functional groups, film formation and various application problems.

CHE 485. (CHM 485, MAT 485) Polymer Blends and Composites (3) spring, every other year  
Synthesis, morphology, and mechanical behavior of polymer blends and composites. Mechanical blends, block and graft copolymers, interpenetrating polymer networks, polymer impregnated concrete, and fiber and particulate reinforced polymers are emphasized. Prerequisite: any introductory course in polymers.

CHE 486. Polymer Processing (3)  
Application of fundamental principles of mechanics, fluid dynamics and heat transfer to the analysis of a wide variety of polymer flow processes. A brief survey of the rheological behavior of polymers is also included. Topics include pressurization, pumping, die forming, calendering, coating, molding, fiber spinning and elastic phenomena. Prerequisite: CHE 392 or equivalent.

CHE 487. Polymer Interfaces (3) spring, every other year  
An intensive study of polymer surfaces and interfaces, with special emphasis on thermodynamics, kinetics, and techniques for characterization. Chemistry and physics of adsorbed polymer chains. Diffusion and adhesion at polymer-polymer interfaces, especially as related to mechanical properties such as fracture and toughness will be described. Prerequisite: Introductory polymer course.

CHE 492. (CHM 492) Topics in Polymer Science (3)  
Intensive study of topics selected from areas of current research interest such as morphology and mechanical behavior, thermodynamics and kinetics of crystallization, new analytical techniques, molecular weight distribution, non-Newtonian flow behavior, second-order transition phenomena, novel polymer structures. Credit above three hours is granted only when different material is covered. Prerequisite: CHEM 392 or equivalent.

Chemistry

Professors. Robert A. Flowers II, Ph.D. (Lehigh), chair; Jack A. Alhadeff, Ph.D. (Oregon Medical School); Ned D. Heindel, Ph.D. (Delaware), Howard S. Busn Professor of Chemistry; Kamil Klier, Ph.D. (Czechoslovak Academy of Science, Prague), University Distinguished Professor; Bruce E. Koe, Ph.D. (Texas-Austin); Steven L. Regen, Ph.D. (MIT), University Distinguished Professor; Keith J. Schrady, Ph.D. (Penn State); Daniel Zeroka, Ph.D. (Pennsylvania), associate chair.

Associate professors. Gregory S. Ferguson, Ph.D. (Cornell); Natalie Foster, Ph.D. (Lehigh); James E. Roberts, Ph.D. (Northwestern).

Assistant professors. K. Jebrell Glover, Ph.D. (California-San Diego); Kai Landskron, Ph.D. (Ludwig Maximillians-Munich); Tianbo Liu, Ph.D. (SUNY at Stony Brook); Dmitri V. Vezinov, Ph.D. (Harvard).

Professors of Practice. Rebecca S. Miller, Ph.D. (Duke), faculty graduate administrator; R. Sam Niedbala, Ph.D. (Lehigh).

CESAR fellows. Theodore N. Mellin, Ph.D. (Purdue), director; James J. Bohning, Ph.D. (Northeastern); Richard F. Merritt, Ph.D. (MIT); Robert D. Rapp, Ph.D. (Lehigh); Dennis R. Patterson, Ph.D. (Chicago); Alberta Albrecht-Siemiatoski, Ph.D. (Rutgers); Tibor Sipos, Ph.D. (Lehigh).
Chemistry is a versatile subject area and the pursuit of a career in chemistry can be a most intellectually satisfying experience. No other basic science touches and shapes as many aspects of modern society as does chemistry. The study of chemistry has provided solutions to complex problems and has improved the quality of all phases of human life from soft contact lenses and synthetic blood to longer-lasting paint and alternative fuels. A particular strength of this department is in surface and interface chemistry, which bridges many areas of modern science and technology.

Chemists at all levels of education find a market for their skills and knowledge in many employment areas. Chemists provide the technical backbone for the manufacturing industries (pharmaceuticals, plastics, paper, semiconductor electronics technology, and agriculture), for service industries (clinical and forensic laboratories, academia, environmental protection, and information science) and for governmental positions in regulatory agencies and in science policy analyses. Many chemists are employed in nontraditional areas, such as patent law, insurance underwriting, sales, product management, journalism, and even banking.

The alluring challenge of chemistry inspires many bachelor degree recipients to study for advanced degrees within the discipline of chemistry and in other areas, as well. Chemistry or biochemistry is the strongest preparation for graduate studies or for professional school in the health-related disciplines (medicine, pharmacology, and biochemistry), and for other science programs (materials science, polymers, biotechnology, environmental studies, and mineralogy).

The study of chemistry opens doors to satisfying careers, to a stimulating view of the world, and to a professional life in which one's natural tendency to ask "Why?" can lead to personally rewarding endeavors. The undergraduate curriculum in chemistry contains many of the prerequisites for biology, earth and environmental sciences, materials science, molecular biology, physics, and chemical engineering, allowing students to transfer the majority of credits through the sophomore year.

Chemistry students have the opportunity to design their undergraduate curricula for specialization in a variety of fields through the ChemFlex curriculum.

The ChemFlex Curriculum

The Department of Chemistry offers three degrees in the College of Arts and Sciences: the B.S. in Chemistry, the B.A. in Chemistry and the B.S. in Pharmaceutical Chemistry and an interdepartmental B.S. Biochemistry degree with the Department of Biological Sciences; in the College of Engineering and Applied Science the degree of B.S. in Chemistry is offered. In the College of Arts and Sciences the B.S. in Chemistry and B.A. in Chemistry programs have a flexibility in the curricula, called ChemFlex, which allows a student to concentrate in a specific area if he/she wishes to do so. The concentrations possible for the B.S. are Physical/Analytical, Polymers and Materials, whereas for the B.A. areas of possible concentration are Business and Health Professions. The different concentrations share a Common Chemistry Core and one of two paths of the collateral coursework, Path A or Path B. Traditional B.S. and B.A. degrees are also offered. The B.S. degree in the College of Engineering is closest to the traditional ACS approved degree in the College of Arts and Sciences. All B.S. chemistry programs have a common chemistry core and similar collateral science requirements and are pre-professional in nature. Students planning to attend graduate school in chemistry or an allied science should elect the B.S. program in whichever college to which they have been admitted. The B.A. program in the College of Arts and Sciences is not a pre-professional program and may be elected by students who do not plan to do graduate work in chemistry or allied science but wish a stronger background in chemistry than is provided in the chemistry minor program. The B.A. program also affords a useful tie-in with business and health professions options. Students may transfer from the B.S. to B.A. programs easily but the reverse is somewhat more difficult to arrange. Students who are in the B.A. program and make a late decision to attend graduate school in chemistry or allied science will have minimal chemistry preparation for this by electing Chemistry 307, Advanced Inorganic Chemistry.

Department Modern Language and Literature Requirement.

The modern foreign language requirement is met by one of three options: 1. Completion of the second semester of a modern foreign language; 2. Certification of language equivalent to this level taken in high school; 3. Substitution of six credits of science electives. If science electives are chosen, the non-science distribution requirement must still be met.

Degrees in the College of Arts and Sciences

In the College of Arts and Sciences the Chemistry Department offers three degrees: a B.S. in Chemistry, a B.A. in Chemistry and a B.S. in Pharmaceutical Chemistry and an interdepartmental B.S. Biochemistry degree with the Department of Biological Sciences. The ChemFlex Curriculum allows the flexibility for a student to develop a concentration in a specific area if he/she wishes to do so. The specific concentrations are noted in the following Table.

Table: ChemFlex Curriculum Overview

<table>
<thead>
<tr>
<th>Specialization</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.S. Chemistry (ACS)</td>
<td>[* , a, **]</td>
</tr>
<tr>
<td>B.S. Chemistry – Analytical/Physical</td>
<td></td>
</tr>
<tr>
<td>B.S. Chemistry – Polymers</td>
<td></td>
</tr>
<tr>
<td>B.S. Chemistry – Materials</td>
<td></td>
</tr>
<tr>
<td>B.A. Chemistry</td>
<td>[* , a or b, **]</td>
</tr>
<tr>
<td>B.A. Chemistry – Business</td>
<td></td>
</tr>
<tr>
<td>B.A. Chemistry – Health Professions</td>
<td></td>
</tr>
<tr>
<td>B.S. Pharmaceutical Chemistry</td>
<td>[* , a or b, **]</td>
</tr>
<tr>
<td>B.S. Biochemistry (interdepartmental degree)</td>
<td>[* , a or b, **]</td>
</tr>
</tbody>
</table>

** Courses required for specific concentration

a Path A

b Path B

Active emeriti. Charles S. Kraihanzel, Ph.D. (Wisconsin-Madison); John W. Larsen, Ph.D. (Purdue); Gary W. Simmons, Ph.D. (Virginia); James E. Strom, Ph.D. (Notre Dame).
With regard to the B.S. in Pharmaceutical Chemistry the pharmaceutical industry is focused on exploring the biochemistry of disease and designing or finding drugs to cure or ameliorate disease. Biochemists, organic chemists, biologists, and chemical engineers collaborate to achieve this end. The majority of chemists hired today go into the pharmaceutical industry. The B.S. in Pharmaceutical Chemistry is a chemistry degree option which focuses on core chemistry, biochemistry, and molecular biology to prepare students for careers in this field. Since it is a highly interdisciplinary field it requires the breadth of knowledge offered by this degree program.

**Common Chemistry Core**
CHM 75, 76 (or CHM 25/26/31) 8 credits  
Introductory chemistry
CHM 51,52,53,58 8 credits  
Organic chemistry
CHM 332 3 credits  
Analytical chemistry

See Concentrations  
Physical chemistry
CHM 201* 2 credits  
Technical writing
CHM 301** 1 credit  
Undergraduate seminar
CHM 307 3 credits  
Advanced inorganic chemistry

Total = 25 credits

* Other writing intensive courses may be substituted with the approval of the advisor but any substitute course should have a science focus.

** CHM 301 may be substituted by any course having a major presentation component with the approval of the major advisor.

**Collateral requirements**

**Path A**
Math 21 4 credits  
Calculus I
Math 22 4 credits  
Calculus II
Math 23 4 credits  
Calculus III
Math 205 3 credits  
Linear methods
Phy 11,12 5 credits  
Introductory Physics I and lab
Phy 21,22 5 credits  
Introductory Physics II and lab

Engr 1 or CSE 12 3 credits  
Survey of Computer Science

Total = 28 credits

**Path B**
Math 51 4 credits  
Survey of Calculus I
Math 52 3 credits  
Survey of Calculus II
Math 43 3 credits  
Survey of Linear Methods
Phy 10,12 5 credits  
General Physics I and lab
Phy 13,22 4 credits  
General Physics II and lab

Total = 19 credits

**Specializations**

**B.S. Chemistry (ACS certified Degree)**
Common core, Path A, and the following:
CHM 334 3 credits  
Advanced chemistry laboratory I
CHM 335 3 credits  
Advanced chemistry laboratory II
CHM 341 4 credits  
Molecular Structure, Bonding and Dynamics

CHM 342 4 credits  
Thermodynamics and Kinetics
CHM 343 1 credit  
Physical chemistry laboratory
CHM 371 3 credits  
Elements of biochemistry I

3 credits  
Adv. Chem. elective***

Total = 21 credits

*** See list of choices which follows.

**Advanced Chemistry Elective Requirement**

One 3-credit course selected from the following:
CHM 358  Advanced Organic Chemistry
CHM 372  Elements of Biochemistry II
CHM 376  Advanced Chemistry Research Lab
CHM 391  Colloid and Surface Chemistry
CHM 392  Introduction to Polymer Science
CHM 393  Physical Polymer Science
CHM 394  Organic Polymer Science
PHY 363  Physics of Solids

**B.S. Chemistry - Analytical/Physical Concentration**
Common core, Path A, and the following:
CHM 341 4 credits  
Molecular Structure, Bonding and Dynamics

CHM 342 4 credits  
Thermodynamics and Kinetics

CHM 343 1 credit  
Physical chemistry laboratory

CHM 388 3 credits  
Polymer synthesis and characterization lab

CHM 393 3 credits  
Physical polymer science

CHM 394 3 credits  
Organic polymer science

Total = 15 credits

**B.S. Chemistry – Polymers Concentration**
Common core, Path A, and the following:
CHM 341 4 credits  
Molecular Structure, Bonding and Dynamics

CHM 342 4 credits  
Thermodynamics and Kinetics

CHM 343 1 credit  
Physical chemistry laboratory

CHM 334 3 credits  
Advanced chemistry laboratory I

CHM 335 3 credits  
Advanced chemistry laboratory II

Total = 18 credits

**B.S. Chemistry – Materials Concentration**
Common core, Path A, and the following:
CHM 341 4 credits  
Molecular Structure, Bonding and Dynamics

CHM 342 4 credits  
Thermodynamics and Kinetics

CHM 334 3 credits  
Advanced chemistry laboratory I

CHM 335 3 credits  
Advanced chemistry laboratory II

Mat 33 3 credits  
Engineering materials and processing

Total = 18 credits
B.A. Chemistry
Common core, Path A or B and the following:
CHM 341 or CHM 194
3-4 credits Physical chemistry
CHM 343 1 credit Physical chemistry laboratory
3 credits CHM elective
Total = 7-8 credits

B.A. Chemistry - Business Concentration
Common core, Path A or B, and the following:
CHM elective 3 credits
CHM 341 or CHM 194
3-4 credits Physical chemistry
ECO 1 4 credits Principles of economics
BUS 125 1 credits Behavioral skills workshop
BUS 126 3 credits Information analysis and financial decision making I
BUS 127 3 credits Information analysis and financial decision making II
BUS 225 3 credits Developing, producing, and marketing products and services I
BUS 226 3 credits Developing, producing, and marketing products and services II
BUS 326 1 credits Business strategy
MATH 12*** 4 credits Statistics
Total = 29-30 credits

B.A. Chemistry – Health Professions Concentration
Common core, Path A or B, and the following:
CHM elective 3 credits
CHM 341 or CHM 194
3-4 credits Physical chemistry
EES 31, 32 4 credits Introduction to Environmental and Organismal Biology
BIOS 41, 42 4 credits Cellular and Molecular Biology Core I
MATH 12*** 4 credits Statistics
Total = 18-19 credits

B.S. Pharmaceutical Chemistry
Common core, Path A or B, and the following:
CHM 194 (or CHM 341)
3 credits Physical Chemistry for Biological Sciences
CHM 358 3 credits Advanced organic
CHM 371 3 credits Elements of biochemistry I
CHM 372 3 credits Elements of biochemistry II
CHM 3__ 3 credits Advanced chemistry elective
BIOS 41, 42 4 credits Cellular and molecular biology
BIOS 115 3 credits Genetics
MATH 12*** 4 credits Statistics
Total = 26 credits

*** MATH 12 may be substituted by any statistics course.

Model Roster When Path A is Followed

freshman year (31 credits)
Arts 1 Choices and Decisions (1)
College Seminar (3)
Chm 75 Concepts, Models and Experiments I (4)
Chm 76 Concepts, Models, and Experiments II (4)
Engl 1 Composition and Literature I (3)
Engl 2 Composition and Literature II (3)
Math 21 Calculus I (4)
Math 22 Calculus II (4)
Phy 11 Intro. Phys. I (4)
Phy 12 Intro. Phys. Lab I (1)
sophomore year (32 credits)
Chm 51 Organic Chemistry I (3)
Chm 52 Organic Chemistry II (3)
Chm 58 Organic Chemistry Lab I (1)
Chm 58 Organic Chemistry Lab II (1)
Phy 21 General Phys. (4)
Phy 22 General Phys. Lab (1)
Math 23 Calculus III (4)
Math 205 Linear Methods (3)

Note that some concentrations would insert courses such as MATH 12, BIOS 41/42 (B.S. Pharmaceutical Chemistry), ECO 1 (B.A.-Business), etc.

junior year/senior year (30-32 credits)
Student will need to meet with major advisor in order to formulate courses to be taken.

Model Roster When Path B is Followed

freshman year (32 credits)
Arts 1 Choices and Decisions (1)
College Seminar (3)
Chm 75 Concepts, Models and Experiments I (4)
Chm 76 Concepts, Models, and Experiments II (4)
Engl 1 Composition and Literature I (3)
Engl 2 Composition and Literature II (3)
Math 51 Survey of Calculus I (4)
Phy 13 Survey of Calculus II (3)
Phy 11 Intro. Phys. I (4)
Phy 12 Intro. Phys. Lab I (1)
sophomore year (30 credits)
Chm 51 Organic Chemistry I (3)
Chm 52 Organic Chemistry II (3)
Chm 58 Organic Chemistry Lab I (1)
Chm 58 Organic Chemistry Lab II (1)
Phy 13 General Phys. (3)
Phy 22 General Phys. Lab (1)
Math 205 Linear Methods (3)
distribution requirements — free electives (15)

Note that some concentrations would insert courses such as MATH 12, BIOS 41/42 (B.S. Pharmaceutical Chemistry), ECO 1 (B.A.-Business), etc.

junior year/senior year (30-32 credits)
Student will need to meet with major advisor in order to formulate courses to be taken.
### B.S. Degree in Chemistry, College of ENGR. & Applied Science

**Summary of Requirements**

| I. | College distribution | 24 credits |
| II. | Physics, math, and computing | 28 credits |
| III. | Chemistry | 46 credits |
| IV. | Unrestricted electives | 25 credits |
| Total credits | 123 credits |

**Model Roster**

#### freshman year (30-31 credits)

A student should follow the normal freshman year in the College of Engineering and Applied Science and observe the following note.

Note: It is recommended that, where possible, students planning to major in chemistry take Chemistry 75 in the fall semester and Chemistry 76 in the spring semester of the freshman year. For such students the elective in the spring semester is displaced to a subsequent semester. The Chemistry 25/26/31 sequence may be substituted.

**sophomore year, first semester (17 credits)**

| Chm 51 | Organic Chemistry I (3) |
| Chm 53 | Organic Chemistry Laboratory I (1) |
| Phy 21 | Introductory Physics I (4) |
| Phy 22 | Introductory Physics Laboratory (1) |
| Math 23 | Calculus II (4) |
|        | modern foreign language requirement (4) (See details above) |

**sophomore year, second semester (15 credits)**

| Chm 52 | Organic Chemistry II (3) |
| Chm 58 | Organic Chemistry Laboratory II (1) |
| Math 205 | Linear Methods (3) |
| Eco 1 | Economics (4) |
|        | Humanities/Social Science requirement (4) |

**junior year, first semester (16-17 credits)**

| Chm 201 | Technical Writing (2) or approved writing-intensive course (3) |
| Chm 332 | Analytical Chemistry (3) |
| Chm 334 | Advanced Chem. Lab I (3) |
| Chm 341 | Molecular Structure, Bonding and Dynamics (4) |
|        | modern foreign language requirement (4) (See details above) |

**junior year, second semester (15 credits)**

| Chm 307 | Advanced Inorganic Chem. (3) |
| Chm 335 | Advanced Chem. Lab II (3) |
| Chm 342 | Thermodynamics and Kinetics (4) |
| Chm 343 | Physical Chemistry Laboratory (1) |
|        | modern foreign language requirement (4) (See details above) |

**senior year, first semester (14 credits)**

| Chm 301 | Chemistry Seminar (1) |
| Chm 371 | Elements of Biochemistry I (3) |
|        | advanced chemistry elective (3) |
|        | Distribution requirement (7) |

**senior year, second semester (14 credits)**

| advanced chemistry elective (3)** |
| free electives (11) |

*See list of choices for the advanced chemistry elective requirement under the B.S. degree in chemistry/College of Arts and Sciences.

**Note:** It is recommended that, where possible, students planning to major in chemistry take Chemistry 75 in the fall semester and Chemistry 76 in the spring semester of the freshman year. For such students the elective in the spring semester is displaced to a subsequent semester. The Chemistry 25/26/31 sequence may be substituted.

---

**Five-Year Bachelor's/Master's Programs**

Five-year programs may be arranged for students to receive B.S. or B.A. degrees and the M.S. degrees in chemistry with a concentration in one of several fields of chemistry (inorganic, organic, analytical, physical, polymers, biochemistry, or materials chemistry). A specific program offered by the Department of Chemistry is the five-year B.S./M.S. program, which focuses on materials education from a chemistry perspective. Students are awarded B.S. and M.S. degrees in chemistry upon completion of all requirements. Specific features of the program include participation in a weekly seminar during the academic year for credit, and summer internships for credit in university, industrial, government, or national laboratories. Materials-related electives are selected from suggested lists of courses in materials science, polymers, solid-state chemistry and physics. Additional information may be obtained from Professor Klier.

**Five-Year B.S./M.S. Program in Chemistry of Materials**

**Model Roster**

#### freshman year (30-31 credits)

A student should follow the normal B.S. in chemistry freshman year for the college in which the student is enrolled and should observe the following note.

Note: It is recommended that, where possible, students planning to major in chemistry take Chemistry 75 in the fall semester and Chemistry 76 in the spring semester of the freshman year. For such students the elective in the spring semester is displaced to a subsequent semester. The Chemistry 25/26/31 sequence may be substituted.

**sophomore year, first semester (17 credits)**

| CHM 163 | Chemistry of Materials I (4) |
| CHM 51 | Organic Chemistry I (3) |
| CHM 53 | Organic Chemistry Laboratory I (1) |
| MATH 23 | Calculus III (4) |
| PHY 21 | Introductory Physics II (4) |
| PHY 22 | Introductory Physics Lab II (1) |
|        | Elective, ENGR 1, CSE 10,13 or Modern Foreign Language (3-4) |
| CHM 363 | Science Seminar (1) |

**sophomore year, second semester (17 credits)**

| CHM 52 | Organic Chemistry II (3) |
| CHM 58 | Organic Chemistry Laboratory II (1) |
| MATH 205 | Linear Methods (3) |
|        | Elective, ENGR 1, CSE 12 or Modern Foreign Language (9) |
| CHM 363 | Science Seminar (1) |

**summer I**

| CHM 263 | Chemistry of Materials II (4) |

**sophomore year, second semester (17 credits)**

| CHM 52 | Organic Chemistry II (3) |
| CHM 58 | Organic Chemistry Laboratory II (1) |
| MATH 205 | Linear Methods (3) |
|        | Elective, ENGR 1, CSE 12 or Modern Foreign Language (9) |
| CHM 363 | Science Seminar (1) |

**summer II**

| CHM 263 | Chemistry of Materials II (4) |

**junior year, first semester (16-17 credits)**

| CHM 201 | Technical Writing (2) or approved writing-intensive course (3) |
| CHM 332 | Analytical Chemistry (3) |
| CHM 334 | Advanced Chem. Lab I (3) |
| CHM 341 | Molecular Structure, Bonding and Dynamics (4) |
|        | modern foreign language requirement (4) (See details above) |

**senior year, first semester (14 credits)**

| CHM 301 | Chemistry Seminar (1) |
| CHM 371 | Elements of Biochemistry I (3) |
|        | advanced chemistry elective (3) |
|        | Distribution requirement (7) |

**senior year, second semester (14 credits)**

| advanced chemistry elective (3)** |
| free electives (11) |

**Note:** It is recommended that, where possible, students planning to major in chemistry take Chemistry 75 in the fall of the senior year.

---

**Summary of Requirements**

| I. | College distribution | 24 credits |
| II. | Physics, math, and computing | 28 credits |
| III. | Chemistry | 46 credits |
| IV. | Unrestricted electives | 25 credits |
| Total credits | 123 credits |

**Distribution requirement/elective (3)**

**Dynamics (4)**

**Modern Foreign Language (3-4)**

**Elective, ENGR 1, CSE 10,13 or Modern Foreign Language (3-4)**

**science Seminar (1)**

**Elective, ENGR 1, CSE 12 or Modern Foreign Language (9)**

**Science Seminar (1)**

**Distribution requirement/elective (3)**
offered in the College of Arts and Sciences. Faculty in

An interdepartmental B.S. in Biochemistry major is offered in the College of Arts and Sciences. Faculty in both Chemistry (Schray) and Biological Sciences (Lowenkrenz and Iovine) serve as advisors depending on student interest. Majors should be declared in the Department of Biological Sciences. Please see the section on biochemistry for details of the major.

**Minor in Chemistry**

A minor in chemistry may be achieved by completing the following requirements:

- **CHM 31** Chemical Equilibria in Aqueous Systems (3)
- **CHM 51** Organic Chemistry I (3)
- **CHM 53** Organic Chemistry Laboratory I (1)
- **CHM 187** Physical Chemistry I (3)
- **CHM 192** Physical Chemistry Laboratory (2)
- **CHM 332** Analytical Chemistry (3)

**Total Credits:** 15 credits

Necessary pre- or co-requisites for the above would be CHM 25, 26, and MATH 21.

Students who wish to minor in chemistry but whose major program requires any of the above courses may achieve the minor with substitutions approved by the department chair.

**CESAR**

The Center for Emeritus Scientists in Academic Research (CESAR) was established in 1999 and provides a unique opportunity for Chemistry or Biology majors to partner with retired scientists who have a desire to continue their industrial research. Through the program, CESAR Fellows mentor students, enhance student opportunities to conduct research, and provide singular insight into the world of industrial chemistry. In return, Lehigh University provides administrative support, research laboratories and equipment to specially selected retired scientists from industry. Further details can be found at the web site: [http://www.lehigh.edu/inche/CESAR.html](http://www.lehigh.edu/inche/CESAR.html).

**Undergraduate Courses in Chemistry**

**CHM 5. Chemistry and National Issues (3)**

Spring course.


CHM 22 may be taken concurrently for laboratory credit. (NS)

**CHM 25. Introduction to Chemical Principles (4)**

An introduction to important topics in chemistry: atomic structure, properties of matter, chemical reactions, energy, structure and bonding in organic and inorganic compounds, chemical equilibrium. The course features a lecture tightly linked to a three-hour studio experience that combines laboratory work and recitation. CHM 26 must be taken concurrently for students in the A&S College. (NS)

**CHM 26. Biochemical Applications of Chemical Principles (1)**

An exploration of introductory chemistry-related topics relevant to biological topics such as elements required by living systems, the transformation of inorganic molecules to organic compounds, properties of water related to the
development of life, equilibria, acids, bases, and buffers in living systems and medical conditions, thermodynamics of living systems, and protein structure and the role of protein in nutrition, genetic diseases, cancer and disease therapy. Co-requisite: CHM 25. (NS)

CHM 31. Chemical Equilibria in Aqueous Systems (3) fall-spring
A study of the theoretical basis and practical applications of equilibria in aqueous solutions, including acid-base, precipitation-solubility, metal-ligand, oxidation-reduction and distribution equilibria. Introduction to chemical thermodynamics, spectrophotometry, potentiometry and chromatography. The laboratory work emphasizes the qualitative and quantitative analysis of equilibria in aqueous media. Prerequisite: CHM 21, MATH 21, 31 or 51. Two lectures and one three-hour laboratory period. (NS)

CHM 51. Organic Chemistry I (3) fall
Systematic survey of the typical compounds of carbon, their classification, and general relations; study of synthetic reactions. Prerequisite: CHM 21 or 75. (NS)

CHM 52. Organic Chemistry II (3) spring
Continuation of CHM 51. Prerequisite: CHM 51. (NS)

CHM 53. Organic Chemistry Laboratory I (1) fall
Preparation of pure organic compounds. Modern techniques of characterization. Prerequisite: CHM 51 previously or concurrently. (NS)

CHM 58. Organic Chemistry Laboratory II (1) spring
Continuation of Organic Chemistry Laboratory I. Prerequisite: CHM 53 previously; CHM 52 previously or concurrently. (NS)

CHM 75. Concepts, Models and Experiments I (4) fall
A first-semester course in chemistry for students planning to major in chemistry, biochemistry, chemical engineering, materials science, or other chemistry-related fields. Chemical and physical properties, structures, bonding concepts, and quantitative analysis. Laboratory includes synthesis, separation and analysis procedures; computer applications to chemistry. Three lectures, one laboratory. (NS)

CHM 76. Concepts, Models and Experiments II (4) spring
Continuation of Chemistry 75. Three lectures, one laboratory. Prerequisite: CHM 75 or departmental consent. (NS)

CHM 163. Chemistry of Materials I (4) summer
Research laboratory for students enrolled in the five-year B.S./M.S. chemistry of materials program. (NS)

CHM 177. Introduction to Research (1-2) fall-spring
For advanced freshmen and sophomore chemistry majors. May be repeated for credit. Prerequisite: Consent of department chair. (NS)

CHM 187. Physical Chemistry I (3) spring
Development of the principles of thermodynamics and their application to systems in which composition is of major concern: solutions, chemical and phase equilibria. Elements of chemical reaction kinetics. Prerequisite: CHM 31 or 76, and MATH 21, 31 or 51 previously or concurrently. (NS)

CHM 189. Physical Chemistry II (3) fall
A continuation of Chemistry 187. Kinetic theory of gases, statistical thermodynamics, electrolytes in solution, electrochemistry, corrosion, colloid and surface chemistry and the solid state. Prerequisites: CHM 187 or CHE 210, MATH 23, PHY 21. (NS)

CHM 192. Physical Chemistry Laboratory (2)
Laboratory studies that illustrate the various fields of study in experimental physical chemistry. Prerequisite: CHM 187 or CHE 210. (NS)

CHM 194. Physical Chemistry for Biological Sciences (3) fall
The principles and applications of physical chemical concepts to systems of biological interest, including the gas laws, thermodynamics of metabolic reactions, colligative properties, electrochemical equilibria, reaction kinetics and enzyme catalysis, and transport of macromolecules and viruses. Prerequisite: CHM 21 or 75. (NS)

CHM 201. Technical Writing (2)
Principal types of written communications used by professional chemists including informative abstracts, research proposals, progress reports, executive summaries for nonchemist decision makers and proper written experimental procedures, tables, schemes and figures. Prerequisite: junior standing in chemistry major or consent of the department chair. (ND)

CHM 205. Main Group Elements (2) fall
Chemistry of the main group elements. Prerequisite: CHM 31 or 76. (NS)

CHM 250. Special Topics (1-3)
Selected topics in chemistry. May be repeated for credit when different topics are offered. (NS)

CHM 263. Chemistry of Materials II (4) summer
Research laboratory for students enrolled in the five-year B.S./M.S. chemistry of materials program. (NS)

CHM 301. Chemistry Seminar (1)
A course designed for seniors will involve the literature research of a topic of the student's choosing followed by a 35 minute oral presentation to the class and professor. Prerequisite: Senior standing. (NS)

CHM 307. Advanced Inorganic Chemistry (3) spring
Introduction to transition metal complexes; theories of bonding; kinetics and mechanisms of transition metal complex reactions; selected aspects of organometallic chemistry; bioinorganic chemistry. Prerequisite: CHM 341. (NS)

CHM 312. (CHE 312, MAT 312) Fundamentals of Corrosion (3) fall
Corrosion phenomena and definitions. Electrochemical aspects including reaction mechanisms, thermodynamics, Pourbaix diagrams, kinetics of corrosion processes, polarization and passivity. Non-electrochemical corrosion including mechanisms, theories and quantitative descriptions of atmospheric corrosion. Corrosion of metals under stress. Cathodic and anodic protection, coatings alloys, inhibitors, and passivators. Prerequisite: MAT 205 or CHM 187. (NS)

CHM 332. Analytical Chemistry (3) fall
Theory and practice of chemical analysis. Principles of quantitative separations and determinations; theory and
CHM 334. Advanced Chemistry Laboratory I (3) fall
Exploration of synthetic methods and analysis techniques for inorganic and organic compounds. Determination of product structures and quantitative analysis using modern chemical analysis techniques, including NMR, GC-MS, GC, HPLC, FT-IR, and XPS. Prerequisites: one year of organic chemistry. Prerequisite: CHM 51, 52, 53, 58 and pre- or co-requisite: CHM 332 (NS)

CHM 335. Advanced Chemistry Laboratory II (3) spring
Content related to CHM 334. Prerequisite: CHM 51, 52, 53, 58, and 332. (NS)

CHM 336. Clinical Chemistry (3) spring
Applications of analytical chemistry to clinical problems. Discussion of methods in common use and the biochemical-medical significance of the results. Prerequisites: CHM 332 and 52. Schray. (NS)

CHM 337. (MAT 333) X-ray Diffraction of Materials (5) fall
Introduction to crystal symmetry, point groups, and space groups. Emphasis on materials characterization by X-ray diffraction and electron diffraction. Specific topics include crystallographic notation, stereographic projections, orientation of single crystals, textures, phase identification, quantitative analysis, stress measurement, electron diffraction, ring and spot patterns, convergent beam electron diffraction (CBED), and space group determination. Applications in mineralogy, metallurgy, ceramics, microelectronics, polymers, and catalysts. Lectures and laboratory work. Prerequisite: MAT 203 or EES 131 or senior standing in chemistry. Lyman, Chan. (NS)

CHM 338. Instrumental Analysis Laboratory (2) spring
Laboratory studies of modern methods of instrumental analysis emphasizing function and characteristics of instrumentation, data, processing, and experimental design. Prerequisites: CHM 339 previously or concurrently. (NS)

CHM 339. Instrumental Analysis (2) spring
Principles and applications of modern methods of analytical analysis including optical spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry, electrochemical methods, chromatography, thermal methods, and surface characterization. Prerequisite: CHM 332. (NS)

CHM 341. Molecular Structure, Bonding and Dynamics (4)
Nature of chemical bonding as related to structure and properties of molecules and extended systems. Quantum chemistry of atoms and molecules applied to chemical transformations and spectroscopic transitions. Symmetry analysis and selection rules. Computational and spectroscopic lab involving acquisition and interpretation of electronic, vibrational and rotational spectra. Prerequisites: Phy 13 or 21, Math 205 or 43. (NS)

CHM 342 Thermodynamics and Kinetics (4)
Development of the principles of classical and statistical thermodynamics and their application to chemical systems. In classical thermodynamics emphasis will be on systems in which composition is of major concern: solutions, chemical and phase equilibria, and electrochemistry. Kinetic theory of gases; chemical reaction dynamics. Prerequisite: CHM 341. (NS)

CHM 343 Physical Chemistry Laboratory (1)
Laboratory studies that illustrate and extend the various fields of study in experimental physical chemistry as discussed in CHM 341 and CHM 342. Prerequisite: CHM 194 or CHE 210 or [CHM 341 and corequisite Chm 342]. (NS)

CHM 344 Thermodynamics and Kinetics (3)
Development of the principles of classical and statistical thermodynamics and their application to chemical systems. In classical thermodynamics emphasis will be on systems in which composition is of major concern: solutions, chemical and phase equilibria, and electrochemistry. Kinetic theory of gases; chemical reaction kinetics; chemical reaction dynamics. Prerequisite: Department permission required. This course is intended as a course for graduate students achieving their proficiency in physical chemistry and will consist of the lectures only of CHM 342.

CHM 350. Special Topics (1-3)
Selected advanced topics in chemistry. May be repeated for credit when different topics are offered. (NS)

CHM 353. Organic Analysis Laboratory (2) spring
Identification of organic compounds as single components and mixtures. Application of combined chemical and spectral assay techniques. Use and interpretation of data from nuclear magnetic resonance, infrared, and mass spectroscopic examinations. Separation techniques for mixtures. Prerequisites: CHM 52 and 58. (NS)

CHM 358. Advanced Organic Chemistry (3) fall
Reaction mechanism types and supporting physical-chemical data. Classes of mechanisms include elimination, substitution, rearrangement, oxidation-reduction, enolate alkylations, and others. Prerequisite: one year of organic chemistry. (NS)

CHM 363. Science Seminar (1) fall-spring
Discussion of current research in materials chemistry. For students enrolled in the five-year B.S./M.S. chemistry of materials program. May be repeated for credit. (NS)

CHM 368. Advanced Organic Laboratory (2)
The synthesis and study of organic compounds illustrating the important techniques and special pieces of apparatus commonly used in organic chemical research. Prerequisite: one year of organic chemistry and laboratory. (NS)

CHM 371. (BIOS 371) Elements of Biochemistry I (3) fall
A general study of carbohydrates, proteins, lipids, nucleic acids, and other biological substances and their importance in life processes. Protein and enzyme chemistry are emphasized. Prerequisite: one year of organic chemistry. (NS)
CHM 372. (BIOS 372) Elements of Biochemistry II (3) spring
Dynamic aspects of biochemistry: enzyme reactions including energetics, kinetics and mechanisms, metabolism of carbohydrates, lipids, proteins and nucleic acids, photosynthesis, electron transport mechanisms, coupled reactions, phosphorylations, and the synthesis of biological macromolecules. Prerequisite: CHM 371 and BIOS 41 or consent of the instructor. (NS)

CHM 375. Research Chemistry Laboratory (1-3) fall-spring
An introduction to independent study or laboratory investigation under faculty guidance. Prerequisite: consent of faculty research supervisor. (NS)

CHM 376. Advanced Research Chemistry Laboratory (1-6) fall-spring
Advanced independent study or laboratory investigation under faculty guidance. Prerequisite: 3 credits of CHM 375. Consent of faculty research supervisor. May be repeated for credit. (NS)

CHM 377. (BIOS 377) Biochemistry Laboratory (3) fall
Laboratory studies of the properties of chemicals of biological origin and the influence of chemical and physical factors on these properties. Laboratory techniques used for the isolation and identification of biochemicals. Prerequisite: CHM 371, previously or concurrently, and BIOS 41 or consent of the instructor. (NS)

CHM 378. (BIOS 378) Biochemical Preparations (1-3) spring
A laboratory course involving the preparation or isolation, purification and identification of chemicals of biological origin. Prerequisites: CHM 377 and 372, previously or concurrently. (NS)

CHM 388. (CHE 388) Polymer Synthesis and Characterization Laboratory (3) spring
Techniques include: free radical and condensation polymerization; molecular weight distribution by gel chromatography; crystallinity and order by differential scanning calorimetry; pyrolysis and gas chromatography; dynamic mechanical and dielectric behavior; morphologies and microscopy; surface properties. Prerequisites: CHM 187, 189 or 341 and 51. (NS)

CHM 391. (CHE 391) Colloid and Surface Chemistry (3) fall
Physical chemistry of everyday phenomena. Intermolecular forces and electrostatic phenomena at interfaces, boundary tensions and films at interfaces, mass and charge transport in colloidal suspensions, electrostatic and London forces in disperse systems, gas adsorption and heterogeneous catalysis. Prerequisite: CHM 187 or equivalent. Chaudhuri. (NS)

CHM 392. (CHE 392) Introduction to Polymer Science (3) spring
Introduction to concepts of polymer science. Kinetics and mechanisms of polymerization; synthesis and processing of polymers, characterization. Relationship of molecular conformation, structure and morphology to physical and mechanical properties. Prerequisite: CHM 187 or equivalent. (NS)

CHM 393. (CHE 393, MAT 393) Physical Polymer Science (3) fall
Structural and physical aspects of polymers (organic, inorganic, natural). Molecular and atomic basis for polymer properties and behavior. Characteristics of glassy, crystalline and paracrystalline states (including viscoelastic and relaxation behavior) for single- and multi-component systems. Thermodynamics and kinetics of transition phenomena. Structure, morphology and behavior. Prerequisite: one year of physical chemistry. (NS)

CHM 394. (CHE 394) Organic Polymer Science I (3) spring
Organic chemistry of synthetic high polymers. Polymer nomenclature, properties, and applications. Functionality and reactivity of monomers and polymers. Mechanism and kinetics of step-growth and chain-growth polymerization in homogeneous and heterogeneous media. Brief description of emulsion polymerization, ionic polymerization, and copolymerization. Prerequisites: one year of physical chemistry and one year of organic chemistry. (NS)

Graduate Programs in Chemistry
The department of chemistry offers graduate studies leading to several advanced degrees. These include master of science and doctor of philosophy degrees in chemistry. Master of science and doctor of philosophy degrees in chemistry may be obtained by study and research in any appropriate area of chemistry.

The chemistry department also admits students to the master of science and doctor of philosophy degree programs in polymer science and engineering. These are interdisciplinary programs which are described in Section IV of this catalog and are not administered by the chemistry department. The following information on admissions, proficiency examinations and other policies applies to the master of science and doctor of philosophy degrees in chemistry.

Admission to graduate study in chemistry assumes that a student has met, or is willing to meet though further study, minimum undergraduate requirements for a bachelor’s degree in chemistry. This would include (beyond two semesters of introductory chemistry) two semesters of organic chemistry, two semesters of physical chemistry, two semesters of analytical chemistry and one semester of inorganic chemistry. A promising student whose degree is in a field related to chemistry (e.g., biology, chemical engineering) may be admitted to graduate study in chemistry provided that any deficiencies in basic chemistry preparation are made up in the first year of graduate study, noting that some of the courses required for this may not carry graduate credit.

The chemistry department will administer proficiency examinations at the advanced undergraduate level in analytical, biochemistry, inorganic, organic and physical chemistry to all regular graduate students at the time of matriculation. Each student is required to take three examinations. Information regarding material to be covered on these examinations will be sent to each student several months in advance of matriculation. It is expected that each student will prepare diligently for these tests. A student who performs well on one or more of these tests has an opportunity to take advanced level and special topics courses at an earlier than normal time and may in fact begin graduate research during the first year. A Ph.D. candidate must show proficiency in three areas and an M.S. candidate in two areas within the first year in residence. A student who fails one or more of the pro-
ficiency examinations will meet with Professor Miller, faculty graduate administrator, to determine an appropriate course of action in light of the exam performance, projected major and degree aspiration. Two optional routes are available for demonstration of proficiency. (1) The student through self-study and auditing of appropriate courses may prepare for a retaking of a proficiency examination at the beginning of the second semester in residence. (2) Alternatively, the student may enroll in appropriate 300 or 400 level courses during the first year in residence. A grade of B- or better in an appropriate 300–400 level course will be considered equivalent to passing the proficiency examination in that area. Courses taken as a means of demonstrating proficiency will be acceptable on the M.S. or Ph.D. graduate program.

The Master of Science in Chemistry degree requires a total of 30 credits, and may be obtained by one of three options: 1) a minimum of 30 course credits, 2) a minimum of 27 course credits and a 3 credit literature review paper (taken under CHM 421, Chemistry Research), or 3) a minimum of 24 course credits and 6 credits of experimental research (CHM 421). Each option requires a minimum of 18 credits at the 400 level (15 of which must be in chemistry) and one credit of CHM 481 (Seminar). There are no other specifically required courses for the M.S. degree, allowing each student to design a curriculum that fits their needs and interests. Normally, work for the master’s degree can be completed in 18 calendar months of full-time study.

Completion of a doctor of philosophy degree program normally requires a minimum of four full-time work after entrance with a bachelor’s degree. There are few specific course credit requirements for the Ph.D.; however, approved degree programs generally have at least 24 hours of course work (including any applied toward a master’s degree) and 6 credits of research. Thus, the program consists of approximately one-third formal course work and two-thirds independent study and research. There is a two-credit seminar requirement (CHM 481). After Ph.D., proficiency has been established and the research advisor selected (this must be done by the end of the first year in residence), the major hurdles are the doctoral examinations (both written and oral) in the student’s area of concentration which must be passed by the end of 2 1/2 years of residence. If this hurdle is surmounted, the remaining time is spent completing (and ultimately defending) the dissertation research under the guidance of the research adviser and the dissertation committee.

Current Research Projects
Current research projects of interest are listed below.

Analytical Chemistry. NMR studies of organic solids and polymers; electrochemical reduction and oxidation mechanisms of organic compounds; clinical-biomedical applications, mechanisms of electrode processes, adsorption; development of novel immunoassays; analysis of biologically important molecules; analytical microdevices.

Biochemistry. Characterization of lysosomal glycosidases and glycosyl transferases; functional role of carbohydrates in glycoproteins; abnormal glycoprotein metabolism in human diseases; development of in vitro evaluation techniques for prescreening candidate pharmaceuticals; membrane protein interactions; structural characterization of transmembrane domains; interaction of transmembrane domains with isoprenoids.

Inorganic Chemistry. Synthesis, characterization and catalytic chemistry of transition metal organometallic complexes; applications of molecular mechanics and molecular orbital theories in studies of inorganic and organic derivatives of the representative main group elements and transition metals; synthesis of solid catalysts including oxides, sulfides, zeolites and supported metals; use of organometallic and coordination chemistry in the synthesis of thin-film materials, and as a guiding principle in adhesion. Use of organometallic chemistry as a vehicle for various catalytic transformations including polymerization and small molecule synthesis; lanthanide chemistry; solid state inorganic chemistry.

Materials and Polymer Chemistry. Inorganic and organometallic chemistry in the synthesis of thin-film materials; synthesis and dynamics of polymer interfaces; polymerization catalysis; synthesis, structure, conformation and properties of high polymers; techniques and kinetics of emulsion polymerization and film formation; acoustic, optical, permeability, dielectric and mechanical behavior of thin films, coatings and bulk polymers; molecular structure, relaxation behavior and energetics of fracture; elastic and viscoelastic behavior of interpenetrating and rubbery networks; effects of ordering in the glassy state and crystallization on physical properties; crystallization under the influence of shear gradients; physical chemistry of polymer composites such as polymer-concrete and filled polymers; interfacial characteristics and interactions in polymer-inorganic systems; NMR studies of polymers in aqueous solutions and gels; ionic motion through polymer films; laser light scattering and small-angle X-ray scattering studies on polymer solutions; self assembly of block copolymers; polyelectrolytes and ion-containing solutions; nanofabrications in polymer systems; organic-inorganic hybrid solid state materials.

Organic Chemistry. Synthesis of medicinal agents, correlation of molecular structure with pharmacological behavior; chemical models for biochemical reactions; biosynthesis involving indole intermediates; chemistry of monolayers and organized molecule assemblages; drug carriers; synthetic ion conductors; Langmuir-Blodgett films; organometallic reaction mechanisms; organo fluoro rine chemistry; protein folding and renaturation; molecular recognition; calorimetry; electrochemical studies of electron transfer reactions.

Physical Chemistry. Chemistry at surfaces and interfaces of catalysts, coatings, structural alloys and microelectronics using an array of surface sensitive methods; NMR and XPS imaging, ARXPS and ARUPS, surface diffraction methods including XPD, surface dynamics in nano, meso and macroscopic dimensions, theory including ab initio FLAPW-DFT for periodic systems for interpretation of XPS, UPS, optical, QNMR, FTIR and Raman spectra, as well as transition states both in thermal and photochemical reactions; NMR studies of polymer adsorption and polymer miscibility; applications of electronic structure theory to spectral simulation, reactivity, transition states, and excited states; statistical mechanics of order-disorder transitions; exploration of complex solution systems by using scattering techniques; physical chemistry of polymer solutions and colloidal suspensions; novel solution behaviors and self-assembly of nano-meter scaled hydrophilic macro-ions and biomacromolecules; intermolecular interactions in soft matter; chemical force microscopy.
Major Instrumentation

Chemistry research spans all areas: analytical, biochemistry, inorganic, organic, physical, and polymer. Special equipment available for graduate research in chemistry is as follows.

Biochemistry research facilities—HPLCs, GCs, FPLC, ultracentrifuges, DNA synthesizer, scintillation and gamma counters, cold rooms, cell disintegrator, zone and disc electrophoresis apparatus, column chromatograph, autoclave, ultra-low temperature freezers (~90 and –135°C), rotary vaporator, Milli-Q water purification system, shaking heated water baths, spectropolarimeter with circular dichroism capability. Cell culture facilities—complete with optical microscopes having fluorescent and photographic capabilities, liquid scintillation equipment. Catalysis facility—fully automated high pressure reactors with on-line gas chromatographs. Electron optical facilities—transmission electron microscopy with x-ray fluorescence analysis capability, scanning electron microscope, and energy dispersive x-ray spectroscopy (EDS). Gas chromatographs, including a PE sigma 3 for inverse gas chromatography. Liquid chromatographs—high performance for analytical and preparative work. NMR spectrometers—300 MHz solid state, 360 MHz for solutions and imaging, 500 MHz spectrometer for solutions. Photochemistry equipment—lamps and filters for selected wavelength work. Polarographs, chronopotentiometers, electrophoresis apparatus, electrochemical impedance, electrochemical scanning tunneling microscope, potentiostats, and rotating disk electrode. Titration equipment (automated and computer interfaced), portable data interface (8-channel 50 KHz), digital readout polarimeter, VHR elastoviscoimeters, radio-tracer equipment, including a gamma counter, differential refractometer, rhometer. Spectrometers—UV/visible double beam automated, uv/visible/nearIR, Fourier transform with diffuse reflectance, photoacoustic and attenuated total reflectance capability, laser Raman, and GC mass spectrometers. Mossbauer spectrometer, positron annihilation spectrometer. Surface analysis facilities—rotating anode high-sensitivity high-energy resolution ESCA with imaging capability (ESCA is equipped with automated angular data acquisition). Surface science facility—Auger electron spectroscopy, low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS), photoelectron spectroscopy for submicron particle analysis. Ellipsometer, contact angle capabilities, gas adsorption apparatus (BET), temperature programmed desorption (TPD), atomic force microscope, instructional scanning tunneling microscope, and light scattering. Microcalorimeter (flowing with UV and refractive index detectors), differential scanning calorimeter (DSC).

Graduate Courses in Chemistry

CHM 400. Laboratory Safety (0) fall
Accident prevention; emergency response; government regulations; facilities for handling and storage disposal of hazardous materials; emergency facilities; liabilities. Lectures, multi-media presentations, hands-on training by practitioners.

CHM 402. Physical Inorganic Chemistry (3) alternate years
Aufbau principle and coupling of angular momenta is used to describe atomic and molecular term states.

Group theoretical principles will be utilized in studies of molecular orbital and ligand field theories of bonding. Prerequisite: CHM 341 or equivalent. Klier

CHM 403. Advanced Topics in Inorganic Chemistry (1-3) alternate years
Topics of contemporary interest in inorganic chemistry. This course may be repeated when a different topic is offered. Prerequisite: CHM 307 or equivalent.

CHM 405. Organometallic Chemistry (3) alternate years
The chemistry of compounds containing carbon to metal bonds. Among topics covered are the following: organic compounds of the representative elements from Group 1 to IV; the chemistry of ferrocene and related pi-bonded organometallic complexes; metal carbonyl and nitrosyl complexes; dioxygen and dinitrogen complexes; organic synthesis utilizing organometallic catalysts.

CHM 411. Teaching Internship (3-6) fall-spring
The preparation, teaching and grading of one or two undergraduate lecture courses with appropriate supervision by senior faculty members. Observation and evaluation of the intern is effected by classroom visits and videotape review. Prerequisite: candidacy in the doctor of arts program or permission of the department chair. May be repeated for credit.

CHM 421. Chemistry Research (1-6)
Research in one of the following fields of chemistry: analytical, inorganic, organic, physical, polymer, biochemistry.

CHM 423. Bio-organic Chemistry (3) alternate years
An examination of biochemistry on the basis of organic chemical principles. Emphasis on reaction mechanisms of biochemical transformations and methods for elucidation of these mechanisms, i.e., kinetics, isotope effects, exchange techniques, inhibition studies, substrate analog effects and organic model studies. Prerequisite: CHM 358. Schray

CHM 424. Medicinal and Pharmaceutical Chemistry (3) alternate years
Principles of drug design, structure-activity relationships in antibacterial, antimalarial, anti-inflammatory and psychoactive drugs; synthesis and modes of action of pharmacologically active agents radioactive pharmaceuticals. Prerequisite: one year of organic chemistry. Heindel

CHM 425. Pharmaceutical Regulatory Affairs 1: Drug Discovery to Approval (3)
Coverage includes the stages of the drug approval process and how these relate to the laboratory activities that provide the scientific basis of the New Drug Application (NDA). Lectures treat drug discovery, chemical process development of the active pharmaceutical ingredient (API), and pharmaceutical process development of the drug product. Regulatory issues in screening and testing, the management of the preclinical trials, and the management of clinical trials will be covered.

CHM 428 Pharmaceutical Regulatory Affairs 2: Medical Devices and Combination Technologies: Concept to Commercialization (3)
This course will review the history of medical device law and regulations in the United States. It will also define current requirements of science needed to allow tech-
Chemistry (3) spring

CHM 437. (BIOS 437) Pathophysiological
offered. May be repeated for credit when a different topic is
time-resolved spectroscopies, and ultrasensitive spectro-
Advanced applications to the analysis of molecular struc-
ture and chemical processes including surface analysis,
temperature and spectroscopy, statistical and classical
Quantum chemistry of simple systems, molecular struc-
theoretical methods; analysis strategies. Roberts
Theories of the rate constant. Relation between
A study of kinetic processes. Phenomenological chemical
Fundamentals of interactions of electromagnetic radia-
Advanced applications to the analysis of molecular struc-
CHM 443. (MAT 443) Solid-State Chemistry (3)
alternate years
Crystal structure, diffraction in crystals and on surfaces,
crystals. Prerequisite: one
course in linear algebra and one course in quantum
CHM 445. Elements of Physical Chemistry (4)
Quantum chemistry of simple systems, molecular struc-
thermodynamics. Prerequisite: one year of physical chemistry.
Chemistry (3) spring, alternate years
Fundamental aspects of NMR analysis; instrumental
design; data acquisition and processing parameters;
nuclear spin relaxation; theory of spin dynamics; product
operator formalism; density matrix theory; multidimen-
CHM 441. Chemical Kinetics (3) alternate years
A study of kinetic processes. Phenomenological chemical
kinetics; order, mechanism effect of external variables on rate.
Theories of the rate constant. Relation between
CHM 442. Pharmaceutical Regulatory Affairs 3:
Analytical Methods, Validation, and Data
Manipulation (3)
A review of the FDA guidance and common industry
practices. A presentation of the more user-friendly and
higher accuracy analytical methods, which are supplanti-
ing traditional analyses. Lectures will cover the eight
fundamentals of analytical method validation: accuracy,
linearity, precision, limits of detection, selectivity, limits
of quantification, specificity, and ruggedness of method.
In addition, the student will be taught what to do when
the results do not meet the Acceptance Criteria. Lectures
also cover evaluation of data streams for supporting con-
clusions.

CHM 443. (MAT 443) Solid-State Chemistry (3)
alternate years

CHM 438. Advanced Topics in NMR (3) spring, alternate years

CHM 437. (BIOS 437) Pathophysiological
Chemistry (3) spring

Biochemical basis of human diseases involving abnormal
metabolism of proteins, nucleic acids, carbohydrates, and
lipids. Emphasis on the correlation of the clinical presen-
tation of disease processes seen as physiological
dysfunctions with clinical laboratory methods. Lectures,
student presentations, and clinical case discussions.
Prerequisite: consent of the department chair. Alhadeff

CHM 436. Special Topics in Analytical Chemistry
(1-3)
Topics of contemporary interest in analytical chemistry.
May be repeated for credit when a different topic is
offered.

CHM 435. Advanced Topics in Clinical Chemistry
(3)
Selected areas of clinical chemistry such as chemical tox-
cology, pathogenic microbial biochemistry in vivo
diagnostic methodology, therapeutic drug monitoring, or
other advanced topics. May be repeated for credit when a
different topic is offered.

CHM 434. Advanced Topics in Spectroscopy (3)
fall, alternate years
Fundamentals of interactions of electromagnetic radia-
tion with matter: electronic, vibrational, scattering based
spectroscopies, instrumentation and signal processing.
Advanced applications to the analysis of molecular struc-
ture and chemical processes including surface analysis,
time-resolved spectroscopies, and ultrasensitive spectro-
scopic techniques.

CHM 433. Electroanalytical Chemistry (3) alternate years
Theory and applications of selected electrochemical tech-
niques: solutions to mass transport problems, treatment
electron transfer kinetics and kinetics of associated
chemical reactions, and critical evaluation of adsorption
and other factors associated with electrochemical pro-
cesses. Prerequisite: CHM 332 or equivalent.

CHM 432. Chemometrics (3) fall, alternate years
Mathematical and statistical methods for experimental
design, calibration, signal resolution, and instrument
control and optimization.

CHM 431. Contemporary Topics in Analytical Chemistry (1)
Discussion of the current literature in analytical chem-
istry, including spectroscopy, separations, and
electrochemistry. Students find current papers and lead
discussions. May be repeated for credit.

CHM 430. Chemical and Biochemical Separations
(3) spring, alternate years
Theory and applications of equilibrium and nonequilib-
rium separation techniques at both the analytical and
preparative levels. Solvent and buffer extractions, chro-
matographic separations (e.g., thin layer, partition, gas
liquid, gel filtration, ion exchange, affinity, supercritical
fluid), electrophoretic separations (e.g., gel, capillary, iso-
electric focusing, immunoelectrophoresis), centrifugal
separations (e.g., differential, velocity sedimentation,
density gradient) and other separation methods (e.g.,
dialysis, ultrafiltration). Examples will focus on biologi-
cal applications. Alhadeff
CHM 455. Organic Reactions (3) alternate years

CHM 456. Spectral Analysis (3) fall
Use of data from nuclear magnetic resonance, infrared, ultraviolet, and mass spectrometric techniques for the determination of structure of organic compounds. Emphasis on information from one- and two-dimension- al proton and carbon NMR, and a mechanistic interpretation of data from mass spectrometry. Foster

CHM 457. Organic Reaction Mechanisms (3)
Intensive in-class problem solving that involves the formulation of reasonable reaction mechanisms for complex multistep pathways, i.e. organic transformations that proceed via highly energetic intermediates such as carbo- cations, carbanions, free radicals, carbones, and nitrenes.

CHM 458. Topics in Organic Chemistry (1-3)
An intensive study of limited areas in organic chemistry. May be repeated when a different topic is offered.

CHM 463. Pharmaceutical Regulatory Affairs 4:
Commercial Production, Validation, and Process Qualification (3)
This course covers the scientific principles and the reg- istry requirements for polymeric implants, controlled-release drug depot units, pumps, point-of-care testing kits, contrast media for MRI, x-ray, and ultrasound and all FDA controlled products not defined as therapeutic pharmaceuticals. CHM 466. Advanced Organic Preparations (2-3)
A laboratory course of instruction in advanced tech- niques of the preparation of organic compounds.

CHM 467. (BIOS 467) Principles of Nucleic Acid Structure (3) alternate years
An examination of the principles underlying nucleic acid structure including stereochemistry, electrostatics, hydra- tion, torsional constraints, sequence specific effects, and interaction with nuclear proteins. Special emphasis will be placed on DNA structure. Prerequisite: one year of biochemistry and one year of physical chemistry or per- mission of the department chair. Behe

CHM 468. (BIOS 468) Principles of Protein Structure (3) alternate years
An examination of the principles underlying protein struc- ture including stereochemistry, preferred tertiary structures, protein homology, excluded volume effects, time dependent structural fluctuations, and prediction of protein structure from sequence information. Prerequisites: one year of bio- chemistry and one year of physical chemistry or permission of the department chair. Behe

CHM 469. (BIOS 469) Biochemical Problem Solving I (1) fall
Applications of material covered in BIOS/CHM 371 including techniques used in research. Prerequisite: BIOS/CHM 371 previously or concurrently.

CHM 470. (BIOS 470) Biochemical Problem Solving II (1) spring
Applications of concepts covered in BIOS/CHM 372 including techniques used in research. Prerequisite: BIOS/CHM 372 previously or concurrently.

CHM 471. (BIOS 471) Eucaryotic Biochemistry (3) alternate years
Biochemistry of selected eucaryotic processes including hormone chemistry, blood clotting, immunochemistry, vision chemistry, muscle chemistry and photosynthesis. The second part of the course will involve presentation and discussion of the current literature by class partici- pants. Prerequisite: BIOS/CHM 372 or consent of department chair. Lowe-Krentz

CHM 472. (BIOS 472) Lipids and Membranes (3) alternate years
Structure, physical properties and functions of lipids and their biological aggregates. Techniques for studying lipid assemblies, enzymes which act on lipids, membrane pro- teins and lipoproteins will also be discussed. Prerequisite: BIOS/CHM 372 or consent of department chair. Lowe- Krentz

CHM 473. (BIOS 473) Biochemistry of Complex Carbohydrates (3) alternate years
Consideration of the structure, function and metabolism of complex carbohydrates (glycolipids, glycoproteins and proteoglycans) with particular emphasis on glycopro- teins. The first part of the course will consist of lectures to familiarize the student with basic terms, concepts and processes. The second part will involve critical readings, presentation and discussion of the current primary research literature by class participants. Alhadeff

CHM 475. Advanced Topics in Chemistry (1)
Audiovisual courses in topics such as acid-base theory, NMR, chromatography, electroanalytical chemistry and mass-spectroscopy interpretation; course material obtained from the American Chemical Society. May be repeated for credit.

CHM 477. (BIOS 477) Topics in Biochemistry (1-3)
Selected areas of biochemistry, such as mechanisms of enzyme action, new developments in the chemistry of lipids, nucleic acids, carbohydrates and proteins. May be repeated for credit when different topics are offered. Prerequisite: consent of the department chair.

CHM 479. (BIOS 479) Biochemical Techniques (3)
Laboratory studies of the techniques and principles involved in the isolation, identification, and biochemical transformation of carbohydrates, lipids, nucleic acids and proteins. Prerequisite: CHM 371 or its equivalent previ- ously or concurrently.

CHM 480. (BIOS 480) Advanced Biochemical Preparations (1-3)
An advanced laboratory course in the preparation, isola- tion, purification, and identification of biochemically produced materials. Emphasis is placed on materials and procedures of current interest in biochemistry. Prerequisite: consent of the department chair.

CHM 481. Chemistry Seminar (1)
Student presentations on current research topics in the student's discipline but not on subjects close to the thesis. A one-hour presentation and attendance at other presentations are required for credit. May be repeated for credit, up to six times.

CHM 482. (CHE 482, MAT 482) Engineering Behavior of Polymers (3) spring
Mechanical behavior of polymers. Characterization of experimen tally observed viscoelastic response of polymer-
ic solids with the aid of mechanical model analogs. Topics include time-temperature superposition, experimental characterization of large deformation and fracture processes, polymer adhesion, and the effects of fillers, plasticizer, moisture, and aging on mechanical behavior.

**CHM 483. (CHE 483) Emulsion Polymers (3) fall**
Fundamental concepts important in manufacture, characterization, and application of polymer latexes. Topics include colloidal stability, polymerization mechanisms and kinetics, reactor design, characterization of particle surfaces, latex rheology, morphology considerations, polymerization with functional groups, film formation and various application problems. Prerequisite: previous course in polymers.

**CHM 484. (CHE 484) Crystalline Polymers (3) spring**
Morphology and behavior of both polymer single crystals and bulk crystallized system. Relationship between basic crystal physics, thermal and annealing history, orientation and resulting properties. Thermodynamics and kinetics of transition phenomena and a brief treatment of hydrodynamic properties and their relationship to crystallization and processing properties.

**CHM 485. (CHE 485, MAT 485) Polymer Blends and Composites (3) fall**
Synthesis, morphology and mechanical behavior of polymer blends and composites. Mechanical blends block and graft copolymers, interpenetrating polymer networks, polymer impregnated solids and fiber and particulate-reinforce polymers are emphasized. Prerequisite: any introductory course in polymers.

**CHM 487. Topics in Colloid and Surface Chemistry (3)**
Applications of colloid chemistry; special topics in surface chemistry. Lectures and seminar. May be repeated for credit as different topics are covered. Prerequisite: CHM 391.

**CHM 488. Advanced Topics in Physical Chemistry (1-3)**
Advanced topics in physical chemistry, such as photochemistry and molecular beam dynamics, Fourier transform spectroscopy, kinetics of rapid reactions, theory of magnetic resonance, liquids and solutions. May be repeated for credit when different topics are offered.

**CHM 489. Organic Polymer Science II (3) alternate years**
Continuation of CHM 394. Theory and mechanism of ionic vinyl-addition chain-growth polymerization. Chain copolymerization by radical and ionic mechanism. Mechanism of ring-opening polymerization, stereochemistry of polymerization including ionic, coordination, and Ziegler-Natta mechanisms. Reactions of polymers, including crosslinking, reactions of functional groups, graft and block copolymers, and polymer carriers and supports. Prerequisite: CHM 394 or equivalent.

**CHM 491. Physical Chemistry of Organic Polymer Coatings (3) alternate years**
Pigment/bonder geometry. Oil absorption of pigments. Critical Pigment Volume Concentration concept. Pigment dispersion including surface tension, capillarity, works of dispersion, transfer and flocculation, and dispersing-mixing equipment. Solubility parameter concept. Coating viscosity and viscometers. Evaporation of solvents including water. Coating rheology, mill base let-down, and pigment settling. Film application including leveling, sagging, slumping and draining. Prerequisite: CHM 393 or 394 or equivalent.

**CHM 492. (CHE 492) Topics in Polymer Science (3)**
Intensive study of topics selected from areas of current research interest such as morphology and mechanical behavior, thermodynamics and kinetics of crystallization, new analytical techniques, molecular weight distribution, non-Newtonian flow behavior, second-order transition phenomena, novel polymer structures. Credit above three hours is granted only when different material is covered. Prerequisite: CHM 392 or equivalent

**CHM 493. Organic Chemistry of Organic Polymer Coatings (3) alternate years**
Film information from solution and dispersion, and application of coatings. Mechanism and kinetics of curing glyceride oils, varnishes and alkyd resins, unsaturated polyesters, thermoplastics cellulose, acrylic and vinyl resins, epoxy resins, polyurethanes, amine- and phenol-formaldehyde resins, thermosetting vinyl and acrylic copolymers, water-based systems, natural and synthetic rubber, and silicone resins. New solutions coatings. Prerequisite: CHM 393 and 394 or equivalent.

**CHM 494. Quantum Chemistry (3) alternate years**
Principles and applications of quantum mechanics to chemical problems. A study of the techniques for evaluating the properties of matter in bulk from the properties of molecules and their interactions. Prerequisite: CHM 445 or consent of the department chair.

**CHM 495. Statistical Thermodynamics (3) alternate years**
Principles and applications of statistical mechanics to chemical problems. A study of the techniques for evaluating the properties of matter in bulk from the properties of molecules and their interactions. Prerequisite: CHM 445 or consent of the department chair.

---

**Civil and Environmental Engineering**

**Professors.** Stephen P. Pesiki (Cornell), chair and P.C. Rossin Professor; Sibel Pamukcu, Ph.D. (L.S.U.), associate chair; John L. Wilson, Ph.D. (Pittsburgh), director of graduate studies and research; Dan M. Frangopol Dr (U. Liege), Fazlur Khan Chair, James Ricles, Ph.D., (U.C. Berkeley), director and Real-Time Multidirectional Earthquake Simulation Faculty; and Bruce G. Johnston Professor; Richard Sause, Ph.D. (U.C. Berkeley), director, Center for Advanced Technology for Large Structural Systems and Joseph T. Stuart Professor; Arup K. SenGupta, Ph.D. (Houston), P.C. Rossin Professor; Robert M. Sorensen, Ph.D. (U.C. Berkeley); Richard N. Weisman, Ph.D. (Cornell).

**Associate professors.** Peter Mueller, Dr. sc. techn. (ETH, Zurich); Weixian Zhang, Ph.D. (Johns Hopkins).

**Assistant professors.** Derick Brown, Ph.D. (Princeton); Kristen L. Jellison, Ph.D. (M.I.T.); Clay Naito Ph.D. (U.C. Berkeley); Yunfeng Zhang Ph.D. (Cal. Tech.).
Civil and Environmental Engineering

Active emeriti. John W. Fisher, Ph.D. (Lehigh); Le Wu Lu, Ph.D. (Lehigh); Alexis Ostapenko, Sc.D. (M.I.T.); David A. VanHorn, Ph.D. (Iowa State); Ben-Tseng Yen, Ph.D. (Lehigh).

Civil engineering occupies a prominent position as one of the major fields in the engineering profession. Civil engineers are concerned with all aspects of the conception, planning, design, construction, operation, and maintenance of major physical works and facilities that are essential to modern life. Civil engineering projects are typically characterized by extreme size, complexity, durability, and cost. Examples include bridges, buildings, transportation facilities, tunnels, coastal facilities, dams, foundations, and waterways.

Environmental Engineering is a relatively young interdisciplinary branch of the engineering profession that has emerged from the societal needs to educate engineers in the causes, control, and prevention of environmental pollution while maintaining industrial and economic growth. Traditionally, environmental engineers were involved in designing and constructing drinking water treatment plants, sewage treatment facilities and water distribution networks. More recently, the environmental engineering profession has greatly expanded and the activities include: detection and modeling fate and transport of contaminants in both natural and engineered environments; applying technology-based solutions for restoring environmental quality; developing and/or modifying industrial processes for ecological preservation and enhanced sustainability. Previously, environmental engineering was included as part of the civil engineering program. Starting in Fall, 2002, it can also be pursued as a separate B.S. degree that will be considered for accreditation at the next college review in 2006-2007. The mission of our Environmental Engineering Bachelor of Science degree program is to educate students in the principles and methods essential to the practice and advancement of the emerging interdisciplinary field of environmental engineering. The program is proactive and will continue to incorporate new and emerging paradigms in all aspects of teaching and education while maintaining rigorous standards in traditional approaches to engineered solutions of environmental problems. Graduates of the program will possess technical expertise to maintain a healthy balance between societal welfare, economic growth and the environment surrounding us.

Our Departmental Mission is to educate students in the principles and methods essential to the practice and advancement of civil and environmental engineering. Our students are prepared to apply and continually cultivate knowledge that will enable them to become successful practitioners, innovators and leaders in serving the needs of a complex society. The accredited Civil Engineering Bachelor of Science degree program objectives are: (1) Provide our students with an education in the fundamental principles and scientific methods essential to contemporary civil engineering. (2) Provide our students the opportunity to study broad topics of civil engineering. (3) Develop our students to be proficient in the fundamental principles and scientific methods essential to the practice and advancement of the emerging interdisciplinary field of environmental engineering. The program is proactive and will continue to incorporate new and emerging paradigms in all aspects of teaching and education while maintaining rigorous standards in traditional approaches to engineered solutions of environmental problems.

The accredited Civil Engineering Bachelor of Science degree program objectives are: (1) Provide our students with an education in the fundamental principles and scientific methods essential to contemporary civil engineering. (2) Provide our students the opportunity to study broad topics of civil engineering. (3) Develop our students to be proficient in the fundamental principles and scientific methods essential to contemporary civil engineering. (4) Provide our students the opportunity to study advanced topics in one or more areas of civil engineering. (5) Provide broad career opportunities for our students by integrating planning, economics, finance, probability and statistics, management and organizational structure, and presentation of real-life engineering experiences in the curriculum. (6) Provide opportunities for our students to develop and exhibit team building, leadership, and continued education/learning skills. (7) Provide opportunities for our students to develop and use communication skills. (8) Develop opportunities, both inside and outside of the classroom, for understanding professional practice issues and development of real-life engineering experiences in the curriculum.
### Recommended Sequence of Courses, B.S. in Civil Engineering

The normal freshman engineering year is 29 credits (see Section III). The required HSS Advanced Requirement of 13 credits shown below to be three 3-credit courses and one 4-credit course. Other options are possible.

**sophomore year, first semester (17 credit hours)**
- **MATH 25** Analytic Geometry and Calculus III (4)
- **MECH 195** Fundamentals of Engineering Mechanics (3)
- **CEE 10** Engineering/Architectural Graphics and Design (3)
- **CEE 11** Surveying (1)
- **CEE 12** Civil Engineering Statistics (2)
- **HSS** Elective or ECO 1: Prin. of Economics (4)

**sophomore year, second semester (18 credit hours)**
- **MATH 205** Linear Methods (3)
- **MECH 12** Strength of Materials (3)
- **CEE 170** Introduction to Environmental Engineering (4)
- **PHYS 21** Introductory Physics II (4)
- **PHYS 22** Introductory Physics Lab II (1)
- **HSS** Humanities/Social Sciences Elective (3)

**junior year, first semester (17 credit hours)**
- **MAT 33** Engineering Materials and Processes (3)
- **CEE 121** Mechanics of Fluids (3)
- **CEE 123** Civil Engineering Materials (1)
- **CEE 142** Fundamentals of Soil Mechanics (3)
- **CEE 159** Structural Analysis I (4)
  *Engineering Science Elective (3)*

**junior year, second semester (18 credit hours)**
- **CEE 117** Numerical Methods in Civil Engineering (2)
- **CEE 262** Fund. of Structural Steel Design (3) or Fund. of Structural Concrete Design (3)
- **CEE 222** Hydraulic Engineering (3)
- **CEE 242** Principles and Practices of Geotechnical Engineering (3)
- **HSS** Elective or ECO 1: Prin. of Economics (4)
- **CEE** **Approved Elective (3)**

**senior year, first semester (17 credit hours)**
- **CEE 202** CEE Planning and Engineering Economics (3)
- **CEE 203** Professional Development (2)
- **HSS** Humanities/Social Sciences Elec. (3)
- **CEE** **Approved Electives (6)**
  *Free Elective (3)*

**senior year, second semester (17 credit hours)**
- **CEE 290** Capstone Design (3)
- **HSS** Humanities/Social Science Elective (3)
- **CEE** **Approved Electives (8)**
  *MECH 102, ME 104, or ECE 81.*

**Seventeen CEE elective credits approved by the CEE department chairperson; list available from department.**

Elective opportunities total 42 credit hours. The selection of elective courses is to be in consultation with student’s academic adviser in the Department of Civil and Environmental Engineering. A total of 133 credit hours is required for the bachelor’s degree in civil engineering.

### Recommended Sequence of Courses, B.S. in Environmental Engineering

The normal freshman engineering year is 30 credits (see Section III). Using the 4 credits of POLS 111 leaves 9 credits to complete required HSS Advanced Requirement of 13 credits, shown below to be three 3-credit courses.

**sophomore year, first semester (17 credit hours)**
- **MATH 25** Analytic Geometry and Calculus III (4)
- **CHEM 53** Organic Chemistry I (3)
- **CHE 31** Matl. & Energy Bal. of CHE Process (3)
- **MECH 2** Elementary Engineering Mechanics (3)
- **CEE 12** Civil ENGR. Statistics (2)
- **ECO 1** Principles of Economics (4)

**sophomore year, second semester (18 credit hours)**
- **MATH 205** Linear Methods (3)
- **PHY 22** Intro Physics II (4)
- **_PHY 21** Intro Physics II Laboratory (1)
- **CEE 170** Intro. Environmental ENGR (4)
- **CEE 272** Environmental Risk Assessment (2)
- **POLS 111** Politics of Environment (4)

**junior year, first semester (16 credit hours)**
- **CEE 121** Mechanics of Fluids (3)
- **CEE 142** Fund. Soil Mechanics (3)
- **CEE 276** Env. ENGR. Processes (3)
- **CHE 31** Matl. & Energy Bd. of CHE Process (3)
- **EES 21** Intro. to Planet Earth (4)

**junior year, second semester (18 credit hours)**
- **CEE 222** Hydraulic Engineering (3)
- **CEE 274** Environmental Water Chemistry (3)
- **CHE 60** Unit Ops Survey (3)
- **CEE 275** Enviro-Geo-Hydraulics Lab (2)
- **HSS** Humanities/Soc. Sciences Elective (3)
- **EES 31** Intro. Env/Organismal Biology (4)

**senior year, first semester (17 credit hours)**
- **CEE 202** CEE Planning and Engr. Economics (3)
- **CEE 203** Professional Development (2)
- **CEE 378** Solid & Haz. Waste Management (3)
- **CEE 379** Environmental Case Studies (3)
Undergraduate Courses

CEE 10. (ARCH 10). Engineering/Architectural Graphics and Design (3) fall
Graphical communication of civil engineering and architectural projects using manual techniques and commercial state-of-the-art computer software. Topics include visualization and sketching; orthographic, isometric and other drawings; points, lines and planes in descriptive geometry; site design; overview of geographical information systems and 3-D applications. Teamwork on design projects with oral and graphical presentations. Not available to students who have taken ME 10.

CEE 11. Surveying (1) fall
Theory and practice of basic engineering surveying measurements and analysis. Topics to include field note taking, datums and measurement precision, equipment and techniques for measuring distance, elevation and angles, electronic distance measurement, topographic surveys, GPS and hydrographic surveys. Hands on experience with the use of survey levels, transits/theodolites and a total station will be provided. (ED 1)

CEE 12. Civil Engineering Statistics (2) fall
Basic engineering statistics with a civil engineering orientation. Topics to include: random variables and histograms; central tendency, dispersion and skew; probability density functions and cumulative distribution functions, basic probability concepts and selected probability models, return period analysis, linear regression and least squares, correlation analysis, propagation of errors. (ES 1, ED 1)

CEE 104. Readings in Civil Engineering (1-4)
Study of selected technical papers, with abstracts and reports. May be repeated for credit. Prerequisite: consent of the department chair.

CEE 117. Numerical Methods in Civil Engineering (2) spring
Techniques for computer solution of linear and non-linear simultaneous equations; eigenvalue analysis; finite differences; numerical integration; numerical solutions to ordinary differential equations. Case studies in the various branches of civil engineering. Prerequisites: Engineering 1, MATH 205. (ES 2, ED 0)

CEE 121. Mechanics of Fluids (3) fall
Fluid properties and statics; concepts and basic equations for fluid dynamics. Forces caused by flowing fluids and energy required to transport fluids. Dynamics similitude and modeling of fluid flows. Includes laboratory experiments to demonstrate basic concepts. Prerequisite: MECH 2. (ES 3, ED 0)

CEE 123. Civil Engineering Materials (1) spring
Properties of commonly used civil engineering materials focusing on concrete. Concrete coverage includes cement chemistry and manufacture; cement hydration and microstructure; mixture design; mechanical properties; admixtures; in-service performance and deterioration mechanisms. Includes some laboratory work. (ES 1)

CEE 142. Fundamentals of Soil Mechanics (3) Fall
Fundamental principles of physical index properties of soils, water flow through soils, stress and deformation phenomena in soils and strength parameters of soils. Weight-volume relationships, consistency, gradation, and classification. Soil mineralogy, composition, and fabric; clay-water electrolyte system. Geological processes, and engineering properties of rocks. Soil compaction, consolidation, shear strength, stress-strain, Mohr-Coulomb failure analysis. Laboratory experiments to measure physical and mechanical properties of soils. Prerequisite: MECH 2. (ES 2, ED 1)

CEE 159. Structural Analysis I (4) fall
Elastic analysis of statically determinate beams, frames, and trusses; deflections by the methods of virtual work and moment area; influence lines for determinate structures; modeling for structural analysis; flexibility, stiffness, and approximate methods of analysis of indeterminate structures. Prerequisite: MECH 12. (ES 4, ED 0)

CEE 170. Introduction to Environmental Engineering (4) spring

CEE 171. (CHE 171, ES 171). Fundamentals of Environmental Technology (4)
Pollution control technologies and how they work for water, air, and solid wastes. Assessment and management of risk as applied to remediation of contaminated wastes. Role of life cycle analysis of products in risk reduction. Technologies leading to sustainable environment. Government policies and regulations, including litigation and Best Available Technology. Prerequisite: one advanced science course or permission of instructor. Not available to students in RCEAS.

CEE 202. CEE Planning and Engineering Economics (3) fall
The planning and management of civil engineering projects. Modeling and optimization methods, project management techniques. Financial decision-making among alternatives. Present value and discounted cash flow analysis; incremental analysis and rate-of-return criteria. (ES 1, ED 2)

CEE 203. Professional Development (2) fall
Elements of professionalism; professional ethics; engineering registration; continuing education; responsibilities of an engineer in industry, government, private practice; role of professional and technical societies. (ES 0, ED0, Other 2)
CEE 205. Design Problems (1-6)  
Supervised individual design problems, with report.  
Prerequisite: consent of the department chair. (ED 1-6)

CEE 207. Transportation Engineering (3) spring  
Principles of the design of transportation facilities with  
emphasis on highways and airports in the areas of geo-  
metric, drainage, and pavement design. Design  
problems. Prerequisites: CEE 11. (ES 0, ED 3)

CEE 211. Research Problems (1-6)  
Supervised individual research problems, with report.  
Prerequisite: consent of the department chair.

CEE 222. Hydraulic Engineering (3) spring  
Pipe and pump hydraulics, engineering hydrology,  
ground water hydraulics, and open channel hydraulics.  
Laboratory experiments in applied hydraulics.
Prerequisite CEE 121, ME 231, or equivalent. (ES 1,  
ED 2)

CEE 242. Principles and Practices of Geotechnical  
Engineering (3) spring  
The principles related to evaluation of the interactions  
between the soil environment and man-made facilities.  
Site exploration and in-situ soil characterization.  
Construction use of soils, soil-like materials, and geosyn-  
theticics in civil engineering facilities. Ground  
improvement techniques. One and two-dimensional  
flow, flow nets, uplift pressures on structures, and lique-  
faction. Failure theories, stress paths, settlement. Stability  
of earth slopes, dams and levees. Lateral earth pressures  
and retaining walls. Bearing capacity of soils for shallow  
foundations. Prerequisite: CEE 142. (ES 2, ED 1)

CEE 244. Foundation Engineering (3) fall  
Application of theories and principles of soil mechanics  
to foundation design of constructed facilities. In-situ soil  
test and measurement, subsurface exploration and soil  
sampling. Bearing capacity, consolidation, lateral earth  
pressure principles. Design of shallow foundations: spread  
footings, beams on elastic foundations, mat foundations.  
Design of retaining walls: mechanically stabilized earth,  
concrete and sheet pile walls, walls for excavations.  
Design of deep foundations: single piles, pile founda-  
tions, drilled piers and caissons. Prerequisite: CEE 242  
(ES 1.5, ED 1.5)

CEE 258. Structural Laboratory (3)  
Experimental study of behavior of members and structures.  
Planning, executing, and reporting experimental studies. Introduction to instrumentation and data acquisition.  
Nondestructive testing of civil engineering structures. Steel, reinforced concrete, and other materials. Prerequisite: CEE 262 and CEE 264. (ES 2, ED 1)

CEE 259. Structural Analysis II (3) fall  
Analysis of statically indeterminate structures, methods of  
slope deflection and moment distribution; consideration of side-sway and nonprismatic members. Influence lines for determinate and indeterminate structures. Flexibility and stiffness matrix methods for computerized analysis. Use of computer library programs. Prerequisite: CEE 159. (ES 3, ED 0)

CEE 262 Fundamentals of Structural Steel Design (3) spring  
Introduction to steel structures. Behavior, strength and  
design of structural members, including members subjected to axial tension, axial compression, flexure and  
combined compression and flexure. Basic methods of  
joining members to form a structural system. Use of  
design specifications. Prerequisite: CEE 159. (ES 1, ED 2).

CEE 264. Fundamentals of Structural Concrete Design (3) spring  
Analysis, design, and detailing of reinforced concrete  
members and simple systems for strength and service-  
ability requirements, including beams, columns, and  
slabs. Introduction to prestressed concrete. Prerequisite:  
CEE 159. (ES 1, ED 2)

CEE 266. Construction Management (3) spring  
An overview of management and construction tech-  
niques used in engineering ventures and projects.  
Scheduling, estimation, construction methods, financial  
controls, contracts, labor relations and organizational  
forms. Case studies and lecturers from industry.  
Prerequisites CEE 159 and CEE 202, or instructor’s approval.

CEE 272. Environmental Risk Assessment (2) spring  
Effects of chemical releases on human health; ecological risks. Application of risk assessment methodology, including hazard identification, exposure assessment, toxicity assessment, and risk characterization. Accounting for uncertainty in data during risk management, risk reduction and implementation of regulations and environmental policy.

CEE 274. Environmental Water Chemistry (3) spring  
Chemical principles and applications of those principles to the analysis and understanding of aqueous environmental chemistry in natural waters and wastewaters. The chemistry of ionic equilibria, redox reactions, precipitation/dissolution, acid-base concepts, buffer capacity, complexation, hydrolysis and biological reactions. Prerequisite: CHEM 31 or CEE 170. (ES 2, Other 1)

CEE 275. Environmental, Geotechnics and Hydraulics Laboratory (2) Spring  
Applying fundamentals of soil properties, hydraulics and environmental science through appropriate laboratory experiments for solution of environmental engineering problems. Experiments will include solute transport in surface and subsurface medium; characterization of soils, sludges and water; treatment of water and wastewater including biological processes. Illustration of techniques to generate design parameters for scale-up. Prerequisite: CEE 170, previously or concurrently. (ES 1, ED 1)

CEE 276. (CHE 276). Environmental Engineering Processes (3) fall  
Processes applied in environmental engineering for air pollution control, treatment of drinking water, municipal wastewater, industrial wastes, hazardous/toxic wastes, and environmental remediation. Kinetics, reactor theory, mass balances, application of fundamental physical, chemical and biological principles to analysis and design. Prerequisite: CEE 170 or equivalent. (ES 2, ED 1).

CEE 279. (BIOS 259, EES 259) Microbial Ecology (4)  
The role of microorganisms in the environment. Topics include: Survey of microbial classification, structure, and metabolism; study of microbes at population, communi-  
ty, and ecosystem levels of organization; the role of  
microbes in biogeochemical cycles; application of  
...
aries. Modeling of dissolved oxygen, nutrients, receiving water bodies, including rivers, lakes, and estuaries. The study of subsurface water, its environment, distribution, and movement. Included are flow patterns, well hydraulics, and an introduction to the movement of contaminants. Design problems are included to simulate flow with analytical and numerical models, and contaminant migration using analytical models. Prerequisites: CEE 121, CEE/EES 316 or permission of instructor. (ES 2, ED 1)

CEE 323 (EES 323). Environmental Groundwater Hydrology (3) spring
The study of subsurface water, its environment, distribution, and movement. Included are flow patterns, well hydraulics, and an introduction to the movement of contaminants. Design problems are included to simulate flow with analytical and numerical models, and contaminant migration using analytical models. Prerequisites: CEE 121, CEE/EES 316 or permission of instructor. (ES 2, ED 1)

CEE 327 (EES 327). Surface Water Quality Modeling (3) spring
Fundamentals of modeling water quality parameters in receiving water bodies, including rivers, lakes, and estuaries. Modeling of dissolved oxygen, nutrients, temperature, and toxic substances. Emphasis on water quality control decisions as well as mechanics and model building. Prerequisites: CEE 121, CEE 222 and CEE 170 or permission of instructor. (ES 3, ED 0)

CEE 335. Coastal Engineering (3) fall
Linear wave theory and wave characteristics; survey of nonlinear theories; tides, tsunamis, storm surge and basin resonance; wind-generated wave spectra, statistics and forecasting; wave-structure interaction; nearshore circulation and sediment transport; interaction of littoral processes with structures. Prerequisites: CEE 121. (ES 2, ED 1)

CEE 341. Ground Improvement Engineering (3)
The mechanisms of soil stabilization; principles and techniques; grouting and injection methods; reinforced earth methods, dynamic consolidation; deep compaction; sand drains; laboratory and field studies; geotextiles and geomembranes. Prerequisite: CEE 242 or equivalent. (ES 1.5, ED 1.5)

CEE 342. Experimental Geotechnical Engineering (3)
Experimental studies dealing with the measurement of soil properties in the laboratory and in situ; application of these properties to design; consolidation; strength of soils in triaxial compression, tensile strength, and other shear tests, including measurement of pore water pressures; model design and analysis; dynamic tests; field measurement of in situ soil properties; laboratory and field instrumentation. Prerequisites: CEE 242 and senior standing. (ES 1.5, ED 1.5)

CEE 344. Behavior of Soils as Engineering Materials (3)
Soil mineralogy, bondage, crystal structure and surface characteristics; clay-water electrolyte system; soil fabric and its measurement; soil structure and physical property relationships; soil depositional and compositional characteristics; engineering properties of soils as they relate to soil mineralogy, fabric and composition: volume change behavior, intergranular stresses, shear strength and deformation behavior, consolidation behavior, coupled and direct flow phenomena. Prerequisite: CEE 242. (ES 3, ED 0)

CEE 345. Geo-Environmental Engineering (3)

CEE 346. Fundamentals of Designing with Geosynthetics (3) spring
Fundamental and current theories of designing soil structures with geosynthetics. Roads and highway applications; reinforced embankments; slope stabilization; waste containment systems: erosion control; filtration and drainage. Prerequisite: CEE 242. (ES 1.5, ED 1.5)
CEE 352. Structural Dynamics (3) fall
Analysis of linear structural systems to time-dependent loads. Free and forced vibration. Classical and numerical methods of solution. Lumped-mass techniques, energy methods, and introduction to matrix formulation of dynamic problems. Application to design. Prerequisites: MATH 205, CEE 159, and MECH 162. (ES 3, ED 0)

CEE 361. Bridge Systems Design (3)
Introduction to bridge structural systems in steel and concrete. Loads and specifications. Design and analysis of bridge structural components. Prerequisites or co-requisites: CEE 259, CEE 262, CEE 264. (ES 1, ED 2)

CEE 363. Building Systems Design (3) spring
Building structural systems in steel, reinforced concrete and composite steel and concrete. Design loads (dead, live and environmental) and methodologies. Structural systems: behavior and design. Design of floor systems, beam-columns, connections, walls, and overall frames. Final design. Prerequisites or co-requisites: CEE 259, CEE 262, and CEE 264. (ES 1, ED 2)

CEE 365. Prestressed Concrete (3) fall
Principles of prestressing. Analysis and design of basic flexural members. Instantaneous and time-dependent properties of materials. Prestress losses. Additional topics may include continuity, partial prestressing, compression members, circular prestressing, etc. Prerequisite: CEE 264 or consent of the department chair. (ES 2, ED 1)

CEE 366. Finite Element Method in Structural Engineering (3) spring
The finite element method: fundamental concepts, theory, modeling, and computation for the analysis of structures. One, two, and three-dimensional finite elements. Isoparametric formulation and implementation for various kinds of elements. Applications to problems in the behavior of structural elements and systems including analysis of trusses, beams, plates, and frames and bridge systems. Extensions to nonlinear analysis and advanced topics. Use of contemporary commercial software. Prerequisites: CEE 259. (ES 3, ED 0)

CEE 371. Reaction Kinetics in Environmental Engineering (3)
Theory of reaction kinetics and its application to the design and operation of chemical, physico-chemical and biological reactions in water, wastewater, and hazardous waste treatment. Basic design equations for various types of reactors and migration of pollutants in the environment. CEE 471 is a graduate version of this course. Prerequisite: CEE 276 (CHE 276). (ES 2, Other 1)

CEE 373. (CHE 373). Fundamentals of Air Pollution (3)
Introduction to the problems of air pollution including such topics as: sources and dispersion of pollutants, sampling and analysis; technology of economics and control processes; legislation and standards. Prerequisite senior standing in the College of Engineering and Applied Science. (ES 2, ED 1)

CEE 376. Environmental Biotechnology (3)
Fundamentals of microbiology and biochemistry applied to natural and engineered environmental systems. Systems ecology, energetics and kinetics of microbial growth, nutrition and toxicology, use of microorganisms for pollution monitoring and control. Pathogenicity and disease transmission, water quality using biological indices. Prerequisites: CEE 276 (CHE 276) and EES 31. (ES 2, ED 1)

CEE 377. Environmental Engineering Design (3) spring
Team-oriented course to develop design skills in the area of environmental engineering. Project components typically include: air pollution, drinking water, municipal wastewater, industrial wastes, hazardous/toxic wastes, and environmental remediation. Project work typically includes: a background report, a design report, and an oral presentation. Tools used in the design process may include simulation models. Prerequisite: CEE 170 and CEE 276 (CHE 276). (ES 0, ED 3)

CEE 378. Hazardous Waste Treatment and Management (3)
Regulations for collection, transportation, disposal and storage of hazardous wastes. Containment systems, monitoring, new and available technologies to minimize, transform, destroy, detoxify and eliminate the hazardous components of the wastes. Environmentally benign processes and life cycle analysis. CEE 478 is a graduate version of this course. Prerequisite: CEE 276 (CHE 276). (ES 1, ED 2)

CEE 379. (EES 379). Environmental Case Studies. (3 to 4)
Case studies will be used to explore the impact of politics, economics, society, technology, and ethics on environmental projects and preferences. Environmental issues in both affluent and developing countries will be analyzed. Multidisciplinary student teams will investigate site characterization; environmental remediation design; environmental policy; and political, financial, social, and ethical implications of environmental projects. Prerequisites: ES 1 or EES 21 or CEE 276 (CHE 276) or permission of the instructor.

CEE 381. Special Topics (1-3)
A study of selected topics in civil engineering, not included in other formal courses. A report is required. Prerequisite: consent of the department chair.

CEE 385. Research Procedures Seminar (1) fall
Planning and execution of research projects, survey of current research, elements of proposals and budgets, literature search procedures, Presentation of data, and of written and oral reports. Guidelines for visual aids.

Graduate Programs
The Department of Civil and Environmental Engineering (CEE) has graduate degree programs leading to the Masters and Ph.D. degrees in: Civil Engineering, Structural Engineering, and Environmental Engineering. The programs educate students through coursework and independent study and research. Graduates of these programs will be “full service engineers” with the knowledge and analytical problem-solving capabilities needed to lead and innovate within multi-disciplinary teams in technologically-complex environments. Graduate studies in civil and environmental engineering enable the student to build upon the broad background of undergraduate education in preparation for professional practice at an advanced level, for research and development, or for teaching. The selection of graduate courses and research opportunities offered in the department permits the
development of individual program objectives that may be concentrated in one of the technical specialty areas, or, alternatively, may extend over the broad field of civil engineering. The department offers advanced work in the specialty areas of structural engineering, geotechnical engineering, hydraulic engineering, hydrology, coastal engineering, and environmental engineering, leading to the degrees of master of science, master of engineering, and doctor of philosophy in civil engineering or environmental engineering.

A graduate program leading to the M.S. normally is concentrated in one, or possibly two, of the technical specialty areas, and consists of a number of courses designed to fulfill the individual student's program objectives. Each candidate for the M.S. is required to submit a thesis representing three to six credit hours (CEE 491, listed below), or alternatively, a report based on a research course of at least three credits (CEE 429, 439, 449, 469, 479 or 481). The balance of the program will consist of courses in the specialty area(s).

A graduate program leading to the M.Eng. degree stresses engineering applications and design. The courses may extend across the various specialty areas in civil engineering. Each candidate for the M.Eng. may choose to complete an individual engineering project representing three to six credits (CEE 480) in place of the thesis or research report required for the M.S. or to take a minimum of 30 course credits without a research or design project.

The doctoral program, which leads to the Ph.D., normally includes courses in the major field, courses in minor fields, and a dissertation presenting results of original research. Holders of master's degrees planning to become candidates for the Ph.D. take qualifying examination at the first opportunity following one semester in residence. After qualification, the candidate, the candidate's departmental Ph.D. committee, and the department chair formulate the program of work.

The laboratories of the department are located in the Fritz Engineering Laboratory. The laboratory offers outstanding facilities for research and instruction in structural engineering, geotechnical engineering, hydraulic engineering, hydrology, coastal engineering, environmental engineering, and related fields. In particular, the structural testing equipment includes dynamic testing machines, a five-million-pound universal hydraulic testing machine, and other special loading apparatus. Included in the latter are the facilities of the Center for Advanced Technology for Large Structural Systems (ATLSS center) located on the mountaintop section of the campus. These include the largest 3-dimensional test bed in the U.S.A. and specialized earthquake testing facilities. The hydraulic facilities include a wave tank, several flumes, a 10-cfs recirculating flow system, and two multipurpose tanks for model studies. Brochures describing the research facilities and programs are available on request.

In addition to departmental courses, a number of courses offered by the departments of mechanical engineering and mechanics, chemistry, chemical engineering, materials science and engineering, earth and environmental sciences, and biology may also be considered a part of the major field in civil and environmental engineering. A list of such courses is available through the department chair.

A number of research assistantships and teaching assistantships are available to provide financial aid to students of outstanding promise. The half-time research or teaching activities required of holders of assistantships provides a valuable educational experience that supplements the formal course offerings. The graduate course offerings of the department are programmed to fit the schedule of half-time assistants, and to accommodate part-time students. A very limited number of scholarships and fellowships are available to provide financial aid for full-time study.

### Graduate Courses in Civil Engineering

**CEE 405. Analytical and Numerical Methods I (3)**

Analytical and numerical methods used in Civil Engineering, with emphasis on ordinary and partial differential equations. Analytical and numerical solutions of ordinary and partial differential equations. Initial and boundary value problems. Numerical integration, numerical error, and approximations of functions and data points. Finite differences, solution of systems of linear equations, eigenvalue problems, and solution of nonlinear equations. Prerequisite: MATH 205 or equivalent.

**CEE 408. Computer Methods in Civil Engineering (3)**

Numerical and computer-oriented methods especially applicable to the solution of complex problems arising in various fields of civil engineering. Solutions of well- and ill-conditioned linear and nonlinear systems. Eigenvalue formulation of stability and dynamic problems. Reduction techniques, integration schemes for large structural systems. Optimal design by linear programming. Introduction to problem-oriented languages and computerized design. Prerequisite: CEE 405

**CEE 409. Finite Element Method in Structural Mechanics (3)**

Basic principles and equations governing the finite element method. Analysis of planar, axisymmetric, plate and articulated structures, with emphasis on analytical modeling. Accuracy and convergence studies, utilizing different discretizations and various types of elements. Case studies include application and extension to material nonlinearities, bridges, containment vessels, and soil-structure interaction. Prerequisites: CEE 405 and CEE 413 or equivalent.

**CEE 412. Methodologies of Structural Design (2)**

Probabilistic analysis of uncertainties associated with structural design. Characterization of loads including dead and live loads, wind, earthquake, and vehicular loads. Variability of structural resistance based on strength limit states as well as serviceability. Assessment of safety and reliability. Deterministic and probabilistic methodologies of design. Prerequisite: CEE 215 or permission of instructor.

**CEE 413. Mechanics and Behavior of Structural Members (3)**

advanced study of selected topics in coastal engineering repeated for credit. individual research problems with reports. may be repeated for credit.


CEE 420. Surface Wave Mechanics (3) Elements of hydrodynamics and wave boundary conditions; linear wave theory and wave characteristics; nonlinear wave theories and application; wind wave generation, analysis and prediction; long waves; design wave determination; laboratory investigation of surface waves. Prerequisite: consent of instructor.

CEE 422. Surface Water Hydrology (3) Advanced analysis and methods in surface water hydrology. Linear and non-linear hydrograph methods. Kinematic wave and other hydraulic routing techniques. Advanced techniques for evaporation, infiltration, and snow melt. Prerequisite: CEE 320 (EES 320) or equivalent.


CEE 427. Transport of Contaminants in Groundwater (3) Theory of groundwater flow and transport of contaminants in the groundwater system. State-of-the-art groundwater flow and contaminant transport models used to solve governing equations of groundwater flow and transport of chemically reactive solutes. Selected case studies will be analyzed. Prerequisite: CEE 323 (EES 323) or permission of instructor.

CEE 428. Advanced Topics in Hydraulics (1-3) Recent developments in hydromechanics and hydraulics. Topics to be selected from: wave mechanics, theory of flow through porous media, dispersion, hydrodynamic forces on structures, potential flow, free streamline theory, open channel hydraulics, computer methods. Prerequisites: CEE 321 and consent of the department chair. May be repeated for credit.

CEE 429. Hydraulic Research (1-6) Individual research problems with reports. May be repeated for credit.

CEE 436. Advanced Topics in Coastal Engineering (1-3) Advanced study of selected topics in coastal engineering such as: non-linear wave theory, design of coastal structures, shore protection and stabilization, numerical solution of coastal hydrodynamics. Selection of topics will depend on particular qualifications of staff, as well as on the interests of the students. Prerequisite: CEE 335. May be repeated for credit.

CEE 439. Coastal Engineering Research (1-6) Individual research problems with reports. May be repeated for credit.

CEE 441. Soil Dynamics (3) fall Vibrations of elementary systems, wave propagation, dynamic soil properties, vibration of soils, foundation vibrations, dynamic bearing capacity, dynamic earth pressure problem and retaining wall, liquefaction of soils, earthquake problems. Prerequisite: CEE 244 or consent of the department chair.

CEE 443. Advanced Soil Mechanics I (3) fall The origin, composition, and physico-chemical properties of soils and their influence on the engineering properties and behavior of soils; transmission of water in saturated and unsaturated soils; advanced theory of compaction; compression and consolidation; theories of shear strength. Prerequisite: a course in soil mechanics.

CEE 444. Advanced Soil Mechanics II (3) spring Fundamental and advanced theories of soil mechanics applicable to earth structures and foundation design; stresses in homogeneous and layered systems for ideal elastic, plastic and viscoelastic soils; lateral earth pressures, thermo-geotechnics. Prerequisite: CEE 443.

CEE 445. Advanced Foundation Engineering (3) fall Current theory and practice relating to the design of foundations for buildings and other structures. Analysis and limitation of settlements; bearing capacity analyses of shallow and deep foundations; flexible and rigid retaining structure design; dynamic effects; anchor and other special foundations; site investigations; design criteria for foundations; load and environmental factors. Prerequisite: a course in soil mechanics.

CEE 447. Advanced Topics in Geotechnical Engineering (1-3) Advanced studies in selected subjects related to geotechnical engineering. The general areas may include: stress-strain-time relationships of soils, colloidal phenomena in soils, ground water flow and see page, soil dynamics, soil plasticity, numerical methods applied to soil mechanics, earth dam design, theories of layered systems and their application to pavement design, rock mechanics. The studies specifically undertaken in any particular semester depend on the availability of staff and the interest of students. Prerequisite: consent of the department chair. May be repeated for credit.

CEE 448. Plasticity and Limit Equilibrium in Geotechnical Engineering (3) spring Application of plasticity in soil mechanics, new concepts and theories and the requirements for modeling of actual test performance of soils, limit yield/failure criteria, constitutive relations of stress-strain-time, concepts of critical state soil mechanics, rheological performance, application to problems of stability of slopes, bearing capacity of foundations and active/passive earth pressures. Prerequisite: CEE 244, or consent of the department chair.
CxEE 449. Geotechnical Research (1-6)
Individual research problems relating to soil engineering, with report. Prerequisite: a course in soil mechanics.

CxEE 450. Advanced Structural Analysis I (3)
Theory and methods of linear and second order structural analysis. Linear theory and stiffness properties of structural members and linear transformations of structural analysis. Application of virtual work principles and development of displacement (stiffness) method of analysis in matrix form. Introduction to second order theory of structural members and second order equations of structural analysis. Prerequisite: CxEE 259 or equivalent.

CxEE 451. Advanced Structural Theory (3) fall
Specialized methods of analysis; moment distribution, General treatment of deformation methods using matrix algebra. Selected topics in structural theory: influence lines, multi-story building frames, space structures. Introduction to finite element method; nonlinear problems. Prerequisite: CxEE 450.

CxEE 452. Fatigue and Fracture of Structures - An Interdisciplinary View (3)
This course examines the fatigue and fracture characteristics of steel structures from metallurgical, mechanical and structural engineering views. Both theory and experimental background are provided and applied to case studies and code development.

CxEE 454. Plate and Shell Structures (3)
Plates and slabs loaded transversely in their plane. Buckling and postbuckling behavior of elastic and inelastic plates. Membrane and bending analysis of cylindrical, rotational, and hyperbolic-paraboloidal shells. Emphasis on engineering methods. Design considerations. Prerequisites: CxEE 405 and consent of the department chair.

CxEE 455. Advanced Structural Dynamics (3)
Analysis and design of structures to resist wind, earthquake, and blast loading. Matrix methods and computer applications. Non-linear and elasto-plastic response. Damping characteristics of structures and structural components, spectral analysis, dynamic instability. Characteristics of aerodynamic and seismic forces and explosions. Introduction to vibration of three-dimensional structural systems. Prerequisites: CxEE 352 or MECH 406, CxEE 405 and CxEE 450 or equivalent.

CxEE 456. Behavior and Design of Earthquake Resistant Structures (3)
Characteristics of earthquakes, effects of earthquakes on structures. Response of linear elastic structures to earthquakes. Behavior of structural components under cyclic loading. Principles of earthquake-resistant design. Seismic design procedures and their implementation in codes. Prerequisite: CxEE 352 or equivalent.

CxEE 457. Theory and Design of Steel Structures (3)
Analysis and design of steel structures; structural connections; composite steel-concrete systems and other components. Consideration of residual stress; brittle fracture; fatigue strength; fastener systems. Study of current research and application to design practice.

CxEE 458. Repair and Retrofit of Steel Structures (3)
Various types of construction problems experienced during the fabrication, erection, and service of steel structures are examined. Problems include material related defects, repair of welds, mix matches, stability and erection related deformation. Case studies of failures and serious construction deficiencies are reviewed and evaluated.

CxEE 459. Advanced Topics in Plastic Theory (3) fall
Fundamentals of the mathematical theory of plasticity; the general theorems of limit analysis and their applications to beams under combined loading, arches, space frames, plates and shells. Limit analysis of two- and three-dimensional problems in soil, concrete, rock, and metal. Current developments. Prerequisite: CxEE 413.

CxEE 460. Experimental Methods in Structural Engineering (3)
Study of methods and equipment used in a modern structural engineering research laboratory. Topics include small-scale modeling theory; operational and performance characteristics of transducers; detailed examination of specific transducers for measurement of strain, force, displacement, velocity, acceleration, and temperature; loading systems and controls; data acquisition and signal conditioning; introduction to nondestructive testing of structures.

CxEE 461. Advanced Bridge Engineering (3)
Students in CxEE 461 cover the same topics described under CxEE 360, but in more depth. In addition each student conducts an intensive study of a bridge-related topic of his or her choice. A short written technical report on the findings of this study is required. Prerequisites: CxEE 262 and CxEE 264.

CxEE 462. Stability of Structural Systems (3)
Stability analysis of structures systems, including moment-resisting and braced frames, trusses, and plate and box girders. Bracing requirements. Elastic and inelastic second-order analysis. Design considerations. Special topics. Prerequisites: CxEE 413 or equivalent.

CxEE 463. Advanced Mechanics of Reinforced Concrete (3)
Consistent mechanics for the design of reinforced concrete with or without prestress. Limit theorems of the theory of plasticity and their application to beams, slabs, and disturbed regions. Applications may include beams in flexure and combined flexure, axial load, and torsion; slabs (strip method, yield line analysis); corbels, deep beams, and other disturbed regions (truss models, strut-and-tie models, and associated failure mechanisms). Prerequisites: CxEE 413 or equivalent.

CxEE 464. (MECH 416) Analysis of Plates and Shells (3)
Bending of rectangular and circular plates, plates under lateral loads, plates with thermal and inelastic strains, effect of in-plane forces, large deflections, buckling of plates. Geometry and governing equations of shells, shells of revolution, membrane states, edge solutions, solution by numerical integration, non-symmetrical problems, buckling of shells, applications to pressure vessels. Prerequisites: MATH 205; MECH 305 or equivalent course in advanced mechanics of materials.

CxEE 466. Concrete Shell Structures (3)
Analysis and design of concrete shell structures. Folded plates, cylindrical shells, and shells of double curvature. Typical practical problems. Prerequisites: CxEE 405 and consent of the department chair.
CEE 467. Advanced Topics in Structural Engineering (1-3)  
Advanced study of selected topics in structural mechanics and engineering, such as: finite element methods, suspension system; space frames; stability of nonlinear systems; cold-formed and lightweight construction; optimization and reliability; second-order phenomena in structures; interaction of structures with the environment; structural use of plastics; composite construction, etc. Selection of topics will depend on particular qualifications of the staff, as well as on the interests of the students. Prerequisite: consent of the department chair. May be repeated for credit.

CEE 468. (MECH 415) Stability of Elastic Structures (3)  

CEE 469. Structural Research (1-6)  
Individual research with reports. May be repeated for credit.

CEE 470. Reaction Kinetics in Environmental Engineering (3)  
Theory of reaction kinetics and its application to the design and operation of chemical, physico-chemical and biological reactors in water and wastewater treatment. Basic design equations for various types of reactors and migration of pollutants in the environment.

CEE 471. Water Treatment Facilities (3)  
Theory and design of water treatment system components. Emphasis on coagulation, flocculation, sedimentation, filtration, and disinfection. Estimation of design parameters from laboratory experiments. Prerequisite: CEE 276 (CHE 276) or equivalent.

CEE 472. Waste Water Treatment Facilities (3)  
Theory and design of water pollution control systems. Emphasis on film flow and suspended growth biological reactors for organic and nutrient removal. Sludge production, stabilization, dewatering and ultimate disposal. Prerequisite: CEE 276 (CHE 276) or equivalent.

CEE 473. (CHE 473). Environmental Separation and Control  
Theory and application of adsorption, ion exchange, reverse osmosis, air stripping and chemical oxidation in water and wastewater treatment. Modeling engineered treatment processes. Prerequisite: CEE 470 or consent of the instructor.

CEE 474. Aquatic Chemistry (3)  
Applying basic principles of aqueous chemistry for quantifying complex, environmental systems. Specific examples of air-water-soil interactions and consequent effects. Heterogeneous equilibria with more than one solid phase. Kinetics and thermodynamics of some important ionic and biological reactions. Prerequisite: CEE 274.

CEE 475. Advanced Topics in Environmental Engineering (1-3)  
Advanced concentrated study of a selected topic in environmental engineering such as non-point source pollution control, water reuse systems, new concepts in treatment technology, toxic substance control, etc. The instructor and student select topic. Courses may include specialized laboratory research, literature review, and specialty conference attendance. Prerequisite: Department chair approval.

CEE 476. Environmental Engineering Microbiology (3)  
Fundamentals of microbiology and biochemistry applied to environmental systems and water quality control. Systems ecology, energetics and kinetics of microbial growth, nutrition and toxicoology, use of microorganisms for pollution monitoring and control. Pathogenicity and disease transmission, water quality using biological indices. Prerequisite: CEE 276 (CHE 276) or a suitable course in biology.

CEE 477. Transport of Pollutants in Surface Waters (2)  
Fundamental models of pollution migration in streams, estuaries and oceans. Diffusion, mass transport, dispersion, biological, physical, and chemical interactions. Effects on water quality especially oxygen nutrient and toxics levels. Prerequisites: CEE 470, 471, 472.

CEE 478. Toxic and Hazardous Wastes (3)  
Regulations for collection, transportation, disposal and storage of hazardous wastes. Containment systems, monitoring, types of liners, new and available technologies to eliminate or recover the hazardous components of the wastes. Prerequisite: CEE 274 or CEE 276 (CHE 276).

CEE 479. Environmental Engineering Research (1-6)  
Individual research problems in environmental engineering with report. May be repeated for credit.

CEE 480. Civil Engineering Project (1-6)  
An intensive study of one or more areas of civil engineering, with emphasis on engineering design and applications. A written report is required. May be repeated for credit.

CEE 481. Special Problems (1-6)  
An intensive study, with report, of a special field of civil engineering, which is not covered in the other courses. A design project or an interdisciplinary study of a problem related to civil engineering may also be included. May be repeated for credit.

CEE 483. Graduate Seminar (1-3)  
Study of current topics in civil engineering.

CEE 491. Thesis (1-6)  
CEE 499. Dissertation (1-15)

Civil and Environmental Engineering and Earth and Environmental Sciences  
This program is designed for students interested in combining programs in two departments: civil & environmental engineering and earth & environmental
science, leading to two bachelor of science degrees, one of the engineering B.S. degrees (civil engineering or environmental engineering) and one of the science B.S. degrees in earth and environmental sciences (environmental sciences, geological sciences or ecology). Both degrees would be awarded at the end of the fifth year. This program is one of the dual degree programs mentioned in the Five-Year Programs section. The student will have a primary advisor in the P.C. Rossin College of Engineering and Applied Sciences and a secondary advisor in the Arts and Sciences College. The program provides alternatives for students who may decide not to complete the two-degrees program. Students who make this decision prior to the beginning of the fourth year may qualify at the end of that year for the bachelor of science in civil engineering, as well as a minor in earth and environmental sciences. Also, if a student decides after two years to pursue only a bachelor of science degree in the EES department, it is possible to complete the requirements in four years. If the decision to work toward this degree is made during the fourth year, at least one additional semester is required to qualify for either B.S. degree. Interested students should consult with the respective departmental advisors to create a schedule of courses to resolve conflicts or if a specified course is not offered that semester. Required courses and major electives for the different EES B.S. degree programs are listed in the catalog entry for EES; note that the exact number of required EES courses varies slightly among the three B.S. programs (with required credits in required major courses ranging from 52 to 56), as do the core and numbers of credits in the math and collateral sciences. Cross-listed EES/CEE courses used to satisfy Civil Engineering Approved Electives can reduce the individual semester and total program credits when chosen to satisfy EES program requirements. Additional useful information can be found on the web sites (http://www.lehigh.edu/incee/incee.html and http://www.ees.lehigh.edu/).

Suggested outline of courses for B.S. in Environmental Science and B.S. in Civil Engineering

The freshman engineering year (see Section III) is often 29 credits. HSS Advanced Requirement elective of 13 credits, shown below to be three 3-credit courses and one 4-credit course. Other options to complete this requirement are possible. A total of 160-175 credit hours is needed for both degrees depending on how many credits in the EES are satisfied by taking CEE Approved Electives that are cross-listed with EES courses**.

**second year, first semester (17 credit hours)**
- MATH 253 Analytic Geometry and Calculus III (4)
- MECH 195 Fundamentals of Engineering Mechanics (3)
- CHM 31 **Chemical Equilibria in Aquous Systems (3)
- EES 21 Introduction to Planet Earth (4)
- CEE 11 Surveying (1)
- CEE 12 Civil Engineering Statistics (2)

**second year, second semester (18 credit hours)**
- PHY 21 Introductory Physics II (4)
- PHY 22 Introductory Physics Laboratory II (1)
- MECH 12 Strength of Materials (3)
- EES 31 Introduction to Environmental/Organisal Biology (4)
- MATH 205 Linear Methods (3)
- MAT 33 Engineering Materials and Processes (3)

**third year, first semester (17 credit hours)**
- CEE 121 Mechanics of Fluids (3)
- CEE 142 Fundamentals of Soil Mechanics (3)
- EES 290 Civil Engineering Capstone Design Project (3)
- EES Course suggested as only 100 and 200 level (4)
- EES Course suggested as only 100 and 200 level (4)
- CEE 10 Architectural/Engineering Graphics and Design (3)

**third year, second semester (18 credit hours)**
- CEE 242 Principles and Practices of Geotechnical Engineering (3)
- CEE 222 Hydraulic Engineering (3)
- CEE 170 Introduction to Environmental Engineering (4)
- EES Course 100 to 300 levels (4)
- EES Course 100 to 300 levels (4)
- EES Course 100 to 300 levels (4)

**fourth year, first semester (18 credit hours)**
- CEE 117 Numerical Methods in Civil Engineering (2)
- CEE 159 Structural Analysis I (4)
- EES Course 100 to 300 levels (4)
- EES Course 100 to 300 levels (4)
- EES Course 100 to 300 levels (4)

**fourth year, second semester (18-19 credit hours)**
- CEE 262 Fundamentals of Structural Steel Design (3)
- or CEE 264 Fundamentals of Structural Concrete Design (3)
- CEE Course **Civil Engineering Approved Elective (3-4)
- EES Course 100 to 300 levels (4)
- EES Course 100 to 300 levels (4)
- EES Course 100 to 300 levels (4)

**fifth year, first semester (11-20 credit hours)**
- CEE 202 Civil Engineering Planning and Engineering Economics (3)
- CEE 203 Professional Development (2)
- CEE Course **Civil Engineering Approved Elective (3-4)
- HSS Humanities/Social Sciences AR Electives (4)

**year 4/5 summer (0-8 credit hours)**
- Select 0, 1, or 2 courses from
- EES Course 100 and 200 level (4)
- EES Course 100 and 200 level (4)

**fifth year, second semester (11-20 credit hours)**
- CEE 202 Civil Engineering Planning and Engineering Economics (3)
- CEE 203 Professional Development (2)
- CEE Course **Civil Engineering Approved Elective (3-4)
- HSS Humanities/Social Sciences AR Elective (3)
- Select 0, 1, or 2 courses from below so the total here and year 4/5 summer is 8 credits of Tier 3 courses:
- EES Course 100 to 300 levels, possibly seminar (4)
- EES Course 100 to 300 levels, possibly senior seminar (4)

**fifth year, second semester (17-19 credit hours)**
- CEE Course **Civil Engineering Approved Electives (6-8)
- CEE 290 Civil Engineering Capstone Design Project (3)
- H/SS Humanities/Social Sciences AR Electives (4)
Suggested outline of courses for B.S. in Environmental Science and B.S. in Environmental Engineering

The freshman engineering year (see Section III) is often 29 credits. HSS Advanced Requirement elective of 13 credits shown below to be three 3-credit courses and one 4-credit course. Other options to complete this requirement are possible.

A total of 160-168 credit hours is needed for both degrees, unless some EES requirements are simultaneously satisfied by taking Environmental Engineering. Technical Electives that are cross-listed between CEE and EES.

**Suggested courses for B.S. in Environmental Engineering and B.S. in Environmental Science**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EES Course 100 to 300 levels</td>
<td>Environmental/Organismal Biology</td>
<td>4</td>
</tr>
<tr>
<td>EES 21</td>
<td>Introduction to Planet Earth</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 31</td>
<td>Organic CHEM I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 53</td>
<td>Organic Chem Lab I</td>
<td>1</td>
</tr>
<tr>
<td>EES 21</td>
<td>Introduction to Environmental/Organismal Biology</td>
<td>4</td>
</tr>
<tr>
<td>HSS</td>
<td>Humanities/Social Sciences AR Elective</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Linear Methods</td>
<td>3</td>
</tr>
<tr>
<td>PHY 21</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 22</td>
<td>Introductory Physics Lab II</td>
<td>1</td>
</tr>
<tr>
<td>CEE 170</td>
<td>Introduction to Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>EES 31</td>
<td>Introduction to Environmental/Organismal Biology</td>
<td>4</td>
</tr>
<tr>
<td>CEE 12</td>
<td>Civil Engineering Statistics</td>
<td>2</td>
</tr>
<tr>
<td>CEE 277</td>
<td>Env. Engineering Processes</td>
<td>3</td>
</tr>
<tr>
<td>EES Course suggested as only 100 and 200 level</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EES Course suggested as only 100 and 200 level</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>HSS</td>
<td>Humanities/Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>CHE 31</td>
<td>MAT. &amp; Energy Bal. Of CHE Process</td>
<td>3</td>
</tr>
<tr>
<td>CEE 274</td>
<td>Environmental Water Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHE 60</td>
<td>Unit Ops Survey</td>
<td>3</td>
</tr>
<tr>
<td>ECO 1</td>
<td>Principles of Economics</td>
<td>4</td>
</tr>
<tr>
<td>CEE 121</td>
<td>Mechanics of Fluids</td>
<td>3</td>
</tr>
<tr>
<td>CEE 142</td>
<td>Fundamentals of Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CEE 378</td>
<td>Solid &amp; Haz. Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>EES Course</td>
<td>100 to 300 levels</td>
<td>4</td>
</tr>
<tr>
<td>EES Course</td>
<td>100 to 300 levels</td>
<td>4</td>
</tr>
</tbody>
</table>

**Classical Studies**

**Professors.** Charles Robert Phillips, III, Ph.D. (Brown); David B. Small, Ph.D. (Cambridge)

**Associate Professor.** Barbara Pavlock, Ph.D. (Cornell), head of program.

The study of Classics examines first the origins and growth of Greek and Roman culture in the Mediterranean area and second its impact on that area (and others) until the present. This study is by nature interdisciplinary: the study of language and literature, history, philosophy and religion, archaeology, economics and science all contribute to an appreciation of Greco-Roman civilization. Students in either major or minor programs may concentrate in various combinations of these and other disciplines as they relate to ancient civilization. The diversity of the program should encourage the student to follow her or his special interests while simultaneously gaining an overview of classical civilization. Courses in ancient Greek and Latin lead to proficiency in language while introducing the student to major literary texts. The Joseph A. Maurer Classics Prize is awarded yearly, at the discretion of the program, to the senior(s) who have demonstrated outstanding achievement in Classics (ancient Greek or Latin) and/or classical civilization. Courses in classical civilization require no knowledge of the ancient languages; they offer introductions to various disciplines of Classics with frequent reference to modern perspectives. Upper-level courses tend to be small, fostering closeness between faculty and students.

**Suggested courses for B.S. in Environmental Engineering and B.S. in Environmental Science**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EES Course 100 to 300 levels</td>
<td>Environmental/Organismal Biology</td>
<td>4</td>
</tr>
<tr>
<td>ESE 21</td>
<td>Introduction to Planet Earth</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 31</td>
<td>Organic CHEM I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 53</td>
<td>Organic Chem Lab I</td>
<td>1</td>
</tr>
<tr>
<td>EES 21</td>
<td>Introduction to Environmental/Organismal Biology</td>
<td>4</td>
</tr>
<tr>
<td>HSS</td>
<td>Humanities/Social Sciences AR Elective</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205</td>
<td>Linear Methods</td>
<td>3</td>
</tr>
<tr>
<td>PHY 21</td>
<td>Introductory Physics II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 22</td>
<td>Introductory Physics Lab II</td>
<td>1</td>
</tr>
<tr>
<td>CEE 170</td>
<td>Introduction to Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>EES 31</td>
<td>Introduction to Environmental/Organismal Biology</td>
<td>4</td>
</tr>
<tr>
<td>CEE 12</td>
<td>Civil Engineering Statistics</td>
<td>2</td>
</tr>
<tr>
<td>CEE 277</td>
<td>Env. Engineering Processes</td>
<td>3</td>
</tr>
<tr>
<td>EES Course suggested as only 100 and 200 level</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EES Course suggested as only 100 and 200 level</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>HSS</td>
<td>Humanities/Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>CHE 31</td>
<td>MAT. &amp; Energy Bal. Of CHE Process</td>
<td>3</td>
</tr>
<tr>
<td>CEE 274</td>
<td>Environmental Water Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHE 60</td>
<td>Unit Ops Survey</td>
<td>3</td>
</tr>
<tr>
<td>ECO 1</td>
<td>Principles of Economics</td>
<td>4</td>
</tr>
<tr>
<td>CEE 121</td>
<td>Mechanics of Fluids</td>
<td>3</td>
</tr>
<tr>
<td>CEE 142</td>
<td>Fundamentals of Soil Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CEE 378</td>
<td>Solid &amp; Haz. Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>EES Course</td>
<td>100 to 300 levels</td>
<td>4</td>
</tr>
<tr>
<td>EES Course</td>
<td>100 to 300 levels</td>
<td>4</td>
</tr>
</tbody>
</table>

**fifth year, first semester (11-19 credit hours)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 202</td>
<td>CEE Planning and Eng. Economics</td>
<td>3</td>
</tr>
<tr>
<td>CEE 203</td>
<td>Professional Development</td>
<td>2</td>
</tr>
<tr>
<td>CEE 379</td>
<td>(EES 379) Env. Case Studies</td>
<td>4</td>
</tr>
<tr>
<td>Technical electives*</td>
<td>(2)</td>
<td></td>
</tr>
</tbody>
</table>

Select 0, 1, or 2 courses from below so the total here and year 4/5 summer is 8 credits of Tier 3 courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EES Course 100 to 300 levels, possibly Tier 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EES Course 100 to 300 levels, possibly Tier 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select 0, 1, or 2 courses from below so the total here and year 4/5 summer is 8 credits of Tier 3 courses:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**fifth year, second semester (16 credit hours)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 377</td>
<td>Environmental Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>HSS</td>
<td>Humanities/Social Sciences AR Elective</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective*</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>FE</td>
<td>Free Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

*9 technical (approved) elective credits approved by the academic advisor to satisfy proficiency in three focus areas of water supply and resources, environmental chemistry, and hazardous waste management; approved list available from CEE department.
Major Programs. Students may major either in classical civilization or in Classics. The Classics major offers a comprehensive view of language and culture; it is possible to begin an ancient language at Lehigh and to complete the major program successfully. The classical civilization major enables the student to gain a broad perspective on Greek and Roman civilization. The program welcomes double majors and the educational perspectives to be derived from combining ancient and modern studies.

Classics as a major has stood the test of time, offering helpful preparation for careers in widely diverse fields in the professions, business, and public service. Lehigh Classics majors have gone on to law school, the ministry, business school, with appropriate science courses to medical school, graduate work in Classics, and to all kinds of entry-level employment.

Departmental Honors. A student may be recommended for program honors by vote of the program based on the student’s course work.

Minor Program. The minor in classical civilization or Classics consists of a minimum of 15 credit hours. Students may focus on any aspect of classical studies, either singly or in combination. The program can arrange individual courses of study. CLSS 121/ANTH 121 may not be counted toward the minor in classical civilization.

Study Abroad. Lehigh University is a cooperating institution of the Intercollegiate Center for Classical Studies at Rome. Lehigh students are eligible for tuition grants at Athens and Rome.

Major in Classical Civilization

This major allows the student to gain an overview of Greco-Roman culture through the literature, archaeology, and history along with basic language study. A minimum of 30 to 33 credit hours, depending upon previous preparation in language study, is required for this major.

Any four of the following:

- CLSS 52 (ENGL 52) Classical Epic (3)
- CLSS 54 (ENGL 54, THTR 54) Greek Tragedy (3)
- CLSS 56 (ENGL 56) Topics in Greek and Roman Literature (3)
- CLSS 58 (ENGL 58, THTR 58) Greek and Roman Comedy (3)
- CLSS 174 (ANTH 174, ART 174, ARCH 174) Greek Archaeology (3)
- CLSS 176 (ANTH 176, ART 176, ARCH 176) Roman Archaeology (3)

Any two courses in ancient history

Any two electives from the remaining program offerings (ANTH 178 may be included)

One course in either Latin or Greek on the intermediate level (or LAT/GRK 1, 2, 11, or 12, depending on previous background)

Major in Classics

This major allows the student to concentrate in ancient Greek, Latin or both. Specific programs for this major are worked out for each student with due consideration for the individual’s particular previous study of the language(s). Thus a student may begin ancient Greek or Latin at Lehigh and successfully complete a major in it. A minimum of 30 to 33 credit hours, depending upon previous language study, is required for this major.

Required Major Courses

- Latin 1 and 2 or Greek 1 and 2, depending on prior preparation
- Latin 11 and 12, or Greek 11 and 12, depending on prior preparation
- Three advanced courses in the major language minimum
- Any two ancient history courses
- At least two electives from the remaining program offerings

Courses in Classical Civilization (CLSS)

CLSS 21. (HIST 21) Greek History (4) fall

The development of civilization from paleolithic times to the world empire of Alexander the Great. The social, economic, religious, philosophic, artistic and literary development of the ancient world; the origin of political institutions. Phillips (SS)

CLSS 22. (HIST 22) Roman History (4) spring

Rome from its origins to A.D. 476. Political, social and religious developments. Transformation of the late Roman Empire to the early medieval period. Phillips (SS)

CLSS 50. Mythology (3) fall

Introduction to the study of the Greco-Roman myths in their social, political, and historical contexts. Equal emphasis on learning the myths and strategies for interpreting them as important evidence for studying classical antiquity. (SS)

CLSS 52. (ENGL 52) Classical Epic (3)

Study of major epic poems from Greece and Rome. Works include Homer’s Iliad and Odyssey, Apollonius’ Argonautica, Vergil’s Aeneid, and Ovid’s Metamorphoses. Pavlock (HU)

CLSS 54. (ENGL 54, THTR 54) Greek Tragedy (3)

Aspects of Greek theater and plays of Aeschylus, Sophocles, and Euripides in their social and intellectual contexts. Pavlock (HU)

CLSS 56. (ENGL 56) Topics in Greek and Roman Literature (3)

Classical literature in translation, including themes or specific periods in Greek or Roman literature. May be repeated for credit, as topics vary. Pavlock (HU)

CLSS 58. (ENGL 58, THTR 58) Greek and Roman Comedy (3)

Study of comedy as a social form through plays of Aristophanes, Menander, Plautus, and Terence. Pavlock (HU)

CLSS 91. Independent Study (1–4)

CLSS 112. (ANTH 112) Doing Archaeology (4)

Principles of archaeological method and theory. Excavation and survey methods, artifact analysis, dating techniques, and cultural reconstruction. Course includes field project. Prerequisite: ANTH 1 or department permission. Small (SS)
Early Christianity from its beginnings until the end of the second century. Coverage includes the Jewish and Hellenistic matrices of Christianity, traditions about the life of Jesus and his significance, and the variety of belief and practice of early Christians. Emphasis on encountering primary texts. Wright (HU)

CLSS 121. (ANTH 121) Environment and Culture (4)
Impact of environment upon cultural variability and change. Comparative study of modern and past cultures and their environments as well as current theories of human/environmental interaction. Prerequisite: ANTH 1 or department permission. Small (SS)

CLSS 127. (ANTH 127) Early Civilizations (4)
Introduction to early civilizations in the Near East, Mediterranean, Africa, Europe, and the New World. Similarities and differences in economics, politics, social organization, and religion. Prerequisite: ANTH 1 or department permission. Small (SS)

CLSS 131. (PHIL 131) Ancient Philosophy (4)
fall
Historical survey of selected texts and issues in the classical world, from the Pre-Socratics through Aristotle, with emphasis on the origins of the Western philosophical traditions in ethics, metaphysics, and epistemology. (HU)

CLSS 132. (PHIL 132) Hellenistic Philosophy (4)
Historical survey of selected texts and issues in Post-Aristotelian Greek and Roman philosophy from the fourth century B.C. to the third century A.D. Areas of focus may include epicureanism, stoicism, academic and pyrrhonian scepticism, and neoplatonism. (HU)

CLSS 161. (HIST 161) Roman Law (4)
Examination of Roman legal systems from the Twelve Tables to the Digest of Justinian. Emphasis on development of legal concepts and their historical context. Readings in primary sources; lectures; discussion. Phillips (SS)

CLSS 171. Independent Study (1-4)

CLSS 174, (ANTH 174, Arch 174)
Greek Archaeology (3)
Ancient Greek culture from the neolithic to Hellenistic periods. Reconstructions of Greek social dynamics from the study of artifacts. Small (SS)

CLSS 176. (ANTH 176, Arch 176, Arch 176) Roman Archaeology (3)
Cultures of the Roman Empire. Reconstructions of social, political, and economic dynamics of the imperial system from the study of artifacts. Small (SS)

CLSS 213. (REL 213) Ancient Roman Religion (4)

CLSS 231. (PHIL 231) Figures/Themes in Ancient Philosophy (4)
This seminar course will involve in-depth focus upon a major ancient thinker (e.g. Plato, Aristotle, Sextus Empiricus, Plotinus, etc.) or the classical treatment of a particular theme (e.g., “human nature,” “the good life,” ethical or political theory, etc.). Content varies. May be repeated more than once for credit. (HU)

CLSS 251. (REL 251) Classical Mythology (3)
Myth, religion, and ritual in ancient Greece and Rome. Emphasis on primary sources; introduction to ancient and modern theories of religion. Cross-cultural material. (SS)

CLSS 281. Readings (3) fall
Advanced study of a historical period or theme. Emphasis on primary sources. Prerequisites: CLSS 21 or 22 and consent of the program head. (ND)

CLSS 282. Readings (3) spring
Advanced study of a historical period or theme. Emphasis on primary sources. Prerequisites: CLSS 21 or 22 and consent of the program head. (ND)

CLSS 291. Independent Study (1-4)

CLSS 311 (HIST 311) Twins and Sins: The Rise of Rome (3-4)
Rome from its origins to the mid-third century B.C. Emphasis on foundation legends, the power of the monarchy, and development of Roman political and religious institutions. Papers, quizzes, discussions. (SS) Phillips

CLSS 312. (HIST 312) Decline and Fall of the Roman Empire (3-4)
Political, social, and economic history of the Roman Empire, A.D. 117–A.D. 565. Romanization of the provinces, diffusion of Christianity, and special attention to transformation to medieval period. Includes readings in translation of primary sources. Phillips (SS)

CLSS 313. (HIST 313) Golden Age of Greek Democracy (3-4)
Greek history of the seventh through fifth centuries B.C. Emphasis on the contrasting political and social systems of Athens and Sparta with consideration of related economic and military history. Attention to art, gender, literature, religion. Discussion and lectures; papers. Phillips (SS)

CLSS 314. (HIST 314) Age of Caesar and Christ (3-4) spring
Roman history of the first century A.D.; political, cultural, and socio-economic changes; special attention to the evolution of absolute power. Lectures, discussions, papers. Phillips (SS)

CLSS 345. (ANTH 345) Evolution of the State (4)
Theories of state formation. Comparison of evolutionary trajectories of early states in the Near East, Mediterranean, and the New World. Small (SS)

Courses in Ancient Greek

GRK 1. Elementary Ancient Greek I (3) fall
Fundamentals of the Greek language. Grammatical exercises and short passages of easy prose. Staff (HU)

GRK 2. Elementary Ancient Greek II (3) spring
Continued work in Greek vocabulary, forms, and syntax. Selected readings in Greek. Students should have completed one semester of elementary ancient Greek or the equivalent. Staff (HU)
Courses in Latin

LAT 11. Intermediate Latin I (3) fall
Readings in Herodotus, Homer, or Xenophon. Grammar review. Students should have completed two semesters of elementary ancient Greek or the equivalent. (HU)

LAT 12. Intermediate Ancient Greek (3) spring
Translation and analysis of selected lyrics, focusing on imagery systems. Introduction to metrics. May be repeated for credit. Students should have completed four semesters of Latin or the equivalent. (HU)

LAT 111. Greek Drama (3)
Representative plays of Sophocles, Euripides and Aristophanes. Literary study of the drama. Students should have completed four semesters of ancient Greek or the equivalent. (HU)

LAT 91. Independent Study (1-4)

LAT 113. Greek Historians (3)
Selections from Herodotus, Thucydides or Xenophon. Study of Greek historiography. Students should have completed four semesters of ancient Greek or the equivalent. (HU)

LAT 112. Latin Prose (3)
Readings from Latin prose literature of the late republic and early empire; selections may include Cicero's letters, Sallust, Pliny's letters. May be repeated for credit as content changes. Students should have completed four semesters of Latin or the equivalent. (HU)

LAT 113. Vergil (3)
Selections from the Aeneid. Vergil's creation of a Latin epic and its complex perspective. Metrics. May be repeated for credit. Students should have completed four semesters of Latin or the equivalent. (HU)

LAT 114. Livy (3)
Selections from the early books of Livy's histories focusing on his creation of a Roman mythos. Students should have completed four semesters of Latin or the equivalent. (HU)

LAT 115. Ovid (3)
May include selections from the Ars Amatoria, Fasti, and the Metamorphoses, with attention to the problem of the ideology of Augustan Rome. May be repeated for credit. Students should have completed four semesters of Latin or the equivalent. (HU)

LAT 116. Petronius (3)
Selections from the Satyricon, focusing on language usage and epic parody. Students should have completed four semesters of Latin or the equivalent. (HU)

LAT 117. Independent Study (1-4)

LAT 211. Readings (3) fall
Intensive readings in one author or a selected genre. Prerequisites: six hours of courses at the 100 level and consent of the program head. (HU)

LAT 212. Readings (3) spring
Intensive reading in one author or a selected genre. Prerequisites: six hours of courses at the 100 level and consent of the program head. (HU)

LAT 291. Independent Study (1-4)

Cognitive Science

Program Director: John B. Gatewood, 758-3814; jbg1@lehigh.edu

Cognitive Science Faculty

Biological Sciences: Maria Bykholovskaia, Ph.D. (Russian Academy of Sciences); John Nyby, Ph.D. (Texas); Colin J. Saldanha, Ph.D. (Columbia); Jill Schneider, Ph.D. (Wesleyan); Neal Simon, Ph.D. (Rutgers); Jennifer M. Swann, Ph.D. (Northwestern)

Computer Science and Engineering: Henry S. Baird, Ph.D. (Princeton); Glenn D. Blank, Ph.D. (Wisconsin); Jeffrey D. Hefflin, Ph.D. (Maryland); Edwin J. Kay, Ph.D. (Lehigh); Hector Munoz-Avila, Ph.D. (U. Kaiserslautern, Germany); John R. Spleetze, Ph.D. (Pennsylvania)

Modern Languages and Literature: Kiri Lee, Ph.D. (Harvard)

Philosophy: Gordon Bearn, Ph.D. (Yale); Mark H. Bickhard, Ph.D. (Chicago); Steven L. Goldman, Ph.D. (Boston); Aladdin M. Yaqub, Ph.D. (Wisconsin)

Psychology: Catherine M. Arrington, Ph.D. (Michigan State); Susan Barrrett, Ph.D. (Brown); Michael J. Gill, Ph.D. (Texas); Laura M. Gonorner, Ph.D. (Southern Illinois U.)
Cognitive science is the interdisciplinary study of how humans think and how machines think. How can our understanding of the way humans think improve the performance of machines that are meant to behave intelligently? How can our understanding of the ways to make machines behave intelligently improve our understanding of the way humans think?

The mission of the Cognitive Science Program is to advance understanding of the process of thinking, in all its aspects, through research and teaching. The interdisciplinary study of cognitive models in the fields of psychology, linguistics, computer science, philosophy, anthropology, and neuroscience enables students to apply concepts in human and animal cognition to improve computer-based reasoning, and to apply concepts in computer-based reasoning to improve models in human and animal cognition. Consistent with the mission of a liberal arts education, the program aims to instill in students a solid grasp of the intellectual problems, frameworks, and methodologies currently available; to provide experience exploring these through guided research; and to foster the desire to create, develop, and disseminate new knowledge. With this foundation, students are well prepared for graduate or professional studies or for a wide variety of careers with the bachelor’s degree.

The College of Arts and Sciences offers an undergraduate major and minor in Cognitive Science, as well as a graduate minor and a graduate certificate. The courses required for the major readily lend themselves to a double major for those students in the humanities, natural sciences, social sciences, or computer science who have overlapping interests in cognitive science.

The B.A. with a major in Cognitive Science requires a minimum of 13 courses: 11 within the major itself and 2 in collateral areas. All majors are required to take COGS 7, an introduction to cognitive science. The remainder of the major is built around a core of four second-tier major courses, students must complete five major electives selected from three topical areas related to cognitive science (with no more than two in one area). The final integration of coursework occurs in the required senior seminar (COGS 301) or thesis (COGS 399), in which students focus on a topic of their choice from a branch of cognitive science.

The collateral course requirements are: CSE 15 and either MATH 21 or 51. Additional coursework in mathematics is strongly recommended, as are PSYC 1, ANTH 1, and BIOS 41/42.

Program Honors

Majors seeking to graduate with honors in cognitive science must have a 3.30 GPA in the major and a 3.30 GPA overall, and complete a high quality senior thesis or senior seminar project. Theses or senior projects submitted for honors will be evaluated by a committee of at least three cognitive science faculty.
Cognitive Psychology:
PSYC 307 Seminar in Cognition (4)  [prereq: PSYC 117 or 176 or COGS 7]
PSYC 320 Psychology of Language (4)  [prereq: PSYC 117 or 176 or COGS 7]
PSYC 321 Language Development (4)  [prereq: PSYC 107 or 117]
PSYC 322 Language in Atypical Populations (4)  [prereq: PSYC 117 or 176 or COGS 7 or 140]
PSYC 351 Cognitive Development in Childhood (4)  [prereq: PSYC 107 or 117 or COGS 7]
PSYC 369 Memory (4)  [prereq: PSYC 117 or 176 or COGS 7]
PSYC 377 Attention and Attentional Failure (4)  [prereq: PSYC 117 or 176 or COGS 7]

Sociocultural Influences on Cognition:
ANTH 145 Human Evolution (4)  [prereq: ANTH 1]
ANTH 376 Culture and the Individual (4)
PSYC 313 Person Perception (4)
PSYC 314 Social Cognition and Social Action (4)  [prereq: PSYC 110 or SR 111]
PSYC 365 Human Development in Cross-Cultural Perspective (4)  [prereq: PSYC 107 or 109 or SSP/PSYC 121 or ANTH 1]

Senior Seminar or Thesis (4 hours)
After completing the sophomore introductory sequence and the four core courses, students pursue their own interests in their selections of major electives. The required senior seminar (COGS 301) or thesis (COGS 399) provides students the opportunity to integrate what they have learned in the guise of an independent project conducted under the supervision of a cognitive science faculty advisor.

Recommended Timing of Courses

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Sophomore</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 15</td>
<td>COGS 140</td>
</tr>
<tr>
<td>MATH 21 or 51</td>
<td>1 major elective</td>
</tr>
<tr>
<td>PHIL 250</td>
<td>2 major electives</td>
</tr>
<tr>
<td>CSE 327</td>
<td>COGS 301 or 399 (spring)</td>
</tr>
</tbody>
</table>

Minor in Cognitive Science
The minor in Cognitive Science requires the following five courses, or appropriate substitutions:
COGS 7 Introduction to Cognitive Science (4)
COGS 140 Introduction to Linguistics (4)
PSYC 117 Cognitive Psychology (4)
PHIL 250 The Minds of Robots and Other People (4)
CSE 327 Artificial Intelligence Theory and Applications (3)

Course Descriptions
COGS 7. Introduction to Cognitive Science (4)  spring
What is a mind? How is the mind related to the brain? Could we make an artificial mind? Issues concerning knowledge representation and intelligence in minds and computers as investigated by psychologists, philosophers, linguists, neuroscientists, and researchers in artificial intelligence. (SS)

COGS 140 (ANTH 140, MLL 140, PSYC 140). Introduction to Linguistics (4)
Relationship between language and mind; formal properties of language; language and society; how languages change over time. No pass/fail option. (SS)

COGS 161. Supervised Research (2-4 credits)
Research under the direct supervision of a faculty member in the cognitive science program. Students must arrange the particular project with a faculty member before enrolling. Prerequisite: consent of the program director.

COGS 301. Senior Seminar in Cognitive Science (4)  spring
Integration of the material from cognitive science via topics chosen by the students. Prerequisite: consent of program director.

COGS 361. Independent Research (2-4 credits)
Independent research in cognitive science with a faculty advisor. Students must arrange the particular project with a faculty advisor before enrolling. May be repeated for up to a total of 4 credits. Prerequisite: consent of the program director.

COGS 399. Thesis (2-4 credits)
Research during senior year culminating in senior thesis. Required for majors seeking to graduate with honors in cognitive science. Students must arrange the particular project with a faculty thesis advisor before enrolling. Prerequisite: consent of the program director.

COGS 423 (PSYC 423). Foundations of Cognitive Science (3)
Survey of fundamental theory and methodologies from artificial intelligence, linguistics, cognitive psychology, philosophy, and neuroscience, as well as salient research problems such as knowledge acquisition and representation, natural language processing, skill acquisition, perception and action, and the philosophical question of intentionality.

COGS 478 (PSYC 478). Ontological Psychology (3)
Principles and constraints for modeling psychological phenomena. Representation; perception; memory; knowing; learning; emotions; consciousness; language; rationality.
For Graduate Students

There are two concentrations in Cognitive Science available for post-baccalaureate students: a Graduate Minor and a Graduate Certificate. The minor is intended for students currently enrolled in a degree-granting graduate program at Lehigh University. By contrast, the certificate is intended for non-degree students.

Graduate Minor in Cognitive Science

The minor gives graduate students who are enrolled in Lehigh University degree programs, such as computer science or psychology, an opportunity to develop expertise in the interdisciplinary study of information processing by humans as well as intelligent machines. Graduate students investigating mental processes such as language processing, reading, perception and action, planning, problem-solving, learning, category formation, or applications such as artificial intelligence or educational technology are encouraged to participate, with the approval of an advisor in their major program, by contacting the Director of the Cognitive Science Program.

The Graduate Minor requires five graduate level courses: COGS 423, a graduate seminar, plus four electives from the list below (or approved substitutions). At least two of the four electives must be taken outside the student=s home department. Special topics courses with a cognitive science emphasis may also count toward the minor, with the approval of the Cognitive Science Supervisory Committee. Courses taken toward the minor may also fulfill requirements of the student=s major program, with the approval of the major department.

Contact person: John B. Gatewood (Director, Cognitive Science Program) 758-3814; jbg1@lehigh.edu

Graduate Certificate in Cognitive Science

This concentration is intended for people working in technology-related businesses and other qualified individuals with an interest in cognitive science. The purpose of the certificate program is to provide non-degree post-baccalaureate students an interdisciplinary perspective on human and machine intelligence.

The Graduate Certificate requires four graduate level courses: COGS 423, a graduate seminar, plus three electives from the list below. At least two of the three electives must be at the 400-level, and the three electives must be spread over at least two departments.

Contact person: Carol Sabo-Berrian (Coordinator, Psychology Department) 758-5073; cas7@lehigh.edu

Required Course

COGS 423 (PSYC 423) Foundations of Cognitive Science

Approved Electives (for both concentrations)

**Computer Science:**
- CSE 413 Robotics and Intelligent Machines
- CSE 414 Expert Systems
- CSE 416 Advanced Issues in Knowledge-based Systems
- CSE 417 Topics in Information Retrieval
- CSE 426 Pattern Recognition
- CSE 429 Virtual Environments

**Psychology:**
- PSYC 402 Developmental Psychology
- PSYC 403 Cognitive Psychology
- PSYC 406 Social Cognition
- PSYC 443 Seminar in Language Acquisition
- PSYC 448 Seminar in Psychology of Language
- PSYC 464 Naïve Realism in Social Judgment
- PSYC 476 Seminar in Cognition
- PSYC 478 (COGS 478) Ontological Psychology
- PSYC 480 Seminar in Cognitive Development

**Philosophy:**
- PHIL 250 The Minds of Robots and Other People
- SSPP 402 The Sociology of Cyberspace
- ANTH 376 Culture and the Individual

Additional Electives (Graduate Certificate only)

**Computer Science:**
- CSE 326 Pattern Recognition
- CSE 327 Artificial Intelligence Theory and Applications
- CSE 331 User Interface Systems and Techniques
- CSE 332 Multimedia Design and Development
- CSE 347 Data Mining
- CSE 355 Topics on Intelligent Decision Support Systems
- CSE 360 Introduction to Mobile Robotics
- CSE 368 Artificial Intelligence Programming

**Psychology:**
- PSYC 307 Seminar in Cognition
- PSYC 313 Person Perception
- PSYC 314 (SSP 314) Social Cognition and Social Action
- PSYC 317 Psychology of Emotions
- PSYC 320 Psychology of Language
- PSYC 321 Language Development
- PSYC 322 Language in Atypical Populations
- PSYC 351 Cognitive Development in Childhood
- PSYC 365 Human Development in Cross-Cultural Perspective
- PSYC 369 Memory
- PSYC 373 Sensation and Perception
- PSYC 377 Attention and Attentional Failure

Communication

See listings under Minor Programs in the College of Arts and Sciences and under Journalism and Communication.

Computer Engineering

**Professors.** Henry Baird, Ph.D. (Princeton); Filbert J. Bartoli, Ph.D. (Catholic University of America); Rick Blum, Ph.D. (Pennsylvania); D. Richard Decker, Ph.D. (Lehigh); Bruce D. Fritchman, Ph.D. (Lehigh); Edwin J. Kay, Ph.D. (Lehigh); Henry F. Korth, Ph.D. (Princeton); Alastair D. McAulay, Ph.D. (Carnegie Mellon).

**Associate Professors.** Mooi Choo Chuah, Ph.D. (U. of California); Daniel D. Lopresti, Ph.D. (Princeton); Meghanad D. Wagh, Ph.D. (I.I.T., Bombay).
Undergraduate Programs

Mission Statement for the Engineering Program
The mission of the computer engineering program is to prepare computer engineers to meet the challenges of the future, to promote a sense of scholarship, leadership and service among our graduates; to instill in the students the desire to create, develop, and disseminate new knowledge; and to provide international leadership to the computer engineering profession.

Program Educational Objectives in Computer Engineering
• To provide students with the fundamental knowledge for the practice of computer engineering, and to develop their ability to formulate, and analyze computer engineering problems in practice by applying the fundamental knowledge of mathematics, science and engineering.
• To provide the broad education necessary to understand the impact of computer engineering solutions in a global, societal and environmental context.
• To provide students with the foundation and desire for advanced education or graduate study, to instill an awareness of continual changes in their profession in a global context, and to instill the desire for continued lifelong learning.
• To instill responsible professional attitudes and ethics, to develop skills in communicating effectively, and in working productively in a multidisciplinary environment.
• To provide an environment which enables students to pursue their individual goals in a program that is flexible, challenging and supportive.

Bachelor of Science in Computer Engineering

The required courses for this degree contain the fundamentals of electronic circuits, signal theory, logic design, computer architecture, structured programming, data structures, software engineering and discrete mathematics. A strong foundation in the physical sciences and in mathematics is required. Approved technical electives, chosen with the advisor's consent, are selected in preparation for graduate study or entry into industry according to individual interests. The program totals 135 credit hours and is offered jointly by the CSE and the ECE department.

The recommended sequence of courses follows:

See Freshman Year Requirements, Section III.

sophomore year, first semester (17 credit hours)
ECE 81 Introduction to Electrical Engineering (4)
ECE 33 Introduction to Computer Engineering (4)
PHY 21, 22 Introductory Physics II and Laboratory II (5)
MATH 23 Analytic Geometry and Calculus III (4)
sophomore year, second semester (19 credit hours)
CSE 17 Structured Programming and Data Structures (4)
ECE 82 Sophomore Laboratory (1)
ECE 108 Signals and Systems (4)
ECO 1 Principles of Economics (4)
MATH 205 Linear Methods (3)
HSS Elective (3)

junior year, first semester (17 credit hours)
ECE 121 Electronic Circuits Laboratory (2)
ECE 123 Electronic Circuits (3)
CSE 109 Systems Programming (3)
MATH 231 Probability and Statistics (3) or
MATH 309 Theory of Probability (3)
approved technical elective* (3)
free elective (3)

junior year, second semester (17 credit hours)
CSE 216 Software Engineering (5)
ECE 138 Digital Systems Laboratory (2)
ECE 201 Computer Architecture (3)
CSE 261 Discrete Structures (3)
free elective (3)
HSS elective (3)

senior year, first semester (18 credit hours)
CREG 257 Senior Lab Project I (3)
ECE 319 Digital System Design (3)
CSE 303 Operating System Design (3)
HSS elective (6)
free elective (3)

senior year, second semester (17 credit hours)
CREG 258 Senior Lab Project II (2)
approved technical electives* (9)
HSS elective (3)
free elective (3)

*Approved technical electives (15 credits) are subjects in the area of science and technology. They are not restricted to offerings in the department of Computer Science and Engineering. One elective must be an engineering science elective from another department. CSE 252 is not an approved technical elective.

Graduate Programs

Graduate programs of study provide a balance between formal classroom instruction and research and are tailored to the individual student's professional goals. The programs appeal to individuals with backgrounds in computer or information science, in computer engineering, in electrical engineering, in mathematics, or in the physical science. Research is an essential part of the graduate program. The research topics are listed in the departmental descriptions for Computer Science and Engineering (CSE) and Electrical and Computer Engineering (ECE) which jointly administer the computer engineering program. Individual courses are listed in the catalog descriptions of the CSE and ECE departments.

The Master of Science degree requires the completion of 30 credit hours of work and may include a six credit hour thesis for Computer Engineering degrees. A program of study must be submitted in compliance with the graduate school regulations. An oral presentation of the thesis is required.
The Master of Engineering degree requires the completion of 30 credit hours of work, which includes design-oriented courses and an engineering project. A program of study must be submitted in compliance with the college rules. An oral presentation of the project is required.

The Ph.D. degree in computer engineering requires the completion of 42 credit hours of work (including the dissertation) beyond the master’s degree (48 hours if the master's degree is not from Lehigh), the passing of a departmental qualifying examination appropriate to each degree within one year after entrance into the degree program, the passing of a general examination in the candidate's area of specialization, the admission into candidacy, and the writing and defense of a dissertation. Competence in a foreign language is not required.

The program has a core curriculum requirement for graduate students. The purpose of this requirement is to guarantee that all students pursuing graduate studies in the department acquire an appropriate breadth of knowledge in their discipline. To satisfy the core curriculum requirements in Computer Engineering, students need to complete at least two courses in the computer hardware/ architecture area, at least two courses in a second area, and at least one course in a third area. In each of the three areas at least one course must be at the 400 level. The areas are: computer software systems, signal processing and communications, computer software applications, and circuits and systems. See www.cse.lehigh.edu for details about these areas.

Courses from other universities or undergraduate studies may be used to satisfy these requirements, by petition, at the discretion of the department faculty. Additional graduate program information may be obtained from the program's graduate coordinator.

### Undergraduate Courses

Most courses in the Computer Engineering curriculum are listed in the CSE (Computer Science and Engineering) and ECE (Electrical and Computer Engineering) departments.

**CREG 257. Senior Lab Project I (3)**

With CREG 258, a complete design experience for Computer Engineers. Research, planning, and completion of the initial design for a capstone project that integrates the many facets of the undergraduate Computer Engineering program. The project, carried forward to completion in CREG 258, must involve the integration of hardware and software within a single system. Technical writing, product development, ethics and professional engineering, and presentation of design and research.

**CREG 258. Senior Lab Project II (2)**

Continuation of CREG 257. Complete design, construction, and testing of projects selected and developed in CREG 257. Final design reviews and project presentations; final written report; development issues, including manufacturability, patents, and ethics. Pre-requisite: CREG 257 or department approval.

---

### Computer Science and Business Program

**Program Directors.** James A. Hall, Ph.D. (Oklahoma State University) associate professor of accounting and information systems; Edwin Kay, Ph.D. (Lehigh University) professor of computer science and engineering.

The computer science and business (CSB) program is offered jointly by the College of Business and Economics and the Computer Science and Engineering department in the P.C. Rossin College of Engineering and Applied Science. This carefully crafted 136 credit hour program integrates technology skills in software development with a solid background in business and economics. Deep immersion in both of these areas distinguishes CSB from programs offered by other universities. At the same time it is well balanced with approximately one third of the courses in liberal arts, one-third in computer science, and one-third in business.

Students enrolled in the CSB program obtain the skills and training needed to understand business functions and business related problems, to analyze business-user information needs, to design computer based information systems, and to implement systems solutions within business organizations. Graduates of the program are ideal candidates for placement within large consulting firms, small consulting teams, and startup companies. This program also prepares students to become the Chief Information Officers, decision makers, and general managers of information age corporations.

After four years the program leads to a degree in Computer Science and in Business, which is jointly awarded by the College of Business and Economics and the P.C. Rossin College of Engineering and Applied Science. The CSB major is accredited in Business (AACSB) and is accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012 – telephone: (410) 347-7700.

### Mission for Program

The CSE department's mission for its Computer Science and Business program is to provide its students with a strong education in mathematics, science, business, and computer science fundamentals and to prepare them to be able to adapt to future changes in the practice of Computer Science.

### Program Educational Objectives

1. Provide a strong foundation for further formal and informal study and for adaptation to future changes in Computer Science.
2. Provide a firm base of science and mathematics.
3. Provide exposure to projects that have the elements of those the students will encounter on the job.
4. Educate the students in the moral and ethical issues that arise in computer science.
5. Integrate the computer science and business components of the CSB program.

### Degree Requirements

The required courses for the CSB degree constitute the fundamentals of structured programming, discrete mathematics, algorithms, computer architectures, programming languages, software engineering, account-
ing, finance, marketing, management and economics. None of the program requirements for the CSB major may be taken pass/fail. The recommended sequence of courses is presented below:

**freshman year, first semester (18 credit hours)**
- ENGL 1 Composition and Literature I (3)
- ECO 1 Principles of Economics (4)
- MATH 21 Calculus I (4)
- BUS 1 Intro to Business (3)
- CSE 15 Intro to Computer Science (4)

**freshman year, second semester (16 credit hours)**
- ENGL 2 Composition and Literature II (3)
- MATH 22 Calculus II (4)
- PHY 11,12 Intro to Physics I and Lab (5)
- CSE 17 Structured Programming and Data Structures (4)

**sophomore year, first semester (17 credit hours)**
- PHY 21 Intro to Physics II (4)
- CSE 33 Intro to Computer Engineering (4)
- MATH 205 Linear Methods (3)
- ACCT 151 Intro to Financial Accounting. (3)
- CSE 261 Discrete Structures (3)

**sophomore year, second semester (15 credit hours)**
- CSE 109 Systems Programming (3)
- CSE 241 Data Base systems (3)
- ACCT 152 Intro to Managerial Accounting (3)
- MATH 231 Probability and Statistics (3)
- ECO 129 Money and Banking (3)
- ACCT 151 Intro to Financial Accounting. (3)
- CSE 261 Discrete Structures (3)

**junior year, first semester (18 credit hours)**
- MKT 211 Principles of Marketing (3)
- CSE 342 Fundamentals of Internetworking (3)
- FIN 225 Business Finance (3)
- CSB 311 Computer Applications in Business (3)
- ECO 146 Applied Microeconomics (3)
- CSB Professional Elective (3)*

**junior year, second semester (18 credit hours)**
- CSE 216 Software Engineering (3)
- CSB 312 Design of Integrated Business Applications I (3)
- ECE 201 Computer Architecture (3)
- LAW 201 Legal Environment for Business (3)
- HSS Humanities/Social Sciences elective (6)**

**senior year, first semester (16 credit hours)**
- CSE 303 Operating System Design (3)
- MGT 280 Management of People and Operations (4)
- CSB Professional Elective (3)*
- CSB 313 Design of Integrated Business Applications II (3)
- CSE 252 Computers, Internet, and Society (3)

**senior year, second semester (18 credit hours)**
- MGT 301 Business Management Policies (3)
- CSE 340 Design and Analysis of Algorithms (3)
- CSB Professional Electives (6)*
- CSE 262 Programming Languages (3)
- HSS Humanities/Social Sciences electives (3)**

*One CSB Professional Elective must be a course in the sciences.

** At least 6 hours of HSS electives must be in humanities (HU).

---

**CSB Tracks**

Students can use their CSB professional electives to develop areas of concentrations or tracks from courses offered within the CSE department or CBE. In certain cases, the student's advisor may also approve courses from other departments. Some examples of CSB tracks are presented below:

**Accounting**
- ACCT 315 Financial Accounting I
- ACCT 324 Cost Accounting
- ACCT 320 Auditing

**Business Economics Consulting**
- ECO 322 Competitor and Market Analysis
- ECO 333 Economics of Business Decisions
- ECO 357 Econometrics

**Finance**
- FIN 323 Investments
- FIN 328 Corporate Finance
- FIN 334 Derivatives

**Computer Science Graduate School**
- CSE 302 Compiler Design
- CSE 318 Automata and Formal Grammars
- CSE 392 Independent Research

**Corporate IT Development**
- CSE 271 Programming in C and Unix
- CSE 313 Computer Graphics
- CSE 332 Multimedia Design and Development

**Software Development**
- CSE 271 Programming in C and Unix
- CSE 302 Compiler Design
- CSE 330 Advanced Software Engineering Tools

**Course Descriptions**

**CSB 311. Computer Applications in Business (3)**

*Course is offered in Fall semester only.

Application of computer technology to business problems. Transaction processing systems which support the revenue, conversion, and expenditure cycles of manufacturing, service, and retail business organizations. Process modeling, data modeling, internal control, corporate IT governance, and systems development techniques. Application of CASE technology to a hypothetical business project. Prerequisites: ACCT 152 or ACCT 108 and CSE 17 or equivalent.

**CSB 312. Design of Integrated Business Applications I (3)**

*Course is offered in Spring semester only.

Integrated Product Development (IPD) Capstone Course I. Industry-based business information systems design project. Information systems design methodology, user needs analysis, project feasibility analysis of design alternatives, and integrated product development methodology. Formal oral and written presentations to clients. Prerequisite: CSB 311.

**CSB 313. Design of Integrated Business Applications II (3)**

*Course is offered in Fall semester only.

Integrated Product Development (IPD) Capstone Course II. This course extends the industry-based project initiated in CSB 312 into its implementation phase. Detailed design, in-house system construction and delivery, commercial software options, and systems development techniques. Application of CASE technology to a hypothetical business project. Formal oral and written presentations to clients. Prerequisite: CSB 313.
The practical component of the course is supplemented by several classroom-based modules dealing with topics that lie at the boundary of computer science and business. Formal oral and written presentations to clients. Prerequisites: CSB 312

CSB 314. International Practicum (1-3)
A faculty led, foreign-based activity to provide students the opportunity to work on consulting, assurance, or other IT-related projects with business organizations, consulting companies, and public accounting firms.

Typical projects: systems analysis and design, systems configuration and implementation, database design, user interface design, and internal control assessment.

Students complete written reports and make formal presentations to client firms. Prerequisites: Accnt 311, or CSB 311, or permission of the instructor

Computer Science and Engineering

Professors. Henry F. Korth, Ph.D. (Princeton), chair; Edwin J. Kay, Ph.D. (Lehigh), associate chair; Henry Baird, Ph.D. (Princeton); Donald J. Hillman, Ph.D. (Cambridge, England); Roger N. Nagel, Ph.D. (Maryland); Harvey E. Wagner professor of manufacturing systems engineering.

Associate Professors. Glenn D. Blank, Ph.D. (Wisconsin-Madison); Mooi Cho Chuah, Ph.D. (U. of California); Daniel P. Lopresti, Ph.D. (Princeton).

Assistant Professors. Mark Arnold, Ph.D. (U. of Manchester Inst. of Science and Tech.); Liang Cheng, Ph.D. (Rutgers University); Brian D. Davison, Ph.D. (Rutgers University); Jeff Heflin, Ph.D. (U. Maryland); Christine Hofmeister, Ph.D. (U. Maryland); Hector Munoz-Avila, Ph.D. (University of Kaiserslautern, Germany); William M. Pottinger, Ph.D. (U. Illinois); John R. Spletzer, Ph.D. (U. of Pennsylvania).

Adjunct Lecturers. Stephen G. Corbesero, M.S. (Lehigh).

The department of computer science and engineering (CSE) offers undergraduate and graduate programs of study in computer science and computer engineering, along with research opportunities in these fields. Computer science is the study of computer algorithms, software systems, and the effective use of computers to solve real-world problems and to develop new applications. Computer engineering is the study of how to develop new computer systems and how to integrate computers with electronic devices. Lehigh's majors prepare students for graduate school or for any of the different careers in computer science, computer engineering or computer systems analysis. Computer science and computer engineering and their related careers represent, in the US workplace, the largest field of engineering - larger than all others, including electrical engineering, combined. More discussion on the career potential, as well as the most up to date course offerings can be found on our departmental web site, www.cse.lehigh.edu.

Lehigh University offers a bachelor of science degree in computer science from the P.C. Rossin College of Engineering and Applied Science; the bachelor of science degree in computer science, and the bachelor of arts degree with a major in computer science, from the College of Arts and Sciences; and a bachelor of science in Computer Science and Business, jointly supported by the P.C. Rossin College of Engineering and Applied Science and the College of Business and Economics. A minor in computer science is available except to students majoring in computer or electrical engineering. Graduate study in the department leads to the degrees of master of science and doctor of philosophy (Ph.D.) in computer science. In conjunction with the department of Electrical and Computer Engineering (ECE), a bachelor of science degree in computer engineering and the master of science and Ph.D. degrees in computer engineering are also offered in the P.C. Rossin College of Engineering and Applied Science. In conjunction with the College of Business and Economics, the CSE department also takes part in the masters of business and engineering (MB&E) program and in the integrated business and engineering major.

The undergraduate programs emphasize the fundamental aspects of their respective areas, with extensive hands-on experiences for the students. Electives permit students to tailor their programs according to their interests and goals, whether they be in preparation for graduate study or entry into industry. The department highly recommends that students give focus to their electives by following one of the tracks listed in the department web site at www.cse.lehigh.edu/TRACKS. Students have the opportunity to synthesize and apply their knowledge in a senior design project. Students are encouraged to become involved in the many research projects within the department, and may use independent study courses and their senior project as a way to participate while receiving course credit.

The graduate programs allow students to deepen their professional knowledge, understanding, and capability within their subspecialties. Each graduate student develops a program of study in consultation with his or her graduate advisor. Key thrust areas in the department include:

**Computer Systems Engineering:** computer architecture, computer arithmetic, DSP systems, sensor networks, robotics, mobile and wearable computing, and networking.

**Software Systems Engineering:** software architectures, parallel and distributed computing, object-oriented software, middleware, Web-based systems and networked software systems.

**Information Systems Engineering:** database, data mining, bioinformatics, computer graphics and virtual environments, optimization, multimedia systems, expert systems, artificial intelligence and computer vision.

Both graduate and undergraduate research are encouraged. The department maintains a number of computer laboratories in support of computer science and computer engineering and the ECE department maintains additional laboratories supporting the hardware aspects of computer engineering. The department has research laboratories in vision and software technology, computer vision, robotics, graphics and virtual environments, computer architecture and arithmetic, and software architecture. These laboratories and their associated research activities are described more completely in the departmental web site (www.cse.lehigh.edu). While these laboratories are research oriented, they are also used for undergraduate projects.
Computer laboratory usage is an essential part of the student's education. The primary department resources include a network of more than 60 Sun workstations, file servers, and compute servers running the Unix operating system. These systems provide an array of software tools for our students and researchers including programming languages (C, C++, Java, Smalltalk, Perl, etc.), software development tools, software and hardware simulators, and computer-aided design packages. In addition to the workstations, the department maintains a collection of PC-compatible computers for CSE students, including a set of machines that can be dedicated to hardware/software projects. Many of these machines are running Linux or FreeBSD. The department also provides various application-specific systems, including multimedia stations with sound and video capture and generation capabilities, workstations for image processing and visualization, virtual environment tracking and head-mounted display systems, and wearable computers. The department's computers are connected via multiple high-speed Ethernet, fiber optic, wireless, and ATM networks, which are in turn connected to the university's backbone network. The university is connected through multiple T1 connections to the internet. Students are not required by the department nor the university to own a personal computer. In addition to the departmental resources, the university, as distinct from the department, provides a distributed network of about 75 high-performance workstations, and about 600 PC-compatible computers in public sites throughout the campus, and about 80 classrooms equipped with a PC and a PC-compatible computer.

A detailed description of the curricular programs follows with a listing of the required courses and with a listing of the departmental course offerings. The departmental courses carry the prefixes CSE for computer science and ECE for electrical and computer engineering. Students should consult both listings for courses appropriate to their career goals.

Undergraduate Programs

Mission Statement for the Computer Science and Engineering Programs

The mission of the computer science and computer engineering programs is to prepare computer scientists and computer engineers to meet the challenges of the future; to promote a sense of scholarship, leadership and service among our graduates; to instill in the students the desire to create, develop, and disseminate new knowledge; and to provide international leadership to the computer science and engineering professions.

Program Educational Objectives in Computer Science and Engineering

- Provide a strong foundation for further formal and informal study in computer science.
- Provide a firm basis of science and mathematics.
- Provide exposure to projects that have the elements of those the students will encounter on the job.
- Educate the students in the moral and ethical issues that arise in computer science.

Bachelor of Science in Computer Engineering

See catalog entry for Computer Engineering

Bachelor of Science in Computer Science

Bachelor of Science in Computer Science
Bachelor of Science in Computer Science

See the distribution requirements of the College of Arts and Sciences, section III.

In addition to Engl 1, Engl 2, and CSE 252, students are required to take 21 credits of HSS courses.

Freshman Year, First Semester (17 Credit Hours)
- ENGL 1 Composition and Literature (3)
- MATH 21 Analytic Geometry and Calculus I (4)
- CSE 15 Introduction to Computing (4)
  Distribution* (6)

Freshman Year, Second Semester (17 Credit Hours)
- ENGL 2 Composition and Literature: Fiction, Drama, Poetry (3)
- MATH 22 Analytic Geometry and Calculus II (4)

Junior Year, First Semester (15-18 Credit Hours)
- CSE 201 Computer Architecture (3)
- CSE 216 Software Engineering (3)
- CSE 252 Computers, the Internet, and Society (3)
  approved technical elective* (3)

Junior Year, Second Semester (15 Credit Hours)
- CSE 252 Computers, the Internet, and Society (3)
  approved technical elective* (3)

Sophomore Year, First Semester (17 Credit Hours)
- MATH 23 Analytic Geometry and Calculus III (4)
- CSE 33 Introduction to Computer Engineering (4)
  Distribution* (9)

Sophomore Year, Second Semester (15 Credit Hours)
- CSE 109 Systems Programming (3)
- CSE 262 Programming Languages (3)
- MATH 205 Linear Methods (3)
  approved technical elective** (3)
  Distribution* (3)

Junior Year, First Semester (15 Credit Hours)
- CSE 261 Discrete Structures (3)
- MATH 231 Probability and Statistics (3)
  approved technical elective* (3)
  approved professional elective** (3)
  free elective (3)

Junior Year, Second Semester (16-19 Credit Hours)
- CSE 340 Design and Analysis of Algorithms (3)
- CSE 201 Computer Architecture (3)
- CSE 216 Software Engineering (3)
- COMM 130 Public Speaking (4)
- CSE 130 Technical Presentation (1)
  Distribution (3)
  approved technical electives** (3)

Senior Year, First Semester (15 Credit Hours)
- CSE 33 Introduction to Computer Engineering Structures (4)
- CSE 318 Automata & Formal Grammars (3)
- CSE 379 Senior Project I (3)
  HSS elective# (3-6)
  free elective (3)

Senior Year, Second Semester (15 Credit Hours)
- CSE 252 Computers, the Internet, and Society (3)
  approved technical elective** (3)
  HSS elective# (3-6)
  free elective (3)

*Approved technical electives (12 credits) are subjects in the area of science and technology. They are chosen by the student, with the approval of the major advisor. CSE 130 is not an approved technical elective. At least 12 credits of approved technical and professional electives must be CSE courses. The department highly recommends that students give focus to their technical and professional electives by following one of the tracks listed in the department website at www.cse.lehigh.edu/TRACKS.

**Approved professional electives (6 credits) are chosen by the student, with the approval of the major advisor, to support the professional objectives of the student. These may include technical, business, or non-technical courses. At least 12 credits of approved technical and professional electives must be CSE courses. The department highly recommends that students give focus to their technical and professional electives by following one of the tracks listed in the department website at www.cse.lehigh.edu/TRACKS.

# Computer Science students should be aware that many ECE courses require ECE 81. Taking ECE 81 as an approved technical elective before the junior year will afford greater flexibility in choosing ECE electives.

## Computer science students are required to have at least 17 credits of HSS electives (beyond Engl 1, Engl 2, Eco 1, and CSE 252) to fulfill graduation requirements, and to satisfy the ‘depth and breadth’ requirement for the college.

College of Arts and Sciences:

Distribution (3)
- approved technical elective* (3)
- approved professional elective** (3)

Free elective (3)

Approved technical electives (12 credits) are subjects in the area of science and technology. They are chosen by the student, with the approval of the major advisor. At least 12 credits of approved technical and professional electives must be CSE courses. The department highly recommends that students give focus to their technical and professional electives by following one of the tracks listed in the department website at www.cse.lehigh.edu/TRACKS.

Approved professional electives (6 credits) are chosen by the students, with the approval of the major advisor, to support the professional objectives of the student. These may include technical, business, or non-technical courses. At least 12 credits of approved technical and professional electives must be CSE courses.
College of Arts and Sciences:

Bachelor of Arts in Computer Science

This program of 121 credit hours is intended for students who desire a strong liberal arts program with a concentration in computer science. The program contains the fundamentals of computer science, including discrete mathematics, structured programming, data structures, programming languages, computer organization, compiler design, and operating systems. A sample course sequence is as follows:

See the distribution requirements of the College of Arts and Sciences, section III.

fresman year, first semester (14 credit hours)

ENGL 1 Composition and Literature (3)
MATH 21 Analytic Geometry and Calculus I (4)
CSE 15 Introduction to Computing (4) distribution (3)

fresman year, second semester (14 credit hours)

ENGL 2 Composition and Literature: Fiction, Drama, Poetry (3)
MATH 22 Analytic Geometry and Calculus II (4)
CSE 17 Structured Programming and Data Structures (4) distribution (3)

Sophomore year, first semester (16 credit hours)

CSE 261 Discrete Structures (3) or MATH 243 Algebra (3)
CSE 33 Introduction to Computer Engineering (4) distribution (9)

Sophomore year, second semester (15 credit hours)

MATH 43 BMSS Linear Algebra (3)
CSE 109 Systems Programming (3)
ECE 201 Computer Architecture (3) distribution (6)

junior year, first semester (15 credit hours)

hardware oriented elective or free elective *(3) distribution (6) free elective (6)

junior year, second semester (15 credit hours)

CSE 262 Programming Languages (3) free elective or hardware-oriented elective *(3) distribution (6) free elective (3)

Senior year, first semester (16 credit hours)

CSE 303 Operating System Design (3)
CSE 318 Automata and Formal Grammars (3) distribution (3) free electives (7)

Senior year, second semester (16 credit hours)

CSE 302 Compiler Design (3) distribution (6) free electives (7)

* The student's program must contain at least one hardware-oriented elective course. Hardware-oriented courses include ECE 81, ECE 316, ECE 138, ECE 319, ECE 320, CSE 209, or any other hardware-oriented course approved by the advisor.

Minor in Computer Science

The minor in computer science provides a basic familiarity with software development and programming, computer organization, and essential elements of computer science. This minor is not available to students of the CSE or ECE departments. Engineering students should note that ENGR 1 plus CSE 16 is a substitute for CSE 15. The minor requires 17 credit hours, consisting of the following:

CSE 15 Introduction to Computing (4)
CSE 17 Structured Programming and Data Structures (4)

Plus any three CSE courses, EXCEPT CSE 130, Technical Presentation, and CSE 252, Computers, the Internet, and Society.

P. C. Rossin College of Engineering and Applied Science

Graduate Programs

Note: For information about graduate degrees in Computer Engineering, see the catalog entry for Computer Engineering.

Graduate programs of study provide a balance between formal classroom instruction and research and are tailored to the individual student's professional goals. The programs appeal to individuals with backgrounds in computer or information science, in computer engineering, in electrical engineering, in mathematics, or in the physical sciences. Research is an essential part of the graduate program. The research topics were listed earlier in the departmental description.

The Master of Science degree requires the completion of 30 credit hours of work and may include a three credit hour thesis. A program of study must be submitted in compliance with the graduate school regulations An oral presentation of the thesis is required.

The Master of Engineering degree requires the completion of 30 credit hours of work, which includes design-oriented courses and an engineering project. A program of study must be submitted in compliance with the college rules. An oral presentation of the project is required.

The Ph.D. degree in computer science requires the completion of 42 credit hours of work (including the dissertation) beyond the master's degree (48 hours if the master's degree is not from Lehigh), the passing of departmental qualifying requirements appropriate to each degree within one year after entrance into the degree program, the admission into candidacy, the passing of a general examination in the candidate's area of specialization, and the writing and defense of a dissertation. Competence in a foreign language is not required.

The CSE department has a core curriculum requirement for graduate students in each of the degree programs. The purpose of this requirement is to guarantee that all students pursuing graduate studies in the department acquire an appropriate breadth of knowledge of their discipline.

Computer Science: To satisfy the comprehensives/core, students need to complete at least two (2) courses in each of the following four areas, with at least one (1) 400 level course in three (3) of the four areas: Systems, Compilers/Languages/Software Systems; Theory; and
Computer Applications. Masters students must complete at least one (1) 400 level course in three (3) of the four areas. For Ph.D. students, courses eligible to satisfy this requirement are limited to 400 level courses (excluding CSE 411) and advanced 300 level courses. For details on these requirements, see the department’s web site www.cse.lehigh.edu.

Courses from other universities or undergraduate studies may be used to satisfy these requirements, by petition, at the discretion of the department faculty. Additional graduate program information may be obtained from the department’s graduate coordinator.

Departmental Courses

Departmental courses are listed under the prefix CSE. Students should also consult the ECE department listing because electives can be chosen from either department.

Computer Science (CSE)

For Undergraduate Students

CSE 12. Survey of Computer Science (3)
Topics in computer science, Java programming and web page design. Includes multimedia laboratory. Not available to students who have taken CSE 15, 16, or ENGR 1.

CSE 15. Introduction to Computer Science (4)
Introduction to topics in computer science and programming skills in Java and C++. Prerequisite for CSE 17. Includes multimedia laboratory. No prerequisites. Not available to students who have taken CSE 12, 16, or ENGR 1.

CSE 16. Multimedia laboratory of Computer Science (1)
Survey of topics in computer science. Multimedia laboratory only. No prerequisites. Not available to students who have taken CSE 12 or 15.

CSE 17. Structured Programming and Data Structures (4)
Algorithmic design and implementation in a high level, object-oriented language such as C++. Recursion, lexical programs, pointers, data structures, and their applications. Prerequisites: CSE 15, or ENGR 1, or permission of the instructor.

CSE 33 (ECE 33). Introduction to Computer Engineering (4) fall
Analysis, design and implementation of small digital circuits. Boolean algebra, minimization techniques, synchronous sequential circuit design, number systems and arithmetic. Microcomputer architecture and assembly level programming. Prerequisite: Engr 1 or CSE 17.

CSE 109. Systems Software (3)
Advanced programming and data structures, including dynamic structures, memory allocation, data organization, symbol tables, hash tables, B-trees, data files. Object-oriented design and implementation of simple assemblers, loaders, interpreters, compilers, and translators. Practical methods for implementing medium-scale programs. Prerequisite: CSE 17.

CSE 130. Technical Presentation (1)
Oral and written communication of information in computer science. Technical writing: structure, style, and delivery of oral presentations; use of visual aids. Prerequisite: CSE 17.

CSE 190. Special Topics (1-3)
Supervised reading and research. Prerequisite: consent of the department head.

CSE 201 (ECE 201). Computer Architecture (3)

CSE 209. Assembly Language Programming (3) fall
Design and development of assembly language programs for computer systems. Interactive input-output, handling interrupts, system architecture, hardware-software tradeoffs. Evaluation of program efficiency. Prerequisite: CSE 109.

CSE 216. Software Engineering (3) spring
The software life-cycle: life-cycle models; software planning; testing; specification methods; maintenance. Emphasis on team work and large-scale software systems, including oral presentations and written reports. Prerequisite: CSE 109.

CSE 241. Data Base Systems (3)
Data modeling; database design; normalization; query languages; client-server database systems; enterprise systems; Internet applications. Prerequisite: CSE 12, 15, or CSE 17 or consent of instructor. Not available to students who have credit for IE 224.

CSE 252 (STS 252). Computers, the Internet, and Society (3)
An interactive exploration of the current and future role of computers, the Internet, and related technologies in changing the standard of living, work environments, society and its ethical values. Privacy, security, depersonalization, responsibility, and professional ethics; the role of computer and Internet technologies in changing education, business modalities, collaboration mechanisms, and everyday life. (SS)

CSE 261 (MATH 261). Discrete Structures (3) fall and spring
Topics in discrete structures chosen for their applicability to computer science and engineering. Sets, propositions, induction, recursion; combinatorics; binary relations and functions; ordering, lattices and Boolean algebra; graphs and trees; groups and homomorphisms. Various applications. Prerequisites: MATH 21.

CSE 262. Programming Languages (3)
Use, structure and implementation of several programming languages. Prerequisite: CSE 17.

CSE 265. System and Network Administration (3)
Overview of systems and network administration in a networked UNIX-like environment. System installation, configuration, administration, and maintenance; security principles; ethics; network, host, and user management; standard services such as electronic mail, DNS, and WWW; file systems; backups and disaster recovery planning; troubleshooting and support services; automation, scripting; infrastructure planning. Prerequisite: CSE 17.
CSE 271. Programming in C and the Unix Environment (3)
C language syntax and structure. C programming techniques. Emphasis on structured design for medium to large programs. Unix operating system fundamentals. Unix utilities for program development, text processing, and communications. Prerequisite: CSE 17.

CSE 302. Compiler Design (3) spring
Principles of artificial language description and design. Sentence parsing techniques, including operator precedence, bounded-context, and syntax-directed recognizer schemes. The semantic problem as it relates to interpreters and compilers. Dynamic storage allocation, table grammars, code optimization, compiler-writing languages. Prerequisites: CSE 109 and CSE 318.

CSE 303. Operating System Design (3) fall
Assemblers, executive systems, multiprogramming, time sharing, Concurrent tasks, deadlocks, resource sharing. Construction of a small operating system. Prerequisites: ECE 201 and CSE 109.

CSE 308. Bioinformatics: Issues and Algorithms (3)
Computational problems and their associated algorithms arising from the creation, analysis, and management of bioinformatics data. Genetic sequence comparison and alignment, physical mapping, genome sequencing and assembly, clustering of DNA microarray results in gene expression studies, computation of genomic rearrangements and evolutionary trees. Credit will not be given for both CSE 308 and CSE 408. No prior background in biology is assumed. Prerequisites: CSE 340 or IE 170 or permission of the instructor.

CSE 313. Computer Graphics (3)
General principles; algorithms; display devices and organization; methods of interaction; design of visual interactive systems. Prerequisite: CSE 109.

CSE 318. Automata and Formal Grammars (3) fall
Formal languages, finite automata, context-free grammars, Turing machines, complexity theory, undecidability. Prerequisite: CSE 261.

CSE 326. Pattern Recognition (3)
Bayesian decision theory and the design of parametric and nonparametric classifiers: linear (perceptrons), quadric, nearest-neighbors, neural nets. Machine learning techniques: boosting, bagging. High-performance machine vision systems: segmentation, contextual analysis, adaptation. Students carry out projects, e.g. on digital libraries and vision-based Turing tests. Credit will not be given for both CSE 326 and CSE 426. Prerequisites: CSE 109, CSE 340, Math 205, and Math 231, or consent of instructor.

CSE 327. Artificial Intelligence Theory and Practice (3)
Introduction to the field of artificial intelligence: Problem solving, knowledge representation, reasoning, planning and machine learning. Use of AI systems or languages. Advanced topics such as natural language processing, vision, robotics, and uncertainty. Prerequisite: CSE 15 or 17.

CSE 331. User Interface Systems and Techniques (3)
Principles and practice of creating effective human-computer interfaces. Design and user evaluation of user interfaces; design and use of interface building tools.

CSE 332. Multimedia Design and Development (3)
Analysis, design and implementation of multimedia software, primarily for e-learning courses or training. Projects emphasize user interface design, content design with storyboards or scripts, creation of graphics, animation, audio and video materials, and software development using high level authoring tools. Prerequisite: CSE 12 or CSE 15 or ENGR 1 or consent of instructor.

CSE 335. Topics on Intelligent Decision Support Systems (3)
Topics on intelligent decision support systems (IDSSs). The course will be self-contained and study some of the AI techniques that are used to build IDSSs including: case-based reasoning, decision trees and knowledge representation. Several application areas of these techniques will be covered including: help-desk systems, e-commerce, and knowledge management. Credit will not be given for both CSE 335 and CSE 435. Prerequisite: CSE 327 or CSE 340 or consent of the instructor.

CSE 336 (ECE 336). Embedded Systems (3)

CSE 340. (MATH 340). Design and Analysis of Algorithms (3) spring
Algorithms for searching, sorting, counting, graph and tree manipulation, matrix multiplication, scheduling, pattern matching, fast Fourier transform. Minimum time and space requirements are established, leading to the notion of abstract complexity measures and the intrinsic complexity of algorithms and problems, in terms of asymptotic behavior. The question of the correctness of algorithms is also treated. Prerequisites: MATH 22 and CSE 261 (MATH 261).

CSE 342. Fundamentals of Internetworking (3)
Architecture and protocols of computer networks; Protocol layers; network topology; data-communication principles, including circuit switching, packet switching and error control techniques; sliding window protocols, protocol analysis and verification; routing and flow control; local and wide area networks; network interconnection; client-server interaction; emerging networking trends and technologies; topics in security and privacy. Prerequisite: CSE 109.

CSE 343. Network Security (3)
Overview of network security threats and vulnerabilities. Techniques and tools for detecting, responding to and recovering from security incidents. Fundamentals of cryptography. Hands-on experience with programming techniques for security protocols. Credit will not be given for both CSE 343 and CSE 443. Prerequisite: CSE 342 or CSE 303 or CSE 265.
CSE 345. WWW Search Engines (3)
Study of algorithms, architectures, and implementations of WWW search engines; Information retrieval (IR) models; performance evaluation; properties of hypertext crawling, indexing, searching and ranking; link analysis; parallel and distributed IR; user interfaces. Credit will not be given for both CSE 345 and CSE 445. Prerequisite: CSE 109.

CSE 347. Data Mining (3)
Overview of modern data mining techniques: data cleaning; attribute and subset selection; model construction, evaluation and application. Fundamental mathematics and algorithms for decision trees, covering algorithms, association mining, statistical modeling, linear models, neural networks, instance-based learning and clustering covered. Practical design, implementation, application and evaluation of data mining techniques in class projects. Credit will not be given for both CSE 347 and CSE 447. Prerequisites: Either CSE 17 and MATH 231, or BIS 120 and ECO 145.

CSE 348. AI Game Programming (3)
Contemporary computer games: techniques for implementing the program controlling the computer opponent; using Artificial Intelligence in contemporary computer games to enhance the gaming experience: pathfinding and navigation systems; group movement and tactics; adaptive games, game genres, machine scripting language for game designers, and player modeling. Credit will not be given for both CSE 348 and CSE 448. Prerequisites: CSE 327 or CSE 340 or senior standing.

CSE 350. Special Topics (3)
Selected topics in the field of computer science not included in other courses. May be repeated for credit.

CSE 352. Information Technology for Commerce (3)
Digitization and information integration for business applications: enterprise resource planning, (ERP); customer relationship management (CRM) and supply chain management (SCM); information innovation strategies and their dependence on a common technology architecture; technical, logistical and cultural implications of building and operation information integration systems applications. Consent of instructor.

CSE 360. Introduction to Mobile Robotics (3)
Algorithms employed in mobile robotics for navigation, sensing, and estimation. Common sensor systems, motion planning, robust estimation, bayesian estimation techniques, Kalman and Particle filters, localization and mapping. Credit will not be given for both CSE 360 and CSE 460. Prerequisites: Math 205 and CSE 109.

CSE 363. Network Systems Design (3)
Design principles and issues of network systems. Traditional protocol processing systems and latest network processor/processing technologies. Packet processing, protocol processing, classification and forwarding, switching fabrics, network processors, and network systems design tradeoffs. Prerequisite: CSE 342, or CSE 404, or instructor’s permission.

CSE 366. Object-Oriented Programming (3)
The implementation of object orientation in languages such as Smalltalk and Java. Objects, classes, inheritance, graphical interfaces, applets, exception-handling, and multi-threading. Prerequisite: CSE 17.

CSE 375. Hardware & Software Topics in Parallel Computing (3)
Introduction to parallel computing, covering both hardware and software topics such as interconnection networks, SIMD, MIMD, and hybrid parallel architectures, parallel languages, parallelizing compiler techniques and operating systems for parallel computers. Prerequisites: ECE 201 and CSE 303 previously or concurrently, or consent of the instructor.

CSE 376. Parallel Algorithms (3)
Parallel algorithms for searching, sorting, matrix processing, network optimization, and selected graph problems. Implementation and efficiency measures of parallel algorithms also considered. Prerequisite: CSE 375 or CSE 340 or consent of instructor.

CSE 379. Senior Project (3)
Design, implementation, and evaluation of a computer science capstone project conducted by student teams working from problem definition to testing and implementation; written progress reports supplemented by oral presentations. Prerequisite: senior standing.

CSE 392. Independent Study (1-3)
An intensive study, with report, of a topic in computer science which is not treated in other courses. May be repeated for credit. Prerequisite: Consent of instructor.

For Graduate Students

CSE 403. Theory of Operating Systems (3)
Study of architecture and protocols of computer networks. The ISO model; network topology; data-communication principles, including circuit switching, packet switching and error control techniques; sliding window protocols, protocol analysis and verification; routing and flow control; local area networks; network interconnection; topics in security and privacy.

CSE 404 (ECE 404). Computer Networks (3)
Study of architecture and protocols of computer networks. The ISO model; network topology; data-communication principles, including circuit switching, packet switching and error control techniques; sliding window protocols, protocol analysis and verification; routing and flow control; local area networks; network interconnection; topics in security and privacy.

CSE 408. Bioinformatics: Issues and Algorithms (3)
Computational problems and their associated algorithms arising from the creation, analysis, and management of bioinformatics data. Genetic sequence comparison and alignment, physical mapping, genome sequencing and assembly, clustering of DNA microarray results in gene expression studies, computation of genomic rearrangements and evolutionary trees. This course, a version of 308 for graduate students requires advanced assignments. Credit will not be given for both CSE 308 and CSE 408. No prior background in biology is assumed. Prerequisites: CSE 340 or IE 170 or permission of the instructor.

CSE 409. Theory of Automata and Formal Grammars (3)
Finite automata. Pushdown automata. Relationship to definition and parsing of formal grammars. Prerequisite: CSE 318.
CSE 411. Advanced Programming Techniques (3)
Deeper study of programming techniques, data structures, backtracking, recursion. Applications of basic theoretical disciplines such as automata theory and formal language theory. Assignments using a contemporary programming language. Prerequisite: CSE 17 or consent of department head.

CSE 412. Object-Oriented Programming (3)
Objects, messages, classes and inheritance; the model-view-controller paradigm. Prototyping the user interface.

CSE 414. Expert Systems (3)

CSE 416. Advanced Issues in Knowledge-based Systems (3)
Advanced techniques and current applications of knowledge-based systems. Emphasis on knowledge engineering techniques through the development of a substantial system. Prerequisite: CSE 414.

CSE 417. Topics in Information Retrieval (3)
Selected topics in the design of advanced retrieval systems. Prerequisite: CSE 241 or equivalent.

CSE 422. Advanced Topics in Compiling (3)
Topics from general parsers, attributed translation, attribute grammars, two-level grammars, expression optimization, data flow, code optimization, compiler compilers, implementation languages, multi-tasking languages. Prerequisite: CSE 302 or consent of the department head.

CSE 426. Pattern Recognition (3)
Bayesian decision theory and the design of parametric and nonparametric classifiers: linear (perceptrons), quadratic, nearest-neighbors, neural nets. Machine learning techniques: boosting, bagging, High-performance machine vision systems: segmentation, contextual analysis, adaptation. Students carry out projects, e.g. on digital libraries and vision-based Turing tests. This course, a version of 326 for graduate students requires advanced assignments. Credit will not be given for both CSE 326 and CSE 426. Prerequisites: CSE 109, CSE 340, Math 205, Math 231, or consent of instructor.

CSE 428. Semantic Web Topics (3)
Theory, architecture and applications of the Semantic Web. Issues in designing distributed knowledge representation languages, ontology development, knowledge acquisition, scalable reasoning, integrating heterogeneous data sources, and web-based agents.

CSE 429. Virtual Environments (3)
Software and technology of virtual environment systems. Current research in virtual environments. User tracking, display, and view rendering hardware, VE application programming libraries, real-time rendering techniques, 3D model representations, networking systems for distributed and multi-user environments, 3D user interaction techniques.

CSE 430. Textual Data Mining (3)
Theory and algorithms for topics in textual data mining and statistical natural language processing (NLP). Fundamental mathematics and linguistics of statistical NLP; probability theory and information theory. Text mining algorithms and applications. Practical design, implementation, application and evaluation of statistical NLP and textual data mining techniques in class projects. Prerequisite: CSE 347

CSE 431. Intelligent Agents (3)
Principles of rational autonomous software systems. Agent theory: agent architectures, including logic-based, utility-based, practical reasoning, and reactive; multi-agent systems; communication languages; coordination methods including negotiation and distributed problem solving; applications. Prerequisite: CSE 327 or equivalent.

CSE 432. Object-Oriented Software Engineering (3)
Design and construction of modular, reusable, extensible and portable software using statically typed object-oriented programming languages (Eiffel, C++, Objective C). Abstract data types; genericity; multiple inheritance; use and design of soft-ware libraries; persistence and object-oriented databases; impact of object-oriented programming on the software life cycle.

CSE 435. Topics on Intelligent Decision Support Systems (3)
AI techniques used to build IDSSs: case-based reasoning, decision trees and knowledge representation. Applications: help-desk systems, e-commerce, and knowledge management. This course, a version of 335 for graduate students, requires research projects and advanced assignments. Credit will not be given for both CSE 335 and CSE 435.

CSE 437. Program Semantics (3)
Theories and techniques of program semantics and program verification. Topics may be chosen from denotational semantics, operational semantics, Floyd-Hoare semantics, temporal logic, dynamic logic, algebraic semantics, continuous semantics, recursive function theory or a current semantic theory.

CSE 438. Software Architecture (3)
Design and description of software architecture for large systems. Current research topics in software architecture. Individual projects are a significant part of this course. Projects may include the design of a new architecture, reverse engineering the architecture of an existing system, or investigation of a research topic in software architecture. Prerequisite: CSE 216 or CSE 432 or consent of the instructor.

CSE 440. Graph Theory and Application (3)
Fundamental concepts of and algorithms for graphs, including: connectivity, planarity, network flows, matchings, colorings, traversals, duality, intractability and applications. Prerequisite: CSE 340 or consent of instructor.

CSE 443. Network Security (3)
Overview of network security threats and vulnerabilities. Techniques and tools for detecting, responding to and recovering from security incidents. Fundamentals of cryptography. Hands-on experience with programming techniques for security protocols. This course, a version of CSE 343 for graduate students, requires research projects and advanced assignments. Credit will not be given for both CSE 343 and CSE 443. Prerequisite: CSE 342 or CSE 303 or CSE 403 or ECE 404.

CSE 445. WWW Search Engines (3)
Study of algorithms, architectures, and implementations of WWW search engines. Information retrieval (IR)
models; performance evaluation; properties of hypertext crawling, indexing, searching and ranking; link analysis; parallel and distributed IR; user interfaces. This course, a version of 345 for graduate students, requires research projects and advanced assignments. Credit will not be given for both CSE 345 and CSE 445.

**CSE 447. Data Mining (3)**
Modern data mining techniques: data cleaning; attribute and subset selection; model construction, evaluation and application. Algorithms for decision trees, covering algorithms, association rule mining, statistical modeling, model and regression trees, neural networks, instance-based learning and clustering covered. This course, a version of CSE 347 for graduate students, requires research projects and advanced assignments. Credit will not be given for both CSE 347 and CSE 447. Prerequisites: Math 231 or permission of the instructor.

**CSE 448. AI Game Programming (3)**
Contemporary computer games: techniques for implementing the program controlling the computer opponent; using Artificial Intelligence in contemporary computer games to enhance the gaming experience: pathfinding and navigation systems; group movement and tactics; adaptive games, game genres, machine scripting language for game designers, and player modeling. This course, a version of 348 for graduate students requires advanced assignments. Credit will not be given for both CSE 348 and CSE 448.

**CSE 450. Special Topics (3)**
Selected topics in computer science not included in other courses. May be repeated for credit.

**CSE 460. Mobile Robotics (3)**
Algorithms employed in mobile robotics for navigation, sensing, and estimation. Common sensor systems, motion planning, robust estimation, Bayesian estimation techniques, Kalman and particle filters, localization and mapping. This course, a version of CSE 360 for graduate students will require an independent project to be presented in class. Credit will not be given for both CSE 360 and CSE 460. Prerequisites: Math 205 and CSE 109 or their equivalents.

**CSE 465. Seminar in Natural Language Processing (3)**
Writing and presenting reviews of research issues in natural language, knowledge representation, speech processing and other applications. Requires concurrent attendance in CSE 365, Natural Language Processing.

**CSE 491. Research Seminar (1-3)**
Regular meetings focused on specific topics related to the research interests of department faculty. Current research will be discussed. Students may be required to present and review relevant publications. May be repeated for credit up to a maximum of three (3) credits. Prerequisite: Consent of instructor.

**CSE 492. Independent Study (1-3)**
An intensive study, with report of a topic in computer science that is not treated in other courses. May be repeated for credit. Prerequisite: Consent of instructor.
Cooperative Graduate Education

The P.C. Rossin College of Engineering and Applied Science permits graduate students to spend part of their research experience in industry, business, or a government agency. In general, the external research experience should be complementary to their graduate studies at Lehigh University and can count towards their degree program through ENGR 400 (Engineering Co-op for Graduate Students) and through thesis/dissertation credits (see below).

Subject to university/federal regulations, when enrolled in courses at Lehigh University, a student can work for a maximum of 20 hours at the company/laboratory (co-op partner). If not enrolled in courses other than ENGR 400 and for thesis (490) or dissertation (499) credits, a student will be permitted to work full time at the co-op partner. Full time employment over the summer will also be permitted. Maintenance of full-time status, however, requires that during the semester students must be registered for the minimum number of credit hours as listed in R&P.

MS/MEng Co-op programs
- ENGR 400 can be taken for a maximum of 6 credits, with at most 3 credits in any registration period.
- A further 6 credits for thesis/project/independent study can be part of the industrial experience.
- Minimum of 18 course credit hours, excluding ENGR 400 and Thesis (490) must be obtained through Lehigh University.

Ph.D. program
- Beyond the master’s program, ENGR 400 can be taken for a maximum of 9 credits, with at most 3 credits in any registration period.
- In addition to ENGR 400 credits, a maximum of 9 dissertation credits (499) can also be obtained as part of the co-op experience.

ENGR 400. Engineering Co-op for Graduate Students (3)
Supervised cooperative work assignment to obtain practical experience in field of study. Requires consent of department chairperson. When on a cooperative assignment, the student must register for this course to maintain continuous student status. Limit to at most three credits per registration period. No more than six credits can be applied towards a master's degree and no more than an additional nine credits towards a Ph.D. The credits must be taken P/F.

ENGR 452. (CHE 461, ME 442) Mathematical Methods in Engineering (3) fall
Analytical techniques are developed for the solution of engineering problems described by algebraic systems, and by ordinary and partial differential equations. Topics covered include: linear vector spaces; eigenvalues, eigenvectors, and eigenfunctions. First and higher-order linear differential equations with initial and boundary conditions; Sturm-Liouville problems; Green's functions. Special functions; Bessel, etc. Qualitative and quantitative methods for nonlinear ordinary differential equations; phase plane. Solutions of classical partial differential equations from the physical sciences; transform techniques; method of characteristics.

ENGR 475. Research (1)
Projects conducted under the supervision of a faculty advisor. Includes analytical, computational or experimental work, literature searches, assigned readings. Regular meetings with the advisor to consider progress made and future direction are required. The course is open only to graduate students and may be repeated for credit. Prerequisite: Graduate standing and departmental approval.

Cooperative (Undergraduate) Education

The P.C. Rossin College of Engineering and Applied Science offers opportunities to students for cooperative work assignments with industrial or business firms and government agencies. In all cases, cooperative work assignments are optional on the part of the student and there is no obligation for the student to accept permanent employment nor for the cooperating organization to offer permanent employment.

The student must register for a full semester of courses in the summer prior to the first work assignment. When on a cooperative assignment, the student must roster ENGR 200, to maintain full-time student status, and must complete all required university procedures. The university treasurer establishes the fee for ENGR 200. Participation in a cooperative education program does not relieve the student from any regular requirement for the academic curriculum in which he or she is enrolled.

200. Cooperative Undergraduate Education (3-6)
Supervised cooperative work assignment to obtain practical experience. Prerequisite: acceptance into the program. Pass/fail grading only.
Design Arts

Design Arts is a multidisciplinary program emphasizing the intersection of design with the fields of art, architecture, applied art, industrial art, and all their related fields. Therefore, the programmatic emphasis is on establishing a broad spectrum of inter-related courses within the major so as to address the myriad issues confronting the modern designer.

The Design Arts program engages undergraduate business, engineering and liberal arts students in creative work that focuses on visual communication design. The program emphasizes the creation of art and design using digital and advanced technologies.

The major is designed to provide a firm foundation in traditional studio work. Foundation courses enhance all concentrations within the design major and provide a common background of experience and knowledge. The program also contains a wide range of intellectual bases in theory and history in order to afford each individual student a broad perspective.

Design Arts courses introduce students to the fields of design (graphic, product, and computer generated). Students interested in pursuing a major will be prepared to advance to graduate training or entry level positions in design. In addition to a General Studies option, which offers a broad topical approach to the expansive field of design, students may choose one of three more focused concentrations. (1) Graphic Design will prepare students for entry-level positions in a wide range of fields, including the printing industry, web based media, exhibition design, publishing, advertising, and posters, or they may enter graduate programs and pursue MFA degrees. (2) Product Design students study the creation and application of creating objects for use in, for example, industrial applications, art objects, furniture, toys, exhibit and trade design, electronic products, household items, and recreational equipment. The industrial designer works closely with engineers, marketers, and ergonomists to create products. (3) Students studying Computer Imaging will learn the production of computer-generated imagery for the information and entertainment fields. Digital imagists produce animation, special effects, and interactive media and create for films, games, special effects, motion graphics and other fields.

The program also offers minors in Graphic Design, Product Design and Digital Imaging. Students interested in the Design Arts program may contact Anna Chupa, Director, Design Arts, anc304@lehigh.edu.

Design Arts Major

1. Media Skills Sequence (12-13 credit hours)
   a. DES/ART 3 Design Foundations I (3)
   b. DES/ART 4 Design Foundations II (3)
   c. DES 5 Digital Foundation (3)
   d. Choose one of the following (in consultation with the major advisor):
      ART 11 Drawing I (3)
      ART 35 Painting I (3)
      ART 13 Sculpture I (3)
      ART 15 Figure (3)
      DES/THTR 87 Scenography I (4)

2. Theory Sequence (minimum 6 credits)
   Choose two from the following (in consultation with the major advisor):
   a. ENGL/THTR 60; Dramatic Action (4)
   b. DES 60 Design Process (3)
   c. DES/ART 68 Color Theory (3)
   d. DES 164 Ergonomics (3)

3. History and Intellectual Context Sequence (9 credits, minimum)
   Choose at least one of the following Design courses:
   a. DES 66 Design History (3)
   b. DES 266 History of Contemporary Design (3)
   c. DES 366 Case Studies in Design History (3)

Other courses that may be used in addition to at least one of the above:
   a. ANT 376 Culture and the Individual (4)
   b. ARCH 1 Architectural History I (3)
   c. ARCH 2 Architectural History II (3)
   d. ARCH 209 Architecture and Ideas (3)
   e. ARCH 210 20th-Century Architecture (3)
   f. ART 1 Art History: Ancient and Medieval (3)
   g. ART 2 Art History: Renaissance to Present (3)
   h. ART 179 History of Photography (1)
   i. ART 120 20th-Century Art (4)
   j. ART/ARCH 206 Medieval Art and Architecture (3)
   k. ART/ARCH 207 Renaissance Art and Architecture (3)
   l. ARTS 250 Communication: Cultures, Beliefs, Attitudes (3)
   m. CSE 252 Computers, the Internet, and Society (3)
   n. DES/THTR 129 History of Fashion and Style (4)
   o. ENGL 163 Topics in Film Studies (4)
   p. ENGL 387 Film History, Theory and Criticism (4)
   q. HUM 126 Professional Ethics (4)
   r. IR 23 Alternative World Views (4)
   s. MKT 313 Marketing Communication (3)
   t. PHIL 123 Aesthetics (4)
   u. PHIL 250 The Minds of Robots and Other People (4)
   v. PSYCH 140 Introduction to Linguistics (4)
   w. SSP 135 Human Communication (4)
   x. SSP 327 Mass Communication and Society (4)

4. Design Sequences for Major Concentrations
   (21 Credits, minimum)

The student must complete Design Foundations I, Design Foundations II, and Digital Foundation prior to completing the Design Sequence. It is strongly recommended that the three foundation courses be completed prior to beginning the major concentration.

a. General Studies
   Select at least 21 credits of coursework from the available courses in Design Arts and Art and Architecture in consultation with the Design Arts major advisor.

b. Graphic Design concentration
   Required concentration courses (12 credits)
   a. DES/ART 53 Graphic Design I (3)
   b. DES/ART 153 Graphic Design II (3)
   c. DES/ART 253 Graphic Design III (3)
   d. ART 77 or 177 Photography I or II (3)
   e. Select at least 9 credits from the following:
      DES 70 Web Design I (3)
      DES 170 Web Design II (3)
      DES 80 Computer Imaging I (3)
      DES 40 Product Design I (3)
      DES 182 Experimental Video and Animation (3)
DES/ENGR/ BUS 211 Integrated Product Development (IPD) Projects I (3)
DES/ENGR/ BUS 212 Integrated Product Development (IPD) Projects II (2)
DES 260 Exhibit Design (3)
DES 375 Design Internship (1-4)
ARCH/CE 10 Engineering/Architectural Graphics & Design (3)
ART 11 Drawing I (3)
ART 35 Painting I (3)
ART 175 Introduction to Museum Work (3)
ART 177 Photography II (3)
ART 275 Museography and Museology (4)
DES 268 Advanced Design Project (1-4)
DES 311 Design Portfolio (1-4)
DES 370 Special Topics in Design (1-4)
DES/THTR 50 Stage Lighting (4)
DES/THTR 154 Scene Painting (4)
DES/THTR 187 Scenography II
CSE 12 Survey of Computer Science (3)
CSE 332 Multimedia Design and Development (3)

c. Product Design concentration
Required concentration courses (12 credits)
DES 40 Product Design I (3)
DES 140 Product Design II (3)
DES 240 Product Design III (3)
DES/ART 148 Furniture Design I (3)
Select at least 9 credits from the following:
DES 80 Computer Imaging I (3)
DES 70 Web Design I (3)
DES/ART 53 Graphic Design I (3)
DES 260 Exhibit Design (3)
DES/ENGR/ BUS 211 Integrated Product Development (IPD) Projects (3)

DES/ENGR/ BUS 212 Integrated Product Development (IPD) Projects II (2)
DES 375 Design Internship (1-4)
DES/ART 248 Furniture Design II (3)
ART 11 Drawing I (3)
ART 13 Sculpture I (3)
ART 35 Painting I (3)
ARCH/CE 10 Engineering/Architectural Graphics and Design (3)
ART 175 Museum Work (3)
ART 177 Photography II (3)
ART 275 Museography and Museology (4)
DES 311 Design Portfolio (1-4)
DES 370 Special Topics in Design (1-4)
DES/THTR 50 Stage Lighting (4)
DES/THTR 154 Scene Painting (4)
DES/THTR 187 Scenography II

Design Arts Minors
1. Graphic Design minor (total 18 to 20 credits)
a. Foundation (6 credits); choose two from the following:
DES/ART 3 Design Foundations I (3)
DES/ART 4 Design Foundations II (3)
DES 5 Digital Foundation (3)
b. Theory and History (3 to 4 credits); choose one of the following:
DES 60 Design Process (3)
DES 66 Design History (3)
DES/ART 68 Color Theory (3)
DES 266 History of Contemporary Design (3)
DES 164 Ergonomics (3)
DES 366 Case Studies in Design History (3)
c. Concentration (9 to 10 credits):
DES/ART 53 Graphic Design I (3)
DES/ART 153 Graphic Design II (3)
Elective in Design (to be chosen in consultation with advisor)
2. Product Design minor (total 18 to 20 credits)
   a. Foundation (6 credits); choose two from the following:
      DES/ART 3 Design Foundations I (3)
      DES/ART 4 Design Foundations II (3)
      DES 5 Digital Foundation (3)
   b. Theory and History (3 to 4 credits); choose one of the following:
      DES 60 Design Process (3)
      DES 66 Design History (3)
      DES/ART 68 Color Theory (3)
      DES 266 History of Contemporary Design (3)
      DES 164 Ergonomics (3)
      DES 366 Case Studies in Design History (3)
   c. Concentration (9 to 10 credits):
      DES 40 Product Design I (3)
      DES 140 Product Design II (3)

3. Digital Imaging minor (total 18 to 20 credits)
   a. Foundation (6 credits); choose two from the following:
      DES/ART 3 Design Foundations I (3)
      DES/ART 4 Design Foundations II (3)
      DES 5 Digital Foundation (3)
   b. Theory and History (3 to 4 credits); choose one of the following:
      DES 60 Design Process (3)
      ENGL/THTR 60 Dramatic Action (4)
      DES/ART 68 Color Theory (3)
      DES 266 History of Contemporary Design (3)
      DES 164 Ergonomics (3)
      DES 366 Case Studies in Design History (3)
   c. Concentration (9 to 10 credits):
      DES 80 Computer Imaging I (3)
      DES 180 Computer Imaging II (3)

Undergraduate courses

DES 3. (ART 3) Design Foundations I (3)
An introduction to the basic elements and principles of design. Course involves use of various materials to solve 2-D design problems in studio and computer lab. Required for all majors in department. Staff (HU)

DES 4. (ART 4) Design Foundations II (3)
An introduction to the basic elements and principles of design. Course involves use of various materials to solve 3-D design problems in studio and computer lab. Problem solving in variety of materials for 3-D design including assemblages, models, constructions, and conceptual forms. Required for all majors in department. Staff (HU)

DES 5. Digital Foundation (3)
Introduction to a variety of 2-D and 3-D software applications for digital design. Students will acquire a basic understanding of digital image manipulation, graphic layout tools, 2-D CAD techniques, and 3-D rendering. (ND)

DES 40. Product Design I (3)
Introduction to the field of Industrial Design. Through the reverse engineering of existing products and analysis of these artifacts with drawing and modeling, students will acquire an understanding of the various aesthetic, technological, and business issues a designer must consider when creating a product. Computer modeling milling to rapid prototype, three-dimensional design projects. Prerequisite: DES/ART 3. (HU)

DES 50. (THTR 50) Stage Lighting (4)
An introduction to the art and practice of lighting design for the stage. History of theatrical lighting design. (HU)

DES 53. (ART 53) Graphic Design I (3)
Design principles are explored with emphasis on visual communication. Students learn basic concepts for design and typography including the vocabulary and historical precedence of graphic design and computer graphics. Introduction to professional-level formal exercises contributes to the development of visual thinking and original ideas. Prerequisite: ART/DES 3. (HU)

DES 60. Design Process (3)
Students will study how an idea becomes a final design by analyzing their own actions and role designers play in the development of products, graphic design (online and print), and time-based media. (HU)

DES 66. Design History (3)
History of product design, graphic design and time-based media in artistic, cultural, technological, and business contexts. (HU)

DES 68. (ART 68) Color Theory (3)
Application of color in design. Color in graphics, product, digital imaging, and all related fields of design. (HU)

DES 70. Web Design I (3)
Introduction to the design and fabrication of web pages. Students will learn how to create pages using HTML and web fabrication software, with an emphasis on aesthetic and structure. (ND)

DES 80. Computer Imaging I (3)
Introduction to 3-D computer modeling, animation, and rendering, commonly used in the entertainment industry. Students create and edit an original 3-D animated movie. Students will also learn about 2-D and 3-D visualization techniques, used in the creation of storyboards and the narrative of the movie. Prerequisite: DES/ART 3.

DES 87. (THTR 87) Scenography I (4)
Introduction to the process of creating integrated designs in theatre production. The study and practice of the principles of visual representation, historical and conceptual research and the study of theatrical styles. (HU)

DES 111. (THTR 111) Sound Design (4)
Techniques, materials, and methods of designing sound for theatrical production (HU)

DES 129. (THTR 129, WS 129) History of Fashion and Style (4)
Dress and culture in the Western Hemisphere from pre-history to today. The evolution of silhouette, garment forms and technology. The relationship of fashion to politics, art and behavior. Cultural and environmental influences on human adornment. (HU)

DES 140. Product Design II (3)
Introduction to manufacturing and materials for the industrial/product designer. Model-making and investigating the interaction of the product and the application.
The emphasis is on user-centered design. Students will create original product designs, developing proficiency in various traditional and virtual visualization techniques and learn about product styling. Prerequisite: DES 40. (ND)

DES 148. Furniture Design I (3)
Design methodology, fabrication techniques, and methods of design presentation. Prerequisite: DES/ART 4. (HU)

DES 153 (ART 153). Graphic Design II (3)
Aspects of design are inter-related in function, concept or planning processes. Students focus on the poster in order to solve a variety of contemporary design problems. Professional-level formal team exercises include a series of informative posters, identity systems, publica-
tion, and advertising design. Computer graphics and Macintosh lab are employed as integral design tools in graphic design. Prerequisite: ART/DES 53 (HU)

DES 154. (THTR 154) Scene Painting (4)
Study and practice of basic and advanced methods of painting for the theatre. Includes basic elements and principles of design, color theory, the influence of light, atmosphere and aesthetics for the theatre. (HU)

DES 164. Ergonomics (3)
Introduction to physical, emotional, and psychological ways design interacts with people. Analyze real design problems and create solutions. (HU)

DES 170. Web Design II (3)
Creation of dynamic content in web design. Various 2-D animation software applications and simple scripting will be explored. Prerequisite: DES 70. (ND)

DES 180. Computer Imaging II (3)
Creation of original 3-D models, renderings, and animations, while learning advanced modeling techniques, character animation, particles, and compositing. Prerequisite: DES 80. (ND)

DES 182. Experimental Animation and Video (3)
An exploration of time, motion and interactivity in a series of conceptual and technical projects dealing with advanced digital imaging and non-linear video editing. We will consider the interaction of image, sequence, motion, animation, and audio with video. Prerequisites: ART/DES 3; Department permission. Anna Chupa. (HU)

DES 187. (THTR 187) Scenography II (4)
Includes beginning scene design, lighting design, and costume design principles and techniques. Introduction to design history. Significant texts, scenographic design and media techniques in graphic and three-dimensional solutions. Introduction to drafting and mechanical perspective. (HU) Pre-reg. DES/THTR 87 or permission.

DES 211. (BUS 211, ENGR 211) Integrated Product Development (IPD) 1 (3) spring
Business, engineering, and design arts students work in cross-disciplinary teams of 4-6 students on conceptual design including marketing, financial and economic planning, economic and technical feasibility of new product concepts. Teams work on industrial projects with faculty advisers. Oral presentations and written reports. Prerequisite: junior standing in business, economics, arts, design or engineering. Mechanical Engineering students must register for ME 211. (ND)

DES 212. (BUS 212, ENGR 212) Integrated Product Development (IPD) 2 (2) fall
Business, engineering, and design arts students work in cross-disciplinary teams of 4-6 students on the detailed design including fabrication and testing of a prototype of the new product designed in the IPD course 1. Additional deliverables include a detailed production plan, marketing plan, detailed base-case financial models, project and product portfolios. Teams work on industrial projects with faculty advisors. Oral presentations and written reports. Prerequisite: BUS/DES/ENGR 211. (ND)

DES 240. Product Design III (3)
Development of products with emphasis on innovative ways of understanding the role of the object in people’s lives. Prerequisite: DES 140. (ND).

DES 248. (ART 248) Furniture Design II (3)
Advanced fabrication. Contemporary art issues and furniture history. Prerequisite DES/ART 148. (HU)

DES 253 (ART 253) Graphic Design III (3)
A combination workshop/seminar course in which the student, as part of a design team, through classroom and individual discussion with the instructor and respective non-profit clients, develops and produces a minimum of two major design projects. Readings and classroom discussions of contemporary graphic design history and current trends form an essential part of the course. Prerequisite: DES/ART 153 (HU)

DES 260. Exhibit Design (3)
Team projects in development of exhibits for museums, conferences, or educational centers. Project work is supplemented by lectures and demonstrations. Teams will produce real and virtual exhibit prototypes and will design and maintain an exhibit website. (HU)

DES 266. History of Contemporary Design (3)
History of modern design from mid-19th century to the present. Studies and discussion of contemporary issues and technology in Design Arts. Topics will include green design, digital technology, current legal and ethical principles, and other issues. (HU)

DES 268. Advanced Design Projects (1-4)
Advanced projects or studies applying Design Arts practices or theories. Prerequisite: consent of instructor. May be repeated for credit. Department permission required. (ND)

DES 280. Computer Imaging III (3)
Advanced animation with emphasis on experimental techniques and new technologies in animation and motion graphics. Emphasis on effects, compositing, and the use of digital technology in the post-production process. Students will work on various assignments to gain a first-hand understanding of how various tools and techniques are used to create realistic effects. Prerequisite: DES 180. (ND)

DES 287. (THTR 287) Scenography III (4)
Includes advanced scene design, lighting design, and costume design principles and techniques. Design history projects in specific periods. Complex design problems of traditional texts. Emphasis on color and color theory. (HU) Pre-reg. DES/THTR 187 or permission

DES 311. Design Portfolio (1-4)
The concept, layout, and preparation of a portfolio for graduate school application or employment search.
including graphic techniques and reproduction method. Student must contact sponsoring professor. Prerequisite: DES 253, DES 260 or DES 290.

**DES 366. Case Studies in Design History (3)**
History of design. Study of specific products in context with regard to their impact on art, culture, and technology. (HU)

**DES 370. Special Topics in Design (1-4)**
Current topics in design, with selected readings, discussions, and studio work as required. May be repeated for credit. Prerequisite: two 100-level Design courses. Department permission. (ND)

**DES 375. Design Internship (1-4)**
Practical experience following apprenticeship model. Requires approval of instructor and host prior to beginning of the term, with a memorandum of understanding outlining student work responsibilities and educational objectives for the experience. (ND)

**DES 376. Design Thesis (3)**
Project or presentation in a selected area of design. Intended for senior majors in design. Prerequisite: consent of the director in conjunction with advisor. (ND)

**DES 387. (THTR 387) Sceonography IV (4)**
Advanced problem solving of non-traditional design problems, experimental approaches and solutions, contemporary issues in environmental design. Design history focus on contemporary design trends and non-traditional history. (HU) Pre-reg DES/THTR 287 or permission

---

### Earth and Environmental Sciences

**Professors.** Gray E. Bebout, Ph.D. (U.C., Los Angeles); Edward B. Everson, Ph.D. (Michigan); Kenneth P. Kodama, Ph.D. (Stanford); Anne S. Melzer, Ph.D. (Rice); Dork L. Sahagian, Ph.D. (Chicago); Peter K. Zeitler, Ph.D. (Dartmouth).

**Associate Professors.** David J. Anastasio, Ph.D. (Johns Hopkins); Bruce R. Hargreaves, Ph.D. (U.C., Berkeley); Donald P. Morris, Ph.D. (Colorado); Carl O. Moses, Ph.D. (Virginia); Frank J. Pazzaglia, Ph.D. (Penn State).

**Assistant Professors.** Zicheng Yu, Ph.D. (Toronto); Stephen C. Peters, Ph.D. (Michigan); Joan M. Ramage, Ph.D. (Cornell); Robert K. Booth, Ph.D. (Wyoming).

**Adjunct Professor.** Daniel E. Lawson, Ph.D. (Illinois).

**Research Scientists.** Bruce D. Idlemen, Ph.D. (SUNY, Albany); Stéphane Sol, Ph.D. (Queen’s University); Eva Enkelmann, Ph.D. (TU Bergakademie Freiberg, Germany).

**Emeritus Professors.** Paul B. Myers, Jr., Ph.D. (Lehigh); Dale R. Simpson, Ph.D. (Caltech); Bobbi Carson, Ph.D. (Washington).

The Department of Earth and Environmental Sciences (EES) is Lehigh’s home for teaching and research in the areas of ecology, environmental science, and geology. Matters of environmental quality and natural resources will increasingly impact people and society in the years to come, and the EES department offers a range of undergraduate and graduate programs that provide students with an understanding of Earth’s biosphere, atmosphere, lithosphere, and hydrosphere, with an emphasis on how these components function as an integrated Earth system. Training in Earth and Environmental Sciences can lead to technical and scientific careers in research, environmental consulting, government agencies, and the petroleum industry, and can also serve as an excellent liberal arts degree that provides context and preparation for careers in areas such as law, policy, journalism and economics.

Faculty in the EES department have a wide range of interests and strong reputations in the fields of geology, ecology, and environmental sciences. In instruction at all levels, the department emphasizes field experiences and experiential learning, as well as the development of quantitative and communication skills. The EES department maintains a relaxed and personal atmosphere in which students can interact with faculty in many ways, including seminars, special symposia on topics of the students’ choice, field research, departmental field trips and social events like picnics, canoe trips, softball games, and fishing expeditions.

At the undergraduate level, students may choose from a number of degree programs, including a B.A. in Earth and Environmental Sciences and a B.S. in Earth and Environmental Sciences. The flexible B.A. program provides students an opportunity to acquire breadth, design a specialized program, or find room for a double major. This degree is well suited to students with career aspirations in areas such as engineering, environmental law, journalism, economics, government, among many other possibilities. The B.S. degree, while still offering considerable flexibility, provides the more in-depth technical training required for graduate school and scientific careers, and are well suited for students seeking employment as professionals in the earth and environmental sciences.

An accessible minor program is available for students wishing to add insight into earth and environmental sciences to any number of other technical or non-technical degree programs, helping students distinguish themselves as they prepare to enter today’s fast-evolving job markets and graduate programs. The department also offers a five-year program that combines a B.A. or B.S. degree with an M.S. degree in earth and environmental sciences.

For students with strong interests in areas such as hydrology, water and soil remediation, hazards and associated engineering and construction strategies, EES, in conjunction with the Department of Civil and Environmental Engineering (CEE), offers a five-year program leading to dual B.S. degrees in EES and CEE (students having these interests may also want to see the description of the B.S. in Environmental Engineering in the catalog entry for the Department of Civil and Environmental Engineering).

EES offers graduate training leading to either M.S. or Ph.D. in Earth and Environmental Sciences. The EES graduate program is marked by close faculty-student collaboration. Graduate students can take advantage of strong externally funded faculty research programs and the extensive analytical and computing facilities available in the department; these facilities and specific EES research programs are described in some detail on the EES departmental web page at [www.ees.lehigh.edu](http://www.ees.lehigh.edu).
Field Work and Experiential Learning
The EES department offers its students diverse and abundant field experiences. Supervised internships coordinated by the Lehigh Earth Observatory (LEO) allow students at all levels to become engaged in projects involving cross-disciplinary research, assessment, and consulting work. The Department runs a nationally-recognized 4-week long summer field camp in the Rocky Mountains. Parallel, 6-credit courses in geology and environmental science (hydrology, ecology, and geology) offer intense field training and field methods including computer-based mapping. Students can participate in the department's long-standing research programs in limnological and ecological research in the Pocono Lakes region and in the Lehigh River watershed. Undergraduate students can also become involved in forefront research programs. In recent years, students have played a role in research in the Himalaya, Alaska, California, Idaho, Argentina, and Italy, in addition to nearby sites in Pennsylvania, West Virginia, New York, and New Jersey. Most EES undergraduate and graduate-level courses include field experiences in the form of one-day or weekend-long field trips, and the department sponsors an annual field trip; past destinations have included Puerto Rico, Iceland, Scotland, Newfoundland, Argentina, and the Grand Canyon).

Programs in Earth and Environmental Sciences
The descriptions of the following programs in the Department of Earth and Environmental Sciences are organized as follows:

Minor in Earth and Environmental Sciences
Bachelor of Arts Degree in Earth and Environmental Sciences
Bachelor of Sciences Degree in Earth and Environmental Sciences
Combined B.A. or B.S. and M.S. Program in Earth and Environmental Sciences
Department Honors in Earth and Environmental Sciences
Civil and Environmental Engineering and Earth and Environmental Sciences (Dual B.S. Degrees Program)
Graduate Studies

Requirements for a Minor in Earth and Environmental Sciences
A minor is designed for students wishing to explore an area of Earth or Environmental Sciences in conjunction with a major program in another field for personal development or career enhancement. The Earth and Environmental Sciences minor program consists of 1-credit integrated introductory laboratory EES 22 (Exploring Earth), plus other EES courses to bring the total earned in EES to a minimum of 15 credits. Natural science (NS) designated EES College seminars (EES 90) may be used to meet minor requirements.

Degree Requirements for a Bachelor of Arts Degree in Earth and Environmental Sciences
The B.A. degree is designed with flexibility in mind and is recommended for students interested in a sound liberal arts degree that will permit them to bring a scientific perspective to a wide variety of careers. The degree also permits students to take a double major, or design a specialized program tailored to specific topics in the earth and environmental sciences. Students who choose the B.A. but are interested in attending graduate school should talk to their faculty advisor and consult the B.S. program descriptions to see the type of requirements that may be required for graduate admission.

University and College Requirements (at least 26 credits)
Arts and Science 1 (1)
College Seminar (3)
English Composition (2 courses for 6 credits)
Distribution requirements (at least 8 credits, and at least 2 social science courses for at least 8 credits)

Junior Writing Requirement:
The ability to express oneself clearly in writing is a critical skill for success in any chosen career. It is also integral to the learning experience. Students are encouraged to take courses that help develop written skills in their major. To help ensure this, the College of Arts and Sciences requires each student to complete at least one writing intensive course and receive certification from the instructor of that course. EES 223 (Structural Geology and Tectonics) and EES 250 (Terrestrial Ecosystems) are designated as writing intensive in EES and fulfill the junior writing requirement. Students may also fulfill this requirement by taking writing intensive courses in other departments (although this is not encouraged).

MATH and Collateral Science Requirements (at least 8 credits)
• 1 semester of math equivalent to MATH 12 or above for at least 4 credits.
• 1 additional course from Chemistry, MATH, or Physics, approved by advisor, for at least 4 credits.

Students interested in scientific careers or pursuing graduate education in the sciences are recommended to take at least two additional math and collateral science courses chosen in consultation with an advisor.

Required courses for the major (at least 32 credits)
• Gateway Sequence (at least 4 credits):
  • Any introductory course in EES (except EES 4 and EES 22)
  • Integrated introductory laboratory course (EES 22 – Exploring Earth)
• Core sequence in EES major (12 credits):
  • EES 100 – Earth Systems Science
  • EES 200 – Earth History
  • EES 380 – Senior Seminar in EES
• Writing-Intensive Requirement:
  • Completion of a designated writing-intensive during the Junior year, preferably within EES (one designated 200-level course will be offered each semester)
• Major electives (at least 4 courses for at least 16 credits):
  • Select from EES or cross-listed offerings at the 100 through 300 levels
  • Up to 8 credits of EES internship (EES 93, 293) and EES research (EES 393) may be used as major electives (no more than 4 of which can be EES 93/293).
Free electives:
Courses chosen from anywhere in the University's curriculum, sufficient credits to bring the total to a minimum of 121 credits.

Degree Requirements for Bachelor of Sciences Degree in Earth and Environmental Sciences

University and College Requirements (at least 26 credits)
Arts and Science 1 (1)
College Seminar (3)
English Composition (2 courses for 6 credits)

Distribution requirements (at least 2 humanities courses for at least 8 credits and at least 2 social science courses for at least 8 credits).

Junior Writing Requirement:
The ability to express oneself clearly in writing is a critical skill for success in any chosen career. It is also integral to the learning experience. Students are encouraged to take courses that help develop written skills in their major. To help ensure this, the College of Arts and Sciences requires each student to complete at least one writing intensive course and receive certification from the instructor of that course. EES 223 (Structural Geology and Tectonics) and EES 250 (Terrestrial Ecosystems) are designated as writing intensive in EES and fulfill the junior writing requirement. Students may also fulfill this requirement by taking writing intensive courses in other departments (although this is not encouraged).

Math and Collateral Science Requirements (at least 21 credits)
- Two courses in Mathematics for at least 7 credits (one must be a course in Calculus)
- One specified course and lab in Chemistry: CHM 21/22 or CHM 75 (4 to 5 credits)
- One specified course and lab in Physics (PHY 10 or 11 and PHY 12) (4 credits)
- To bring total collateral credits to a minimum of 21, at least two additional courses in Biology (BIOS 41 or above), Chemistry (CHM 31 or above), or Physics (PHY 13 or above)

Required courses for the major (at least 48 credits)
- Gateway Sequence (at least 4 credits):
  - Any introductory course in EES (except EES 4 and EES 22, but including EES 105)
  - Integrated introductory laboratory course (EES 22 – Exploring Earth)
- Core sequence in EES major (12 credits):
  - EES 100 – Earth Systems Science
  - EES 200 – Earth History
  - EES 380 – Senior Seminar in EES

Field Requirement:
- Successful completion of EES 341, or other field experience approved by EES Field Committee. Four credits of EES 341 may be applied to major electives; all 6 credits for this course apply to the graduation requirement of 121 total credits.

Writing-Intensive Requirement:
- Completion of a designated writing-intensive during the Junior year, preferably within EES (one designated 200-level course will be offered each semester)

Major electives (at least 8 courses for at least 32 credits):
- Select from EES or cross-listed offerings at the 100 through 300 levels
- At least four of the courses must be at the 300 level
- Up to 8 credits of EES internship (EES 93, 293) and EES research (EES 393) may be used as major electives (no more than 4 of which can be EES 93/293).

Free Electives:
Courses chosen from anywhere in the University's curriculum, sufficient credits to bring the total to a minimum of 121.

Combined B.A. or B.S. and M.S. Program in Earth and Environmental Sciences

The Department of Earth and Environmental Sciences offers a five-year combined B.A. or B.S. and M.S. program. The department offers an M.S. degree in Earth and Environmental Sciences (refer to the description of Graduate Programs in EES following the listing of undergraduate course descriptions). Students working toward the B.A. or B.S. degrees who are enrolled in this program complete the full requirements for either degree and apply some 300- and 400-level course credits taken as an undergraduate towards the M.S. degree without additional undergraduate tuition cost. The program is designed for those students who (1) will have at least nine credits of appropriate M.S. course credits in excess of undergraduate requirements completed by the end of the senior year, including one EES graduate core course (EES 415, 426, or 484), (2) have completed a minimum of three credits of EES 393 (Supervised Research) as part of the baccalaureate program, and (3) have demonstrated superior academic achievement.

Application for admission to the program should be made no later than the beginning of the first semester of the senior year and must be approved by the department’s Graduate Instruction Committee. The application must include (1) a current baccalaureate degree audit, (2) the proposed M.S. course program, and (3) a letter of recommendation from the proposed M.S. thesis adviser. Students enrolled in this program should make application for admission to full-time graduate status during the first semester of the senior year.

After receiving the bachelor's degree and becoming enrolled in the graduate program students in the dual-degree program become eligible for financial aid including appointment to a teaching or research assistantship or graduate fellowship. Admission to the program does not guarantee financial aid.

Department Honors in Earth and Environmental Sciences

Students in either the B.A. or B.S. degree programs may undertake a program that leads to graduation with department honors. To participate, the student must (1) have a minimum major GPA of 3.25 and an overall cumulative GPA of 3.0 expected at graduation, (2) complete at least four credits of EES 393 (Supervised Research in Earth and Environmental Sciences), and (3) prepare a written honors thesis on the EES 393 research
The freshman engineering year (see Section III) is often 31 credits by choosing a freshman H/SS Advanced Requirement elective of 3 credits, leaving 10 credits to be taken in subsequent years to complete the requirement of 13 credits, shown below to be two 3-credit courses and one 4-credit course. Other options to complete this requirement are possible.

**second year, first semester (17 credit hours)**
- MECH 21 Elementary Engineering Mechanics (3)
- CHM 31 Chemical Equilibria in Aqueous Systems (3)
- EES Gateway Gateway Elective (3)
- EES 100 Earth System Science (4)
- PHY 21 Introductory Physics II (4)
- MECH 12 Strength of Materials (3)
- EES 22 Exploring Earth (1)
- CEE 11 Surveying (1)
- CEE 12 Civil Engineering Statistics (2)

**second year, second semester (18 credit hours)**
- CEE 117 Numerical Methods in Civil Engineering (2)
- CEE 159 Structural Analysis I (4)
- EES Course 100-300 level elective (4)
- EES Course 100 - 200 level elective (4)
- CEE 10 Architectural/Engineering Graphics and Design (3)
- CEE 242 Principles and Practices of Geotechnical Engineering (3)
- CEE 222 Hydraulic Engineering (3)
- CEE 170 Introduction to Environmental Engineering (4)
- EES 200 Earth History (4)
- ECO 1 Principles of Economics (4)

**fourth year, first semester (18 credit hours)**
- CEE 262 Fundamentals of Structural Steel Design (3) or CEE 264 Fundamentals of Structural Concrete Design (3)
- CEE **Civil Engineering Approved Elective (4)
- Engineering Course Engineering Science Elective (3)
- EES Course 100 to 300 level elective (4)
- CEE Humanities/Social Sciences AR Elective (4)

**year 4/5 summer (0-8 credit hours)**
- Select 0, or 1 course from:
  - EES 341 Geology Field Camp (6)
  - EES 395 Environmental Science Field Camp (6)
- CEE 202 Civil Engineering Planning and Engineering Economics (3)
- CEE 203 Professional Development (2)
- CEE **Civil Engineering Approved Electives (5)
- CEE Humanities/Social Sciences AR Elective (3)

Select 0, 1, or 2 courses from below so the total here and year 4/5 summer is at least 8 credits:
- EES Course 100 - 300 level elective (4), possibly EES 380 Senior Seminar in EES
- EES Course 100 to 300 level elective (4)
fifth year, second semester (18 credit hours)
CEE  
**Civil Engineering Approved Electives (8)**
CEE  
***Civil Engineering Capstone Design (EES 379).***  
H/SS  
Humanities/Social Sciences  
AR Electives (3)
EES Course (4) 100 to 300 level elective, possibly EES 380 Senior Seminar in EES
**MECH 102, ME 104, or ECE 81.**
**CHEM 31 plus fifteen additional credits of CEE Approved Electives are required; see list on CEE website that includes five CEE/EES cross-listed courses: CEE 279 (EES 259), CEE 316 (EES 316), CEE 320 (EES 320), CEE 323 (EES 323), CEE 327 (EES 327), and CEE 379 (EES 379).**
***Usually CEE 290, but can be a multidisciplinary teaming version of CEE 205, CEE 328, CEE 336, CEE 347, CEE 360, CEE 377 or CEE 381
In addition to EES 100, EES 200, and EES 380, 8 additional EES courses, at least 4 at the 300 level are required for the BS EES degree, including a Field requirement and Writing-Intensive requirement. Consult the catalog for details.
A total of 159 to 174 credit hours is needed for both degrees depending on how many credits in the EES are satisfied by taking CEE Approved Electives that are cross-listed with EES courses**.

Undergraduate Courses

EES 002 (ES 002, GCP 002). Introduction to Environmental Science (3)
Focuses on natural and human-induced drivers and consequences of environmental change. Exploring options for mitigating and adapting to environmental change in ecosystems, physical and social systems, we will examine such topics as biogeochemical cycles, population pressure, ecosystem diversity, productivity and food security, energy, water resources, climate change, pollution, ozone, urban issues and sustainability, Stresses interactions and inter-relationships, using a series of case studies. Intended for non-science majors with an interest in the environment. Prerequisites: none. Sahagian (NS)
EES 004. The Science of Environmental Issues (1)
Analysis of current environmental issues from a scientific perspective. The focus on the course will be weekly discussions based on assigned readings. Prerequisites: none. Kodama, Zeitler. (NS)
EES 11. Environmental Geology (3)
Analysis of the dynamic interaction of geologic processes and human activities. Catastrophic geologic processes (earthquakes, volcanoes, landslides), pollution of geologic systems, and engineering case studies. Evenson (NS)
EES 012. Ice Age Earth (3)
An investigation of how cold climates and the associated processes of glaciation and periglacial activity have left their imprint on the Earth. Three-day required field trip. Prerequisites: none. Evenson. (NS)
EES 014. Lands of the Midnight Sun (3)
Investigations of polar exploration and science, the environment at high latitudes, and cultures of the Arctic, as well as discussion of issues related to understanding interactions among extreme environments, global change, pollution, and indigenous cultures. Lecture, discussion, classroom activities. Prerequisites: none. Ramage. (NS)
EES 015, Volcanoes and the Ring of Fire (3)
Volcanoes are a tangible, often breathtaking, reminder of the inner workings of our restless planet. In this course, we consider the processes leading to volcanic eruptions, the significance of volcanism for long-term Earth evolution, and the hazards volcanoes create for humans, particularly those living in the circum-Pacific (the Ring of Fire). Prerequisites: none. Bebout. (NS)
EES 016. Geology of War (3)
Introduction to Earth and Environmental Sciences through a study of the geologic causes of war, the geologic influences over the outcomes of great battles, and the long-term environmental impacts of war. Instructional format includes lectures, discussions, student projects, and a field trip to Gettysburg National Military Park. Prerequisites: none. Pazzaglia. (NS)
EES 021. Introduction to Planet Earth (3)
Processes within the Earth and dynamic interactions between the solid earth, the atmosphere, and the oceans. Lectures. Prerequisites: none. Anastasio, Kodama. (NS)
EES 022. Exploring Earth (1)
Laboratory course in methods, data acquisition, data analyses and scientific communication relevant to Earth and Environmental Sciences. Case study of anthropogenic change in the Lehigh River watershed. Required fieldtrips. Pre- or co-requisite: introductory-level course in EES. Anastasio, Yu. (NS)
EES 024. Climate Change (3)
Examination and discussion of Earth’s climate history and the multiple interactions among components of the climate system, including ice, water, air, land, and vegetation; review of the causes of climate change at various timescales. Assessment of historical and future climate change and the role of humans in causing climate change, including global warming. Prerequisites: none. Yu. (NS)
EES 025. The Environment and Living Systems (3)
The course will provide an introduction to the role of the environment in regulating living systems at a variety of scales and levels of organization. The role of the environment in regulating and shaping populations, communities, and ecosystems will be explored. In addition, the role of the environment will be discussed as it relates to the origin, evolution, and diversity of life on Earth. Whenever possible, the role of anthropogenic environmental change will be discussed as it relates to the above topics. Prerequisites: none. Morris. (NS)
EES 026 (GCP 026). Energy – Origins, Impacts, and Options (3)
Critical assessment of current and predicted energy resources used by humans, including their origins, distribution, environmental impacts, and feasibility. Lectures, discussion, field trips. Prerequisites: none. Zeitler. (NS)
EES 027 (GCP 027). Natural Hazards: Impacts and Consequences (3)
Earthquakes, volcanoes, tsunamis, floods, and hurricanes are a natural part of the Earth and our environment. These events have violent consequences for our lives and significant economic implications. This course examines...
the causes, predictability, and risk mitigation for these events. We will also consider how natural disasters are represented by popular media and whether this helps or hurts public understanding of our dynamic planet and our relationship to it. Prerequisites: none. Meltzer. (NS)

EES 031. Introduction to Environmental and Organismal Biology (3)
Introduction to the structure, function, and evolution of living systems, with emphasis at the levels of organism, population, community, and ecosystem. Lectures. Hargreaves. (NS)

EES 89 [GCP 089]. Geographic Analysis of our Changing World (3)
This course will introduce students to maps, spatial data, and electronic tools for geographic analysis. Fundamental geographic and database concepts will include map types, spatial referencing systems, map projection systems, map scale, and database characteristics. Tools including ArcGIS Desktop software and Global Positioning System receivers will be used to acquire and analyze spatially referenced data sets drawn from diverse sources and disciplines relating to the environment. Students will use their new skills in geographic analysis to develop an electronic portfolio, including a question-based map project. This course will prepare students for more advanced geographic analysis within the arts, humanities, social sciences, natural sciences, or engineering. Lecture-demonstrations. Prerequisites: none. Hargreaves (NS)

EES 90. Freshman Seminar (3)

EES 93. Freshman Supervised Internship in Earth and Environmental Sciences (1-2)
Experiential learning opportunities supervised by EES faculty, including fieldwork, data collection or analysis, literature review, and information management. A maximum of two credits is allowed. Prerequisite: consent of supervising faculty. (ND)

EES 100 (GCP 100). Earth Systems Science (4)
Examination of the Earth as an integrated system. Study of interactions and feedbacks between key components such as the atmosphere, biosphere, geosphere, and hydrosphere to permit better understanding of the behavior of the system as a whole. Response of the Earth system to human perturbations such as land use and emissions are explored in the context of predictions of future environmental conditions and their projected impacts back on human systems. Lectures, class discussions, and recitation. Prerequisites: EES 22. Ramage, Sahagian. (NS)

EES 105. (ASTR 105, PHY 105) Planetary Astronomy (4)
Structure and dynamics of planetary interiors, surfaces and atmospheres. Models for the formation of the solar system and planetary evolution. Internal structure, surface topology, and composition of planets and other bodies in our solar system. Comparative study of planetary atmospheres. Organic materials in the solar system. Properties of the interplanetary medium, including dust and meteoroids. Orbital dynamics. Planets orbiting other stars. (NS)

EES 115. Surficial Processes (4)
An introduction to process geomorphology and sedimentology that emphasizes the dynamic interactions of climate, tectonics, and watershed hydrology on the erosional, transportational, depositional, and biological processes that shape landscapes. Includes a field and computer-intensive lab. Prerequisites: EES 22. Pazzaglia. (NS)

EES 131. Introduction to Rocks and Minerals (4)
Hand-specimen identification of the major mineral groups and rock types. Atomic structure of minerals; relationship of mineral structure to chemical and physical properties. Placement of igneous, sedimentary, and metamorphic rocks into a plate tectonics context. Introduction to optical mineralogy and x-ray diffraction techniques. Lectures. laboratories, field trips. Prerequisite: EES 22. Behout (NS)

EES 152. Ecology (4)
Basic principles and applications of ecological interrelationships. Examination of ecological phenomena at the individual, population, community, and ecosystem levels. Impact of human activities on global ecosystems. Prerequisite: EES 22. Booth (NS)

EES 200. Earth History (4)
Review of the co-evolution of Earth, life, climate, and the environment, and introduction to the records used to constrain this history. The course addresses environmental changes at both geologic and human time spans. Includes laboratory exercises and field trips. Prerequisite: EES 100. Wynn, Zeitler. (NS)

EES 223. Structural Geology and Tectonics (4)
Material behavior of rocks and the architecture of the Earth's crust. Plate tectonic processes and plate margin deformation. Introduction to geologic maps and field techniques. Lectures. laboratories, and one or two weekend fieldtrips. Prerequisite: EES 115 or EES 131. Anastasio. (NS)

EES 250. Terrestrial Ecosystems (4)
Ecosystem ecology in the context of the Earth system; discussion of mechanisms by which terrestrial ecosystems function, including the flow of water and energy and the cycling of carbon and nutrients; characterization of temporal and spatial patterns in ecosystem processes and their sensitivity to environmental and biotic changes; integration of global scale effects of these processes. Includes lectures, field trips and laboratories. Prerequisite: EES 115 or EES 152. Booth, Yu. (NS)

EES 293. Supervised Internship in Earth and Environmental Sciences (1-4)
Experiential learning opportunities supervised by EES faculty, including data collection or analysis, literature review, and information management most likely as part of a long-term, continued project. The student should submit a work plan that describes activities involved and credits requested. A maximum of four credits of EES 293 and no more than eight credits combined from EES 93, EES 293 and 393 may be applied to EES B.A. and B.S. degrees (additional credits apply to free electives). Prerequisite: consent of supervising faculty.

Advanced Undergraduates and Graduate Students

EES 301. Seismology: Images and Dynamics of the Earth’s Interior (4) [3 for graduate registration]
An examination of how earthquakes and active source seismology are used to image subsurface structure and stratigraphy and to understand tectonic processes.
Fundamentals of seismic wave propagation in the Earth. Study of earthquakes, reflection, and refraction techniques at crustal, lithospheric, and whole Earth scales. Practical applications, experiment design, data collection, processing, analysis, and interpretation. Field and laboratory projects. Prerequisites: EES 100, or consent of the instructor. Metzner (NS)

EES 306. Geologic Records of Environmental Change (4) [3 for graduate registration]

This course provides an overview of high-resolution geologic records of environmental and global change, how they are analyzed, and how they can be used in a variety of disciplines. Time series analysis, age control, completeness of sequences, and correlation of records will be covered. A class project will use acquisition and analysis of environmental magnetic data to demonstrate how records of global and environmental change are constructed. Prerequisite: EES 100. Kodama. (NS)

EES 315. Soil Science (4) [3 for graduate registration]

This course focuses on the interaction of Earth’s lithosphere, biosphere and atmosphere in the pedosphere, a component of Earth’s “critical zone.” Topics covered will include fundamentals such as soil properties and classification, soil chemistry, hydrology and biology, as well as specific applications to recognizing and understanding environmental problems in Earth’s surface environment. Includes lectures, weekly laboratory, and field trips. Prerequisite: EES 100. Wynn. (NS)

EES 316. (CEE 316) Hydrogeology (4) [3 for graduate registration]

Water plays a critical role in the physical, chemical, and biological processes that occur at the Earth’s surface. This course is an introduction to surface and groundwater hydrology in natural systems, providing fundamental concepts and a process-level understanding using the hydrologic cycle as a framework. Geochemistry will be integrated to address natural variations and the human impact on the environment. Topics covered include: watershed hydrology, regional and local groundwater flow, water chemistry, and management of water resources. Lectures and recitation/laboratory. EES 22, or consent of instructor. Peters (NS)

EES 320. (CEE 320) Flood Hydrology and Hydraulics (3)

Rainfall-runoff analysis, overland flow, hydrograph theories, modeling, Frequency analysis of extreme events. Flood routing. Design storms. Floodplain hydraulics, floodplain delineation. Prerequisite: CEE 222. (ES 2), (ED 1)

EES 323. (CEE 323) Environmental Groundwater Hydrology (3) spring

The study of subsurface water, its environment, distribution, and movement. Included are flow patterns, well hydraulics, and an introduction to the movement of contaminants. Design problems are included to simulate flow with analytical and numerical models, and contaminant migration using analytical models. Prerequisites: CE 121 or CEE/EES 316 or permission of instructor. (ES 2, ED 1)

EES 325. Remote Sensing of Terrestrial and Aquatic Environments (4) [3 for graduate registration]

Techniques of observing the Earth from air- and space-borne instruments, including issues of geometry and scale associated with making measurements, electromagnetic properties of Earth surface materials, the range of instruments used to observe the Earth, image interpretation, and applications of satellite remote sensing to geological, ecological, and environmental questions. Lecture and lab. Prerequisites: EES 22, or EES 89, or consent of instructor. Ramage. (NS)

EES 327. (CEE 327) Surface Water Quality Modeling (3)

Fundamentals of modeling water quality parameters in receiving water bodies, including rivers, lakes, and estuaries. Modeling of dissolved oxygen, nutrients, temperature, and toxic substances. Emphasis on water quality control decisions as well as mechanics and model building. Prerequisites: CEE 121, CEE 222 and CEE 270. (ES 3), (ED 3)

EES 334. Geosphere Structure and Evolution (4) [3 for graduate registration]

Synthesis of the state of knowledge of Earth structure and long-term evolution, with emphasis on the crust and mantle, and integrating petrologic, geophysical, and geochemical perspectives. Mass and energy transfer through time among the crust, mantle, hydrosphere, biosphere, and atmosphere. Petrographic study of selected rock suites, and introduction to geophysical observations of the deep structure of the solid Earth. Lectures, discussion, laboratories, field trip. Prerequisites: EES 131 or consent of instructors. Bebout and Kodama. (NS)

EES 341. Field Geology (6) spring

Field methods and geologic mapping projects using the diverse tectonic and geomorphic settings of the Rocky Mountains as the classroom. Major projects are completed in northwestern Wyoming and southeastern Idaho where the student is exposed to all major rock types and a range of surficial deposits, as well as compressional and extensional structures. Additional short studies are completed in the Badlands and Black Hills of South Dakota, the Grand Tetons and Devils Tower, Wyoming and related areas. Four weeks in the field; summer session. Prerequisites: Consent of Field Camp Director Pazzaglia (students must apply through the Lehigh Field Camp Program); declared major in EES; EES 22, and at least four EES courses at the 100-level or above. Pazzaglia. (NS)

EES 357. Paleocology and Landscape History (4)

Principles and methodologies of paleoecology, with emphasis on palynology. Applications of paleo-records in tracing flora, vegetation, climate and landscape history. Long-term ecological interactions and ecosystem responses to past environmental change. Field and laboratory experiences in collecting and characterizing sediments and in processing and interpreting fossil pollen and other proxy data. Students will explore regional vegetation, climate and landscape history by coring and analyzing sediments from lakes and wetlands. Course requires one or more weekend day-long field trips. Prerequisite: EES 100, or consent of course instructors. Yu and Booth. (NS)
EES 358. Microbial Ecology (4) [3 for graduate registration]
The role of microorganisms in the environment. Topics include: Survey of microbial classification, structure, and metabolism; study of microbes at population, community, and ecosystem levels of organization; the role of microbes in biogeochemical cycles; application of microbes to bioremediation and resource recovery problems. Fall (alternate (even) years). Prerequisite: EES 152, or consent of instructor. Morris (NS)

EES 365. Ecophysiology (4) [3 for graduate registration]
Properties and processes of organisms for effective acquisition of energy and exchange of heat, water, minerals, and gases via atmosphere, soil, and water, including response to extreme environments. Special emphasis on the role of solar radiation and factors influencing its interactions with the organisms and the abiotic environment. Lecture, demonstration, laboratory. Prerequisite: EES 100, EES 152. Hargreaves. (NS)

EES 371. Methods in Water Quality Analysis (4) [3 for graduate registration]
Survey of methods used in water quality analysis. The course will include: (1) theory and application of standard techniques and instrumentation, (2) quantitative analysis or modeling of existing or acquired data sets, and (3) data presentation and scientific report writing. Fulfills college writing intensive course requirements. Includes both lectures and laboratories. Prerequisite: CHM 21, 22, or consent of the instructor. Morris (NS).

EES 379. (CEE 379) Environmental Case Studies (3 to 4)
Case studies will be used to explore the impact of politics, economics, society, technology, and ethics on environmental projects and preferences. Environmental issues in both affluent and developing countries. Multidisciplinary student teams investigate site characterization; environmental remediation design; environmental policy; and political, financial, social, and ethical implications of environmental projects. Prerequisites: EES 2 or EES 21 or CEE 276 (CHE 276) or permission of the instructor.

EES 380. Senior Seminar in Earth and Environmental Sciences (4)
Multidisciplinary capstone seminar in the Earth and Environmental Sciences. The seminar will emphasize review of the scientific literature, synthesis, and skills in written and oral communication. Topics vary with offering. May be repeated for credit as a free elective that counts towards graduation requirements. Not open to graduate students.

EES 393. Supervised Research in Earth and Environmental Sciences (1-4)
Research opportunities supervised by EES faculty to carry out a well-defined project, including exposure to problem definition, selection of research approach, and communication of results. The student should prepare a proposal and, if taking 3 or more credits, should present the results at Undergraduate Research Symposium and write a research thesis. Both proposal and thesis are filed with EES Department. No more than eight credits may be applied to EES B.A. and B.S. degrees (additional credits apply to free electives). Prerequisite: consent of supervising faculty.

Graduate Studies
The Department of Earth & Environmental Sciences offers graduate programs leading to the M.S. and Ph.D. in Earth and Environmental Sciences. We offer one degree to emphasize and reinforce what we feel is an important and growing trend in ecology, environmental science, and geology, namely the blending of expertise and perspectives from many disciplines. Research is an integral component of all EES graduate programs and leads to an M.S. thesis or Ph.D. dissertation prepared under a research supervisory committee and chaired by a departmental faculty research advisor. An advising commitment by one or more faculty members is required for graduate admission.

The University has outlined the general academic requirements for M.S. and Ph.D. students in its Graduate Student Handbook, and EES has additional Departmental requirements that must also be fulfilled. It is the student’s responsibility to insure that all graduation requirements are met. All graduate students work with an advisor who chairs the student’s broader supervisory committee. Graduate students make annual presentations of their research to the Department. All graduate students are required to take two of the Department’s three graduate core courses (EES 415, 426, and 484). M.S. students complete 30 credits of coursework and thesis research and orally present a written thesis that encompasses the findings and conclusions of their research. Candidates for the Ph.D. must pass a qualifying examination prior to the end of the first semester in residence and a general examination (candidacy examination) prior to the end of the third semester in residence. Both examinations are administered by a committee assembled by the student in consultation with the advisor. Ph.D. candidates must also defend their written dissertation at a public oral presentation. For more details beyond this brief summary, please see the graduate handbook on line at: www.ees.lehigh.edu/graduate/grad_handbook.html.

Research Facilities
Our Department is well equipped for a broad range of field and laboratory investigations in the Environmental, Ecological, and Geological Sciences. Our laboratories and equipment include:

- Petrographic microscopy facilities, rock-crusher, ball mill, rock saws, and cathodoluminescence and camera lucida digitizing capabilities;
- Laboratory for Ar-Ar, U-Th/He, and fission-track geochronology including dual UV and CO2 lasers, VG 3600 noble-gas mass spectrometer, Balzers quadrupole mass spectrometer, dedicated He and Ar extraction lines with low-blank furnaces, all under full LabVIEW automation;
- A stable isotope geochemistry laboratory equipped with a Finnigan MAT model 252 mass spectrometer (with dual-inlet and carrier gas capabilities), on-line peripherals, and off-line vacuum extraction lines, for O, H, C, and N isotope analyses of silicate minerals and rocks, carbonates, fluid inclusions, and organic matter;
- Equipment for sampling groundwater wells as well as automated samplers for surficial water systems;
- A microbial ecology laboratory (fluorescence and phase contrast microscopy, bioreactors, UV phototron, walk-in controlled environment chambers);
• Field instruments to characterize solar radiation (UV bands, PAR, broadband, and high resolution spectral irradiance with automated shadowband options for diffuse and direct spectral irradiance), water quality & optical properties (Biospherical PUV profilers, YSI datasondes, SCUFA CDOM fluorometers), weather parameters, and hydrology (precise water level, precipitation, wind, humidity, atmospheric pressure, water temperature thermistor chains) plus automated ISCO rain-triggered samplers for applications in aquatic and terrestrial ecosystem studies;

• Aquatic ecology laboratory instruments to characterize water quality and optical properties (pH, specific conductance, dissolved oxygen, UV-VIS spectrophotometers, scanning fluorometer, Turner CDOM/Chlorophyll fluorometer, N & P nutrient analyzer, automated Shimadzu TOC/TN analyzer, CHN analyzer, scintillation counter, photobleaching laboratory, low-carbon water purification system);

• EES is also home to the Pocono Comparative Lakes Program (PCLP), an interactive research and educational program that supports multidisciplinary research of lake systems and focuses on three ‘core’ lakes that serve as model systems for experimental and comparative studies of aquatic communities and ecosystems. The program's field station is at the Lacawac Sanctuary in the Pocono Mountains;

• An aqueous geochemistry laboratory with a Thermelectron X-Series inductively coupled plasma mass spectrometer with collision cell, and hydride generation apparatus that can be coupled to an HPLC system for species analysis, a Dionex ion chromatograph for simultaneous analysis of anions and cations, a Mercury analyzer for analysis of gaseous and liquid samples, and a Class 100 clean room for ultra trace sample preparation; additional instruments including a Waters computer-assisted ion chromatograph, an ARL 34000 inductively-coupled plasma atomic emission spectrometer, a Netzch DTA/TGA instrument, and a high-pressure core-holder/column reactor for flow-through experiments;

• A sedimentation and soils analysis laboratory including equipment for particle size analysis;

• A paleomagnetism laboratory with a magnetically shielded room, a 2G superconducting magnetometer and built-in af demagnetizer, Molspin spinner magnetometer, a Schonstedt AF demagnetizer modified to apply pARMs, and an ASC thermal demagnetizer, and a KLV-3S Kappabridge magnetic susceptibility system, and an ASC impulse magnetizer;

• A reflection seismology laboratory has equipment including broadband seismometer linked to global networks; computer workstations for seismic processing, Bison DIFP multi-channel seismograph, various seismic energy sources, and ground-penetrating radar;

• Field geophysical equipment includes a Worden Master gravimeter, and a Geometrics portable proton precession magnetometer;

• Geomorphology lab including a Topcon total station, flow gages, LASCI digitizer, complete airphoto analysis facility, and a flume facility in the CEE hydraulics lab. We also maintain several PC and UNIX computer lab. We also maintain several PC and UNIX computers for digital topographic databases;

• Paleocological laboratories with facilities for the analysis and photo documentation of tree rings, pollen, macrofossils, and other biological and physical parameters of environmental archives, including lake and peatland sediments.

• A sediment core laboratory with facilities for initial core preparation and core storage, including a walk-in cold room, a GeoTek MultiSensor Core Logger, a Virtis Advantage Freezer Dryer and various corers (Livingstone, Mackereth, Glew Gravity, Russian peat Corers);

• A remote sensing laboratory with image processing software, extensive spatial data collections, as well as equipment for measuring field characteristics of important remotely sensed parameters.

Graduate Courses

EES 405. Paleo- and Environmental Magnetism (3)
Topics in paleomagnetism and environmental magnetism. Class will design and conduct a research project, read the relevant literature and write a research paper. May be repeated for credit. Prerequisite: EES 309 or consent of course instructor. Kodama

EES 407. Seismology (3)
Seminar on advanced topics in seismology, review of classic and current literature. Topics include but are not limited to: wave propagation in ideal media and earth materials, seismic imaging of complex structures, tomography, modeling, and high-resolution seismic imaging. May be repeated for credit. Prerequisite: an introductory geophysics course. Meltzer

EES 412. Advanced Fluvial and Tectonic Geomorphology (3)
Lecture, seminar, lab, and field-based investigation of the classic and contemporary geomorphic literature using the processes and evolution of a watershed and its dynamic interaction with tectonics as an integrative common theme. Topics change according to student interest but typically include hillslope hydrology, channel hydraulic geometry, landscape response to climate, and biogeomorphology. Course is designed to expose students to graduate-level research problems and provide guidance on how to transform those problems into proposal-quality research topics and/or publishable manuscripts. Includes several weekend field trips and a practicum using the hydraulics lab flume facility. Prerequisite: EES 21, 31, 112, or consent of instructor. Pazzaglia.

EES 414. Glacial and Quaternary Geology (3)
Study of the origin, distribution, and movement of present and past glaciers. Special emphasis on glacial land forms and deposits, Quaternary stratigraphy and dating techniques, periglacial phenomena, and Pleistocene environments. Lectures and required field trips. Prerequisite: Consent of instructor. Evenson

EES 415. Palaeoclimatology (3)
Principles of physical climatology: climate system, energy budget, atmospheric and ocean circulations, and their interactions. Earth’s climate history, with an emphasis on the Quaternary. Records and mechanisms of past climate variations at various (from orbital to interannual) time scales. Causes of climate variations linking to tectonic processes, variations in Earth’s orbit and solar insolation, atmospheric composition and biogeochemical cycles, and atmosphere-ocean-ice sheet interactions. Biosphere responses to past climatic changes. Approaches to studying paleoclimate. Paleoclimate simulations and paleo-perspectives in addressing future climate change
issues. Prerequisite: graduate standing in EES, or consent of course instructor. Yu.

EES 418. Advanced Quaternary Geology (3)
Lecture, seminar, lab, and field-based investigations of topics in Quaternary geology including glacial geology, geomorphology, soil geomorphology, biogeomorphology, and Quaternary geochronology. Quaternary field methods are a common themes to all topics. Field exercises will expose students to methods in the mapping of surficial deposits. Includes several weekend field trips. Prerequisite: EES 21, 31, 112, or consent of instructor. Bebout, Pazzaglia, Evenson.

EES 426. Tectonic Processes (3)
Current models of tectonic processes in intraplate settings and at plate boundaries. Critical evaluations by the class of the geological, geochemical and geophysical data sets which gave rise to these models. Prerequisites: graduate standing in EES, or consent of department chairperson. Staff

EES 427. Orogenic Belts (3)
Geometry, kinematics, and mechanics of compressional orogenic belts. Course will emphasize deformational, depositional, and metamorphic processes in forearc and backarc regions. Lectures, seminars, and field trips. Prerequisites: EES 131, EES 213, EES 223, or their equivalents. Anastasio

EES 428. Stress and Strain in Rocks (3)
Theory of continuum mechanics and application to analytical methods of geological strain analysis, rock material properties and micro-mechanisms of rock deformation, and tectonic fabric development, kinematic analysis. Lectures and laboratories. Prerequisite: EES 223 or equivalent. Anastasio

EES 429. Methods and Applications of Geochronology (3)
Examination of isotopic techniques used to measure geologic time, and their applications. Lectures, laboratories, research projects, field trips. Prerequisite: graduate standing in EES. May be repeated for credit. Zeitler

EES 438. Petrogenetic Processes (3)
Metamorphism, melting, and magmatism in the Earth's crust and mantle. Tectonic evolution, crust-mantle heat and mass transfer, fluid-rock interactions, and rate processes. Varying combinations of lecture and seminar formats. May be repeated for credit when topics differ. May include laboratory and field experience and computational exercises. Prerequisite: consent of course instructor. Bebout

EES 453. Advanced Microbial Ecology (3)
Lectures and seminars will focus on topics of current interest in the microbial ecology of pelagic (freshwater and marine), sediment, and/or soil environments. Emphasis will be placed on the role of microbes in ecosystems level processes such as energy transformations and elemental cycling. May include laboratory and field exercises. Prerequisite: graduate standing or consent of course instructor. Morris

EES 457. Advanced Remote Sensing of the Environment (3)
Seminars and hands-on, quantitative analysis of specialized satellite and aircraft data, including microwave and hyperspectral sources, will be used to investigate significant environmental questions. Students will refine visual and technical skills for image interpretation, digital image processing, change detection of environmental systems, and presentation of spatial data. Required research project. Prerequisites: graduate standing in EES or permission of the instructor. Ramage.

EES 459. Reconstructing Environmental Change (3)
Lectures, seminars, and in-depth discussion on current issues and selected topics in Quaternary paleoecology and paleoclimatology. Survey of techniques in studying and reconstructing environmental changes and biological responses. Use of multiple proxy data from paleoarchives (e.g., ice cores, lake sediments) to address nature of past climate variability. Quantitative analyses of paleo-record to test paleoecological hypothesis (e.g., multivariate analysis) and to infer possible causes and forcing mechanisms of past climate change (e.g., time series analysis). May include field and laboratory exercises. Prerequisite: EES 415, or consent of course instructor. Yu.

EES 471. Stable Isotope Chemistry - Theory, Techniques, and Applications in the Earth and Environmental Sciences (3)
Distributions of stable isotopes (primarily of O, H, C, S, and N) in the lithosphere, hydrosphere, biosphere, and atmosphere. Topics include mechanisms of fractionation and mixing, advancements in techniques for extractions and mass spectrometry, and recent applications of stable isotopes in the earth and environmental sciences. Lectures, seminars, laboratory sessions. Prerequisite: consent of instructor. Bebout

EES 473. Aqueous Geochemistry (3)
Advanced study of the equilibria and kinetics of chemical reactions occurring at the earth's surface. A review of concepts in geochemistry including activity, solubility, thermodynamics, kinetics, and oxidation-reduction reactions is followed by readings from the literature. Topics covered depend on student interest, and have included chemical weathering, chemical evolution of surface and groundwater, acid mine drainage, trace element chemistry, biogeochemical cycles, and ocean chemistry. May be repeated for credit. Prerequisites: Graduate standing in EES or permission of the instructor. Peters.

EES 484. Aquatic Ecosystems (3)
Theoretical and experimental approaches to understanding physical and chemical influences in aquatic environments on organisms and their community, population, and systems ecology. Field trip. Prerequisite: graduate standing in EES. Staff

EES 485. Advanced Topics in Geophysics (1-6)
Intensive study of topics in geophysics not covered in more general courses. May be repeated for credit. Prerequisites: MATH 21, EES 21, or permission of the instructor.

EES 487. Advanced Bio-Optics (3)
Bio-optics includes the ecosystem role and fate of solar radiation and the optical properties of biotic and abiotic components of ecosystems. This course will explore advanced topics through selected readings, data analysis, and modeling. Topics will emphasize aquatic ecosystems and may include optical models, atmospheric factors, inherent and apparent optical properties, algal fluorescence, photosadaptation and photodamage, ultraviolet radiation, and optical stratification. Prerequisite: EES 484 or consent of course instructor. Hargreaves
EES 490. Thesis Research (1-6)
Masters' thesis research directed by research committee. 3-6 credits required for EES M.S. programs. May be repeated for credit. Prerequisite: Permission of research adviser.

EES 491. Investigations in Earth and Environmental Sciences (1-6)
Research on a special problem; field, laboratory, or library study; report required. Credit above three hours granted only when a different problem is undertaken. May be repeated for credit.

EES 492. Advanced Topics in Modern and Quaternary Processes (1-6)
Intensive study of topics in Modern and Quaternary geology not covered in more general courses. May be repeated for credit.

EES 493. Advanced Topics in Tectonics (1-6)
Intensive study of tectonic processes and products not covered in more general courses. May be repeated for credit.

EES 494. Advanced Topics in Aquatic Ecosystems (1-6)
Intensive study of aquatic ecosystems not covered in more general courses. May be repeated for credit.

EES 496. Advanced Topics in Geochemistry (1-6)
Intensive study of geochemical processes not covered in more general courses. May be repeated for credit.

EES 499. Dissertation Research (1-15)
Ph.D. dissertation research directed by research commit- tee. May be repeated for credit. Prerequisite: Permission of research adviser.

Eckardt Scholars Program
Director. Ian Duffy, professor of history.
Advisory Council. Mark Bickhard, professor of psychology; Gary DeLeo, professor of physics; Robin Dillon, professor of philosophy; Elizabeth Fitez, professor of English; Lucy Gans, professor of art and architecture; Norman Girardot, professor of religious studies; Michael Kuchka, professor of biological sciences.
For program requirements, see Eckardt Scholars Program, section III.

389. Honors Project for Eckardt Scholars (1-8)
Opportunity for Eckardt Scholars to pursue an extended project for senior honors. May be repeated for credit up to a maximum 12 credit hours. Transcript will identify department in which project was completed. Prerequisite: consent of department chairperson.

ECK 81. Eckardt Scholars Seminar (4)
Seminar for first-year Eckardt Scholars. Prerequisite: consent of program director (HU)

ECK 181. Eckardt Scholars Seminar (4)
Seminar for sophomore Eckardt Scholars. Prerequisite: consent of program director (HU)

ECK 281. Eckardt Scholars Seminar (4)
Seminar for junior and senior Eckardt Scholars. Prerequisite: consent of program director (HU)

Economics

Professors. J. Richard Aronson, Ph.D. (Clark); James Dearden, Ph.D. (Penn State), chair, department of economics; Thomas J. Hyclak, Ph.D. (Notre Dame); Arthur E. King, Ph.D. (Ohio State); Vincent G. Munley, Ph.D. (S.U.N.Y.); Anthony P. O’Brien, Ph.D. (Berkeley); Larry W. Taylor, Ph.D. (North Carolina); Robert J. Thornton, Ph.D. (Illinois).

Associate Professors. Shin-Yi Chou, Ph.D. (Duke); Mary E. Deily, Ph.D. (Harvard); Frank R. Gunter, Ph.D. (Johns Hopkins); Judith A. MacDonald, Ph.D. (Princeton); Todd A. Watkins, Ph.D. (Harvard).

Assistant Professors. Stephen Snyder, Ph.D. (Maryland); Wenlong Weng, Ph.D. (Stanford).

Instructor. Younpoor Bae (Ohio State).

Active Emeriti. Nicholas W. Balabkins, Ph.D. (Rutgers); Alvin Cohen, Ph.D. (Florida); Jon T. Innes, Ph.D. (Oregon); Eli Schwartz, Ph.D. (Brown).

Though economics is variously defined, modern-day definitions generally suggest that it is the study of the principles that govern the efficient allocation of resources. One of the greatest of the 19th century economists who did much to uncover these principles suggested a broader definition. Alfred Marshall described economics as “a study of mankind in the ordinary business of life...a part of the study of man.” This dual nature of economics, technical and humanistic, is reflected in the fact that at Lehigh the economics major is available to students in the College of Arts and Sciences as well as in the College of Business and Economics.

College of Business and Economics

Major in Economics

Students in the College of Business and Economics electing to major in economics must take the college core courses listed in the College of Business and Economics section of this catalog. They must also take ECO 119 and at least 12 credit hours of 200 and 300-level economics courses beyond the core requirements. These courses may be chosen so as to form an area of specialization or to provide a broad exposure to the various aspects of the discipline. In any case, students should consult with the major advisor in forming their programs.

Major in Business Economics

The business economics major prepares students for careers as business consultants or analysts by teaching the application of microeconomic theory to the analysis of critical business issues. The emphasis is on rigorous, quantitative business analysis through the use of theoretical and mathematical models and econometric analysis of data. Students electing the major in business economics must take the college core courses, ECO 322, ECO 333, ECO 357, two elective courses from an approved list, and a course involving student research on a problem identified by an external client. Students should consult with the major advisor in forming their program.

Minor in International Economics

The minor in International Economics aims to prepare non-economics majors in the CBE, as a complement to their major programs, with a fundamental understanding of international trade, finance and economic development, and to develop skills in applying economic analysis to
international economic issues and social problems. This minor is open to any CBE undergraduate student not majoring in economics or business economics.

### Minor Requirements: (12 credits)
- ECO 119 – Intermediate Macroeconomic Analysis (3)
- ECO 339 – International Trade (3)
- ECO 340 – International Finance (3)
- One of the following:
  - ECO 209 – Comparative Economic Systems
  - ECO 240 – Ireland's Public Sector
  - ECO 303 – Economic Development
  - ECO 342 – Economic Development in China

### Minor in Public Policy Economics
This minor in Public Policy Economics aims to prepare non-economics majors in the CBE, as a compliment to their major programs, with a fundamental understanding of the main economic policy issues and the role of government in markets, and to develop skills in applying economic analysis to the development of public policies and potential solutions to social problems. This minor is open to any CBE undergraduate student not majoring in economics or business economics.

### Minor Requirements: (12 credits)
- ECO 119 – Intermediate Macroeconomic Analysis (3)
- ECO 353 – Public Finance: Federal (3)
- Two of the following:
  - ECO 235 – Labor Economics
  - ECO 311 – Environmental Economics
  - ECO 312 – Urban Economics
  - ECO 336 – Business and Government
  - ECO 354 – Public Finance: State and Local

### College of Arts and Sciences

#### Major in Economics
The B.A. major in economics is designed to prepare students for graduate study in economics or law, and for entry into careers in business, government or service organizations. The requirements for the economics major are:
1. The economics core (16 credits): ECO 1, ECO 105 or 146, ECO 119, ECO 129 and ECO 145.
2. Collateral calculus courses (7 or 8 credits): MATH 51 and 52 or MATH 21 and 22. MATH 51 and 52 are terminal math classes for students planning on careers in fields that are primarily non-quantitative. MATH 21 and 22 are for students considering careers or graduate programs that require a stronger math background.
3. Five elective courses in economics at the 200 or 300 level (15 credits). Students may count only two 200 level courses toward the completion of the economics major.
4. To take economics courses numbered 100 or above, students must pass the CBE's Excel competency exam; contact the Rauch Center for Business Communications for more information.

Students are free to select any five economics courses to meet their elective requirements. However, the faculty of the economics department has developed recommended course clusters to meet the differing needs of students. These include course recommendations for those interested in:

- Graduate study in economics
- Careers in consulting and financial services
- International economics and global markets
- Political economy and public policy

Interested students are encouraged to consult with the major advisors in the economics department to select elective courses that match their needs and interests.

#### Honors in Economics
Economics majors who wish to be considered for departmental honors must consult with their major advisor and request such consideration by the beginning of their senior year. The criteria for departmental honors are:
1. Completion of the major program with at least 33 credits of economics and a grade point average in these courses of 3.5 or better.
2. Submission of an acceptable research paper to the Departmental Honors committee. To qualify a candidate for honors this paper must report on original research conducted solely by the student as part of an economics course. The student should consult with the instructor of that course for suggestions for improving the paper prior to submitting it to the committee. The committee will notify students of submission deadlines and other requirements for satisfying this criterion.

#### Minor in Economics
A minor in economics consists of 12 credit hours beyond ECO 1. Required courses in the minor are:
ECO 105 or 146, 119 or 129 and two elective courses. Elective courses must be chosen from among the 200 and 300-level economics offerings with at least one 300-level elective. ECO 371 does not count towards the minor. This minor is available only to students in the College of Arts and Sciences and in the College of Engineering and Applied Science. Interested students should contact the minor advisor.

#### Undergraduate Courses

**ECO 1. Principles of Economics (4)**
A one-semester course in the principles of economics. General topics covered are: supply and demand; pricing and production decisions of firms; the role of government in the economy; the determination of national income; money and banking; monetary and fiscal policy; and government finance. (SS)

**ECO 64. (AAS 64, HIST 64). Plantation to Ghetto (2)**
Examination of topics in the economic history of African Americans from the 1500s to the present. Explores the slave trade, slavery, the post-Civil War South, the black family, migration, urbanization, and race and poverty. Prerequisite: ECO 1 recommended. (SS)

**ECO 105. Intermediate Microeconomic Analysis (3)**
Determination of prices in terms of the equilibrium of the business enterprise and consumer choice in markets of varying degrees of competition; analysis of market structures; determination of wages, rent, interest and profits. Prerequisite: ECO 1 and MATH 51 or 21 or their equivalents. Not available for credit to students who have taken ECO 146. (SS)
ECO 131. The Canadian Economy (2)
This course analyzes the economic challenges facing the Canadian economy. Some of the issues include: Canada’s record on inflation and unemployment; the distribution of income; the role of natural resources; and Canada’s health-care and educational systems. Canada’s monetary and fiscal policies, and Canada’s performance in the international economy will also be examined. Prerequisite: ECO 1. (SS)

ECO 134. Evolution of the Automobile Industry (2)
This course traces the development of the automobile industry from its origin at the turn of the century to the present. Topics include: the Model T and mass production; the development of installment purchases; dealer-company relations; worker-company relations; the rise of imports; and the decline of traditional mass production. Prerequisite: ECO 1. (SS)

ECO 145. Statistical Methods (3)
Descriptive statistics, probability and probability distributions, sampling, estimation, hypothesis testing, chi-squared tests, simple regression and correlation. (ND) Note: CBE students may not take MATH 12 as a replacement for ECO 145.

ECO 146. Applied Microeconomic Analysis (3)
The application of economic analysis to managerial and public policy decision-making. Prerequisites: ECO 1, MATH 21 or equivalent course, and ECO 145. Not available for credit to students who have taken ECO 105. (SS) Note: MATH 12 does not serve as a pre-requisite for ECO 146.

ECO 159. Athletic Complex Design (3)
This course is for students to participate in cross discipline Integrated Learning Experience (ILE) research projects. The twin purposes of the course are to provide real-world, team-oriented learning experiences and to apply economic analysis in evaluating the costs and benefits of newly proposed, or renovations and expansions of existing, athletic facilities. Prerequisite: ECO 105 or ECO 146. (SS)

For Advanced Undergraduates and Graduate Students

ECO 209. Comparative Economic Systems (3)
An analysis of the micro- and macro-economic, institutional and political dimensions of various economic systems, with particular emphasis on former centrally planned economies in their transition to a market orientation. Prerequisite: ECO 1. (SS)

ECO 210. Economic Evolution (3)
Structural changes, social transformation, and sources of the long-term growth of the U.S. economy. Prerequisite: ECO 1. (SS)

ECO 231. Business History (3)
The historical context of the development of the modern business firm in the United States. The roles of entrepreneurship, economic structure, technology, and government policy in the shaping of current business practices. Prerequisite: ECO 1. (SS)

ECO 234. Labor-Management Relations (3)
An analytical study of the U.S. system of industrial relations, including the evolution of the labor movement, worker choice on the issue of union representation, the process of collective bargaining and the impact of collective bargaining on the management of the firm. Prerequisite: ECO 1. (SS)

ECO 235. Labor Economics (3)
The economic analysis of labor markets, with emphasis on labor supply and demand, wage and employment theory, and the economics of unionism and other labor market institutions. Prerequisite: ECO 1. (SS)

ECO 237. Transportation Economics (3)
The principles of transportation in theory and practice. Transport models and their relationship to economic activity. Analysis and evaluation of transportation policies, industry structure and performance. Prerequisite: ECO 1. (SS)

ECO 240. Ireland’s Public Sector (3)
This course focuses on public sector programs—and the method used to finance them—in Ireland and compares their structure to that found in both the United States and other countries of Western Europe. Topics include: the policy of neutrality and military (peace-keeping) operations, environmental protection, social welfare programs, health care, education at the primary, secondary
and tertiary levels, and key infrastructure areas such as urban planning and transportation systems. Special attention is devoted to how membership in the European Union has impacted the evolution of these programs in Ireland. Prerequisite: ECO 1. (Offered only through Lehigh in Ireland Study Abroad Program). (SS)

ECO 245. Statistical Methods II (3)
This course is a continuation of Economics 145, and gives broader coverage of linear regression and the construction of empirical models. Topics include the analysis of variance, simple and multiple regression, index numbers, forecasting, nonparametric methods, and statistical methods for quality control. Prerequisites: Economics 145, or a comparable course in introductory statistics. (ND)

ECO 246. Business Cycles and Forecasting (3)
A study of short-term business fluctuations, growth, forecasting and stabilization. Prerequisites: ECO 1 and a course in statistics. (ND)

ECO 303. Economic Development (3)
Economic development, economic growth and their political environment are discussed in detail. The principal economic development theories are examined. These theories are used to examine a variety of development issues including planning, poverty, rural-urban relationships, physical and human capital accumulation, international trade, and the environment. Emphasis on institutions and development policy. Prerequisite: ECO 105 or 146. (SS)

ECO 311. Environmental Economics (3)
Resource allocation implications of environmental degradation. Analysis of the benefits and costs associated with alternative pollution control programs and strategies. Prerequisite: ECO 105 or 146. (SS)

ECO 312. Urban Economics (3)
The analysis of economic problems related to urban areas; the nature and function of cities; the economic and spatial characteristics of urban activity. Prerequisite: ECO 105 or 146. (SS)

ECO 313. History of Economic Thought (3)
A survey of the important historical writings that form the foundation of today's mainstream economic theory. Emphasis is on the period from 1750 to 1950 and on such notable economists as Smith, Ricardo, Walras, Marshall and Keynes. Prerequisite: ECO 105 or 146 or 119. (SS)

ECO 314. Energy Economics (3)
The economic theory of natural resource allocation over time. Economics of exhaustible and renewable resources. Environmental effects of energy production and consumption. Government regulation of the energy industry. Computer models for energy system forecasting and planning. Prerequisite: ECO 105 or 146. (SS)

ECO 315. Industrial Organization (3)
Structure of American industry. Development of economic models to describe behavior in markets with varying degrees of competition. Technological innovation, relationship between industry concentration and rates of return on capital, role of information and advertising, dynamics of monopoly and oligopoly pricing. Prerequisite: ECO 105 or 146. (SS)

ECO 322. Competitor and Market Analysis (3)
Competitors, partners, and firms and governments strategically interact. This course uses game theory to analyze issues like pricing by competitors, vertical integration and contracting issues in supplier-buyer relationships, collective actions and joint ventures, and research and development program. Students use both mathematical models and cases to analyze these interactions. Prerequisites: ECO 105 or 146, ECO 145 and MATH 21, 31 or 51. (SS)

ECO 323. Evolution of Business Strategy (3)
Analyzes how business firms have adapted to changes in technology, relative factor prices, globalization, and the extent of government intervention in the market. Material will be presented through discussion of case studies from the nineteenth and twentieth centuries. Prerequisite: ECO 1. (SS)

ECO 324. The Economics of the Sports Industry (3)
This course analyzes the role of basic economic forces in shaping today's sports industry. Topics include: competition in the market for professional franchises; public subsidies for stadiums and arenas, compensation of professional athletes, the NCAA as an economic enterprise, and the impact of athletics on a university's budget. Prerequisite: ECO 105 or 146. (SS)

ECO 325 (MKT 325). Quantitative Marketing Analysis (3)
This course explores economics and management science approaches to improve marketing decision making and marketing interactions in such areas as strategic marketing, e-marketing, advertising, pricing, sales force management, sales promotions, new products, and direct marketing. The development, implementation, and use of quantitative models are emphasized. Cases are used to illustrate how these models can be applied. Students have the opportunity to learn how to use and evaluate models through spreadsheet-based assignments. Prerequisites: MKT 211, ECO 145, ECO 105 or 146, and MATH 21, 31 or 51. (SS)

ECO 327. Real Options and Investment Strategy (3)
This is an introductory course in financial economics. It focuses on the principles underlying financial decision making, with applications to stocks, bonds, and real estate. It is intended for students with strong technical backgrounds who are comfortable with mathematical arguments. The course is divided into three main parts: deterministic finance, single-period uncertainty finance, and options theory. Prerequisite: FIN 323. (ND)

ECO 332. Monetary-Fiscal Policy (3)
Monetary, credit and fiscal policies of governments and central banks with particular reference to the policies of the United States Treasury and the Federal Reserve System. Prerequisite: ECO 119 or 129. (SS)

ECO 333. The Economics of Business Decisions (3)
Students analyze business problems using economic logic and techniques like mathematical programming, marginal analysis and decision making under risk and uncertainty. New topics like asymmetric information and the analysis of organizations are introduced. Case studies are emphasized. Prerequisites: ECO 105 or 146, ECO 145, ECO 245, and MATH 21, 31 or 51. (SS)
ECO 336. Business and Government (3)
Analysis of government involvement in the private sector. The problems of monopoly, oligopoly, and externalities in production and consumption. Optimum responses to market failure and analysis of the performance of actual government policies. Prerequisite: ECO 105 or 146. (SS)

ECO 339. International Trade (3)
The theory of international trade; the theory of tariffs; United States commercial policies; the impact of growth and development of the world economy. Prerequisite: ECO 105 or 146. (SS)

ECO 340. International Finance (3)
Analysis of balance of payments and disturbances and adjustment in the international economy; international monetary policies. Prerequisite: ECO 119 or 129. (SS)

ECO 342. Economic Development in China (3)
An examination of the economic, political and social forces at work in the development process in China since 1949. Special emphasis on post-1978 market reforms, the rural-urban divergence, the role of foreign trade and investment, the accumulation of human capital, and the deterioration of the physical environment. Course concludes with a detailed discussion of possible futures of the Chinese economy. Prerequisite: ECO 303. (SS)

ECO 343. European Economic Integration (3)
Study of the problems of economic integration throughout Europe, especially in the Post-Cold War era among Western, Central and Eastern European nations. Prerequisite: ECO 209 (may be taken concurrently with permission of instructor). (SS)

ECO 346. Numerical Methods for Business Decisions (3)
This course provides a connection between textbook economics/finance and the problems of real world business. It emphasizes practical numerical methods rather than mathematical proofs. Problems in finance are emphasized. The course teaches students how to use EXCEL macros and advanced VBA (the industry standard) programming techniques to model and manipulate financial data. Prerequisite: FIN 323. (ND)

ECO 351. Introduction to Mathematical Economics (3)
Application of mathematical techniques to economic problems of optimization and to economic models. Prerequisites: ECO 105 or 146 and 119 and MATH 21, 31 or 51. (ND)

ECO 352. Advanced Statistical Methods (3)
Advanced probability theory, probability and sampling distributions, and classical statistical inference. Index numbers, multiple regression, correlation, and analysis of variance. Spectral analysis, Box-Jenkins autoregressive and moving average stochastic processes. Prerequisites: ECO 105 or 146 and a course in statistics. (ND)

ECO 353. Public Finance: Federal (3)
A course dealing with the expenditures and revenues of the federal government. Major topics include public choice theory, benefit-cost analysis, the theory of public goods, the economics of taxation and the design of tax structures. Prerequisite: ECO 105 or 146. (SS)

ECO 354. Public Finance: State and Local (3)
A course dealing with the expenditures and revenues of state and local governments. Major topics include the theory of fiscal federalism, intergovernmental fiscal transfers, the design of state and local tax structures, capital budgeting and debt finance, pension funds and school finance. Prerequisite: ECO 105 or 146. (SS)

ECO 357. Econometrics (3)
Problems in construction, evaluation and use of econometric models. Applications based on research and case studies. Prerequisites: ECO 105 or 146 or 119, ECO 145 or equivalent course in statistics, and ECO 245. (ND)

ECO 358 (IE 358). Game Theory (3)
A mathematical analysis of how people interact in strategic situations. Applications include strategic pricing, negotiations, voting, contracts and economic incentives, and environmental issues. Prerequisites: ECO 105 or 146 and MATH 21, 31 or 51. (SS)

ECO 362. Martindale Research Seminar (1-3)
This course prepares students to undertake research on various topics in business and/or economics. Admission to this course is limited to student associates of the Martindale Center for the Study of Private Enterprise. Consent of the instructor is required. Course may be repeated for credit up to a maximum total number of 3 hours credit. This course does not count towards an Economics major or minor. (ND)

ECO 368. Health Economics (3)
Supply and demand in the health service markets for the U.S. and Canada. Unique features of health care which interfere with competitive market allocation and pricing. Overview of insurance systems and other payment methods. Prerequisites: ECO 105 or 146 and a course in statistics. (SS)

ECO 371. Special Topics in Economics (3)
Study in various fields of economics, designed for the student who has a special interest in a subject not included in the regular course schedule or for the student interested in pursuing a significant supervised research project in economics. Students interested in enrolling in this course must submit a written proposal to a member of the faculty with expertise in the proposed subject area and to the department chair prior to the registration period for the relevant semester. Prerequisite: ECO 105 or 146 or 119. This course may count towards the ECO major only once; it does not count towards the ECO minor. (ND)

ECO 401. Basic Statistics for Business and Economics (3)
Descriptive statistics, probability and probability distributions, estimation, hypothesis testing, correlation and regression, chi-square analysis and analysis of variance. Computer applications.

ECO 402. Managerial Economics (3)

ECO 404. Technology, Trade and Growth (1)
Overview of the role of technology in economic systems. Productivity and growth effects, relationships to industry
structure, impacts on international trade and competitiveness. Prerequisite: intended to be taken concurrently with ECO 402.

ECO 411. History of Economic Thought (3)
Selected topics in the history of economic thought, with special attention to the origins of modern economic theory. Prerequisite: a graduate course in economic theory.

ECO 412. Mathematical Economics (3)
Applications of various mathematical techniques in the formation and development of economic concepts and theories. Prerequisite: consent of the instructor.

ECO 413. Advanced Microeconomics Analysis (3)
A survey of methods of decision-making at the microeconomic level; price theory and econometric applications. Prerequisite: ECO 402 or equivalent.

ECO 414. Advanced Topics in Microeconomics (3)
Resource allocation and price determination. Theories of choice of consumers, firms and resource owners under various market forms. Prerequisites: ECO 401 and ECO 413 or equivalents.

ECO 415. Econometrics (3)
Computer applications of standard econometric techniques using regression analysis in a single-equation context. Discussion of problems of multicollinearity, heteroscedasticity and autocorrelation. An introduction to simultaneous equation models, identification and estimation problems. Prerequisite: ECO 401 or equivalent.

ECO 416. Econometric Theory (3)
Mathematical and statistical specification of economic models. Statistical estimation and tests of parameters in single and multiple equation models. Prediction and tests of structural changes. Prerequisites: ECO 401 (or equivalent) and calculus.

ECO 417. Advanced Macroeconomics Analysis (3)
Macroeconomic theory and policy. Emphasis on theoretical models and policy implications.

ECO 418. Advanced Topics in Macroeconomics (3)
Models of employment, income and growth in monetary economies. Policies for economic stability and growth. Prerequisite: ECO 417 or equivalent.

ECO 420. Real Options (3)
This is an introductory graduate level course in financial economics. It is intended for students with strong technical backgrounds who are comfortable with mathematical arguments. The course is divided into three major parts: deterministic finance, single-period uncertainty finance, and options theory and its applications. Prerequisite: GBUS 420.

ECO 424. Advanced Numerical Methods (3)
This course focuses on techniques that apply directly to economic analyses. A particular emphasis on problems in finance. The course teaches students how to use EXCEL macros and advanced VBA (the industry standard). It is designed for decision making in business settings. Prerequisite: GBUS 420.

ECO 425. Cost-Benefit Analysis (3)
Theory and methods of cost-benefit analysis: efficiency and equity as criteria in program evaluation; proper measurement of market and non-market costs and benefits; consideration of risk, uncertainty, appropriate discounting techniques and distributional consequences; applications to the evaluation of health care policies and therapies.

ECO 428. Capital and Interest Theory (3)
Theories of interest and capital. Annuities; applications of present value theory; investment valuation under uncertainty and risk; term structure of interest rates; the theory of savings, cost of capital and capital formation. Prerequisite: GBUS 406/MBA 402 or equivalent.

ECO 429. Monetary Theory (3)
The role of money in the economy from theoretical and empirical perspectives. The influence of money and prices, interest rates, output and employment.

ECO 430. Public Finance (3)
The economics of public spending and taxation; principles of government debt management; theories of budgeting and cost-benefit analysis and public choice.

ECO 436. Economic History of the United States (3)
Analysis of the colonial economy, transition to industrialization, and the role of trade and transportation in America’s development. A consideration of the importance of slavery to the 19th-century American economy and other New World economies. Origin and development of banking and financial markets. Prerequisites: ECO 401 and ECO 402 or equivalents.

ECO 440. Labor Economics (3)
The economics of labor markets and various labor-market institutions with emphasis on current theoretical and empirical research. Prerequisites: ECO 401 and ECO 402 or equivalents.

ECO 447. Economic Analysis of Market Competition (3)
Mathematical models based on game theory and industrial organization. Cases are used to analyze the strategic interaction of firms and governments as competitors and partners.

ECO 451. Urban Economics (3)
The application of traditional and spatial economics to the location of economic activity focusing on the urban economic problems of business location, housing, land value, land use and intra-urban transportation.

ECO 453. Government Regulation of Business (3)
Analysis of the economic justification for government regulation of private enterprise. Topics include antitrust policy, utilities, and health, safety and environmental regulation. Prerequisite: ECO 402 or equivalent.

ECO 454. Economics of Environmental Management (3)
Economic theory of natural resources. Optimal policies for the development of renewable and nonrenewable resources and environmental quality. Prerequisite: ECO 402 or equivalent.

ECO 455. Health Economics (3)
Economic theory of health care delivery systems. Financing health care services. Case studies of specific economic-financing problems and/or international comparisons of health care delivery. Prerequisite: ECO 401 or ECO 402 or equivalents or permission of the instructor.

ECO 456. Industrial Organization (3)
The goal of the course is to review theoretical and empirical attempts by economists to understand market structures lying between the extremes of perfect competition and monopoly. The course will focus first on
describing the current U.S. industrial structure and reviewing models of imperfect competition. The course then shifts to a closer study of individual firm behavior. The final segment of the course is an overview of two significant relationships between government and industry caused by the existence of imperfect competition.

ECO 457. Bio-Pharmaceutical Economics (3)
Characteristics of the market for pharmaceuticals; barriers to entry, competition and innovation; pricing and regulatory pressures on drug companies; commercialization and financing of biotech startups; international comparisons of public policy.

ECO 460. Time Series Analysis (3)
Classical decomposition of time series, trend analysis, exponential smoothing, spectral analysis and Box-Jenkins autoregressive and moving average methods.

ECO 461. Forecasting (3)
Methods of economic and business forecasting.

ECO 462. Advanced Statistics for Business and Economics (3)
An expanded development of statistical concepts necessary for business and economic research. Topics include probability theory, sets, density functions and distributions, sampling distributions, point estimation, moment generating functions, maximum likelihood, classical statistical inference, power functions, likelihood ratio tests and non-parametric tests. Prerequisite: calculus.

ECO 463 (IE 458). Topics in Game Theory (3)
A mathematical analysis of how people interact in strategic situations. Topics include normal-form and extensive-form representations of games, various types of equilibrium requirements, the existence and characterization of equilibria, and mechanism design. The analysis is applied to micro-economic problems including industrial organization, inter-national trade, and finance.
Prerequisites: Two semesters of calculus, ECO 414 and ECO 412, or permission of the instructor.

ECO 471. International Economic Development (3)
An introduction to the basic theoretical concepts in international economic development and an evaluation of their application by means of a representative sample of the literature.

ECO 472. International Trade Theory (3)
Theories of comparative advantage, factor price equalization, trade and welfare, tariffs, trade and factor movements.
Prerequisite: ECO 413 or consent of the chair.

ECO 473. International Monetary Economics (3)
Theory of the balance of payments, the microeconomics of international finance, various approaches to balance-of-payments adjustments, theories of foreign exchange-rate determination and macroeconomic policy under fixed and flexible exchange rates.
Prerequisite: ECO 417 or consent of the chair.

ECO 475. Special Topics in Economics (1-3)
Extended Study of an approved topic not covered in scheduled courses. May be repeated for credit.

ECO 480. Economics of Technological Change (3)
Explores theoretical models and empirical evidence on the economics of innovation and technical change.

Includes examination of: the role of technology in competitiveness, industrial structure and economic growth; alternative models of the innovative process; incentives for and other conditions affecting research and development; the evaluation of the justifications for government support of R&D. Prerequisite: ECO 402 or equivalent.

ECO 491. Master's Thesis
ECO 499. Dissertation

Education, College of

The College of Education has one academic department, the Department of Education and Human Services. The department faculty and program offerings are listed below followed by descriptions of course offerings. More details on specific degree requirements and on university graduate school regulations can be found in the section Advanced Study and Research.

Department of Education and Human Services

Professors. Sally A. White, Ph.D. (Univ. of New Mexico); Donald Ward M. Cates, Ed.D. (Duke); interim associate dean; Nicholas Ladany, Ph.D. (SUNY-Albany) chairperson; Linda M. Bambara, Ed.D. (Vanderbilt) associate chairperson; George J. DuPaul, Ph.D. (Rhode Island) associate chairperson; Christine L. Cole, Ph.D. (Wisconsin-Madison); Asha K. Jitendra, Ph.D. (Oregon); Lee Kern, Ph.D. (Univ. of South Florida); J. Gary Lutz, Ed.D. (Lehigh); Edward S. Shapiro, Ph.D. (Pittsburgh). Iacocca Professor of Education; Arnold R. Spokane, Ph.D. (Ohio State); George P. White, Ed.D. (Vanderbilt); Roland K. Yoshida, Ph.D. (Univ. of Southern California); Perry A. Zirkel, J.D., Ph.D. (Connecticut), L.M. (Yale).

Associate Professors. Alec M. Bodzin, Ph.D. (North Carolina State); H. Lynn Columba, Ed.D. (Louisville); Judith A. Duffield, Ph.D. (Florida State); April E. Metzler, Ph.D. (Florida); Tina Q. Richardson, Ph.D. (Maryland).

Assistant Professors. Margaret E. Barber, M.A. (Columbia Univ. Teacher's College); Mary Jean Bishop, Ed.D. (Lehigh); Grace L.L. Caskie, Ph.D. (University of North Carolina); Kathryn Ann DiPietro, Ph.D. (Tennessee); Nanette S. Fritschmann, M.S. (California State); Robin L. Hojnosi, Ph.D. (University of Massachusetts); Arpana G. Inman, Ph.D. (Temple); Amanda M. Klo, M.A. (Columbia Univ. Teacher's College); Patricia H. Manz, Ph.D. (Univ. of Pennsylvania); Jill Sperandio, Ph.D. (University of Chicago).


Adjunct Faculty. Gary C. Alexander, Ph.D. (Univ. of Minnesota); Tonya Amanwata, M.A. (Oral Roberts Univ.); Karen M. Beerer, Ed.D. (Lehigh); Jeanette S. Berkley, Ed.D. (Lehigh); Ian T. Birky (Counseling Services); Timothy E. Bonner, M.Ed. (Kutztown); Barbara L. Cohen, Psy.D. (Widener); Cathy S. Daniel, Ph.D. (Louisiana State); Carol S. Derham, Ed.D. (Lehigh); Caroline D'Fonco-Hoy, Ph.D. (Lehigh); Roger J. Douglas, Ed.D. (Lehigh); Lisa Ann Draper, Ph.D. (Pennsylvania State); Robert H. Egolf, Ph.D. (Lehigh); Patrick D. Finochio, Ed.D. (Univ. of Minnesota); Diane
E. Flisser, Ed.D. (Lehigh); Susan N. Fuller, Ph.D. (Univ. of Nebraska); Scott R. Garrigan, Ed.D. (Lehigh); Michael P. George, Ed.D. (Missouri-Columbia); Nancy L. George, Ed.D. (Univ. of Missouri-Columbia); Ronald Goldberg, Ph.D. (Lehigh); Beth R. Golden (Counseling Services); Robert D. Hassler, Ed.D. (Lehigh); Karen Hendershot, M.Ed. (College of New Jersey); Roberta A. Heydenberk, Ed.D. (Lehigh); Warren R. Heydenberk, Ed.D. (Colorado); Karen M. Hicks, Ph.D. (Univ. of Pennsylvania); Alexandra Hilt-Panahon, Ph.D. (Syracuse); Daphne Pappas Hobson, Ed.D. (Columbia University Teacher's College); Claire Smith Hornung, Ed.D. (Lehigh); Donald O. Hunter, Ed.D. (Iowa); Joel B. Ingersoll, Ph.D. (Fairleigh Dickinson); Lynda E. Irvine, M.A. (Ohio State); Kevin Kelly, Ph.D. (Lehigh); Clark M. Kirkpatrick, Ph.D. (Alabama); Freya Koger, Ph.D. (Lehigh); Karen L. Laudenslager, M.S. (Florida State); Carla J. Manno, Ph.D. (Univ. of Virginia); Ronald J. Marino, Ph.D. (Michigan State); Beverly A. Martin, Ed.D. (Lehigh); Michael McAllister, Ph.D. (Oregon); Colleen McDonough, Ph.D. (Lehigh); Robert A. Mesaro, Ph.D. (Univ. of Pennsylvania); Gregory J. Moncada, Ed.D. (Univ. of Minnesota); Philip B. Monteeith, Ed.D. (Vanderbilt); Susan A. Moran, Ph.D. (Univ. of Maryland); Keith Morgen, Ph.D. (Lehigh); Ronald R. Musoleno, Ph.D. (Univ. of Kansas); Andy Page-Smith, Ed.D. (Univ. of Sarasota); Merits M. Page-Smith, Ed.D. (Univ. of Sarasota); Carlos J. Panahon, M.S. (Syracuse); Jacqueline S. Phillips, Ed.D. (Univ. of Northern Colorado); Rosalyn P. Pitts, Ph.D. (Lehigh); Thomas J. Power, Ph.D. (Univ. of Pennsylvania); Eve Pritts, Ed.D. (Kentucky); Ralph H. Pruit, M.Ed. (Univ. of Oregon); Carol M. Richman, Ph.D. (Virginia Commonwealth); Maura L. Roberts, Ph.D. (Lehigh); Tina M. Roemersma, Ph.D. (Lehigh); Tessie E. Rose, Ph.D. (Univ. of Utah); Jeffrey Rudski, Ph.D. (Univ. of Minnesota); Kristin D. Arndt-Sawka, Ph.D. (Lehigh); Thomas A. Sears, Ph.D. (So. Illinois); Nastir Shah, Ph.D. (American); Bruce S. Sharkin, Ph.D. (Univ. of Maryland); Timothy J. Silvestri, Ph.D. (Lehigh); Carole S. Smith, M.S. (Temple); David R. Snyder, Ed.D. (Lehigh); Sherly S. Solose, Ed.D. (Lehigh); Kristin M. Starosta, M.Ed. (Lehigh); Karen Evans Stout, Ph.D. (Univ. of Minnesota); Bruce M. Taggart, Ph.D. (Connecticut); C. Lynn Tax, M.Ed. (Pennsylvania State); Nathan H. Taylor, Ph.D. (North Carolina State); Larry Upton, Ph.D. (Univ. of Minnesota); Jeffrey S. VanLone, Ph.D. (West Virginia); Patricia L. Waller, Ed.D. (Lehigh); David W. Warren, Ph.D. (Claremont); Edmond A. Watters III, Ed.D. (Lehigh); David R. Weikotten, Ph.D. (Lehigh); Paula A. Weychert, M.Ed. (Lehigh); Peter Zeitoun, Ph.D. (Univ. of Alabama); Kenneth K. Zellner, M.Ed. (Kutztown); Ethel Zilber, Ed.D. (Lehigh); George A. Ziolkowski, Ph.D. (Pennsylvania State).

Affiliated Faculty. Susan Barrett (Psychology); Mark H. Bickhard (Psychology); Diane T. Hyland (Psychology); Vincent G. Munley (Economics); Ageliki Nicolopoulou (Psychology); John Nyby (Biological Sciences); Padraig G. O'Seaghdha (Psychology); Neal G. Simon (Biological Sciences).

The department offers master's degrees and/or professional certification in counseling and human services, educational leadership, elementary and secondary education, global educational leadership, instructional design and development, instructional technology, international counseling, school counseling, and special education as well as the Ed.S. degree in school psychology and professional certification in school psychology and special education. Ed.D. degree program is offered in educational leadership. Ph.D. degrees are offered in counseling psychology, learning sciences and technology, school psychology, and special education. While general courses are listed separately, the courses pertinent to each program are listed below.

Education

EDUC 383. Supervised Research in Applied Psychology (1-3)
Provides undergraduate junior and senior psychology majors a formal supervised research experience in applied psychology. Students are assigned for the semester to a research team led by a participating faculty member in the counseling psychology or school psychology programs in the College of Education. (Repeatable up to 6 credits.)

EDUC 388. Statistical Computing (3)
Use of one or more major statistical software packages. Principles of data coding, editing, integrity checking, and management. Emphasis on link between personal computers, mainframes, and other software. Prerequisite: EDUC 408 or consent of instructor.

EDUC 402. Developmental Psychology (3)
Survey of theories and research concerning perceptual, cognitive, social, and personality development through infancy and childhood. Prerequisite: Graduate standing or consent of instructor.

EDUC 403. Research (3)
Basic principles of research; techniques of gathering and analyzing data; design of studies in education. Emphasis on critical reviews of research reports representing various methodologies. Research report required.

EDUC 405. Qualitative Research Methods (3)
Foundations of qualitative design as research methodology for answering questions in education. Topics include history, philosophy, types, methods, applications, and critical reading of qualitative research reports. Emphasis on developing key researcher skills of gaining entrance, collecting, analyzing and interpreting data, establishing credibility, and writing and publishing results.

EDUC 408. Introduction to Statistics (3)
Organization and description of data. Principles of statistical inference including hypothesis testing, interval estimation, and inferential error control. Emphasis on application.

EDUC 409. Analysis of Experimental Data (3)
Emphasis on analysis of variance designs including one-way, factorial, nested, and repeated measures designs. Introduction to multiple regression and the analysis of covariance. Prerequisite: EDUC 408 or consent of instructor.

EDUC 410. Univariate Statistical Models (3)
The univariate general linear model. Principles of expressing models and hypotheses about those models. Emphasis on similarity among the analysis of variance, multiple regression, and the analysis of covariance. Examples of non-standard models and generalization to complex designs. Prerequisite: EDUC 409 or consent of the instructor.
Participants will examine, explore and understand the and support services available to ELL students. Participants will learn the effective assessment practices (ELLs) Language Support Services Knowledge. The course will address part three: English Language Learners (ESL) programs. This is a broad-spectrum course around the use of assessment tools, and other evaluation measurements for instructional materials and strategies. Participants will be able to identify appropriate materials and resources to be used with students at each level of English proficiency.

EDUC 412. Advanced Applications of Psychometric Principles (3)

Conceptual examination of exploratory and confirmatory factor analysis, cluster analysis, latent-trait modeling, and other advanced psychometric topics. Prerequisites: EDUC 409 or equivalent or SCHP/CPSY 427.

EDUC 416. (SR 416) Quasi-Experimentation and Program Evaluation (3)

Social science research methods for non-laboratory settings. Detailed examination of a dozen quasi-experimental research designs, three dozen threats to validity, possible controls, and uses in social program evaluation. Nonmathematical presentation.

EDUC 419 (MLL 419). Second Language Acquisition (SLA) Theory (3)

This course introduces theories of second-language acquisition, including issues of acquisition of English as a second language as well as other languages. Various theories of communication and language acquisition will be covered.

EDUC 421 (MLL 421). Intercultural Communication (3)

Language is ambiguous by nature, and discourse is interpreted in cultural and linguistic contexts. This course covers different cultural and linguistic strategies individuals use to communicate, essential concepts for interacting with individuals from other cultural and linguistic backgrounds, and different strategies of communication as defined by specific cultures. Covering the theory and practice of intercultural interaction, the course examines assumptions about language and culture and includes practical advice to help students develop the cultural sensitivity essential for communication today.

EDUC 422. (ESL 422) Theory and Practice for Second Language Learning (3)

This course presents the application of second language acquisition (SLA) theories in relationship to teaching, and reviews methods and materials needed for ESL instruction in a regular classroom and in a pullout program. This course will demonstrate the knowledge of fundamental concepts and practices of English as a second language (ESL) instruction with an emphasis on instructional materials and strategies. Participants will be able to identify appropriate materials and resources to be used with students at each level of English proficiency.

EDUC 423. (ESL 423) Second Language Assessment (3)

This is a broad-spectrum course around the use of assessment tools, and other evaluation measurements for diagnosis, prescription, and evaluation of students in English as a second language (ESL) programs. This course will address part three: English Language Learners (ELLs) Language Support Services Knowledge. Participants will learn the effective assessment practices and support services available to ELL students. Participants will examine, explore and understand the purposes for assessment, multiple assessment models, use of evaluation techniques, scaffolding of assessments, and formal/informal assessment tools. Finally, participants will gain hands-on experience in test administration, interpretation and reporting.

EDUC 451. Applied Principles of Cognitive Psychology (3)

Basic principles and contemporary theories of cognitive psychology will be covered, especially regarding the application of these principles to education. Experimental research relevant to contemporary theories of cognitive psychology and the application of these theories in educational settings will be reviewed.

EDUC 461. Single-Subject Research Design (3)

Experimental designs for use with small N’s. Topics include design theory and application, experimental validity (internal, external, statistical conclusions and construct validity) and an overview of data analysis procedures.

EDUC 471. (CPSY 471) Diversity and Multicultural Perspectives (3)

Examination of the influence of culture, gender, and disabilities on behavior and attitudes. Historical and current perspectives on race, culture, gender, and minority group issues in education and psychology. Lecture/small group discussion. Course is restricted to graduate students in the College of Education only.

EDUC 473. (SR 473) Social Basis of Human Behavior (3)

Development of human behavior from a social psychological perspective. Emphasis placed on the impact of society upon school-age children and adolescents.

EDUC 486. Doctoral Qualifying Research Project (1-3)

Research design and application to meet requirements for doctoral programs. May be repeated for credit.

EDUC 491. Advanced Seminars: (with subtitle) (1-6)

Intensive study and discussion of a specialized area. Title will vary. May be repeated for credit as title varies.

EDUC 493. Internship in: (with subtitle) (1-6)

Opportunity for students to apply theory to practice in a variety of educational settings. Students will be supervised in the field and participate in seminars dedicated to addressing specific concerns and issues encountered during their experience. Prerequisite: consent of the program director.

EDUC 494. Field Work in: (with subtitle) (3)

Identification of significant problems in an educational environment, review of the literature, and development of appropriate research plans.

EDUC 495. Independent Study in: (with subtitle) (1-6)

Individual or small group study in the field of specialization. Approved and supervised by the major adviser. May be repeated.

EDUC 496. Doctoral Research Seminar (3)

For doctoral students. Research design and application to various kinds of educational problems; data collection and analysis. Criticism and evaluation of student proposals. May be repeated for a maximum of nine credits.
Counseling Psychology

CPSY 407. (SCHP 407). Crisis Management in the Schools. (3)
This course is designed to provide students with knowledge and skills related to crisis preparedness and intervention in the schools. Relevant theories and research literature will be explored as well as practical elements of crisis response that are applicable to all school systems. In addition, intervention strategies and protocols will be examined and discussed. Permission of instructor is required.

CPSY 427. (SCHP 427) Standardized Tests, Measurement and Appraisal (3)
Principles of psychological measurement (e.g., tests construction, technology, validity, reliability, functional utility). Ethical, legal, and cultural issues in the administration and interpretation of psychological tests. Case conceptualization, reporting and presentation.

CPSY 430. Professional Seminar (3)
Professional, ethical, and legal issues in counseling. Management and delivery of counseling services in a culturally diverse society. Professional development, certification, licensure, and role identification.

CPSY 436. Culture-Centered Career Intervention (3)
Examination of the career development process and interventions for children, adolescents, and adults with a culture-centered perspective. Study of theorists, vocational assessment process, and occupational and psychological information systems.

CPSY 439. Theory and Practice of Group Counseling (3)
Introduction to the process of group counseling and therapy. Selection of group members; group rules; group procedures with children, adolescents and adults; ethical considerations with groups. Study of research on group processes, group therapy, and group leadership. Prerequisites: permission of the program coordinator required.

CPSY 440. Introduction to Family Counseling (3)
Research and current trends in the practice of family counseling. Overview and analysis of major theoretical approaches of family therapy.

CPSY 442. Counseling and Therapeutic Approaches (3)
Theory, research, and technique of counseling within a cultural context. Prerequisites: Admission to CPSY master’s program or permission of counseling psychology program coordinator.

CPSY 443. Counseling and Therapeutic Approaches Laboratory (1)
One-credit laboratory will cover counseling skills used in diverse theoretical approaches. Must take along with CPSY 442.

Overview of the history, philosophy and current trends in elementary and secondary school counseling. Emphasis is placed on (a) professional, ethical, and legal issues in counseling; (b) management and delivery of counseling services in a school setting and culturally diverse society; (c) professional development, certification and role identification; (d) collaboration and consultation with teachers, parents, and administrators. Students will be involved in a pre-practicum observation of school counselors in a K-12 setting.

CPSY 448. Elementary and Secondary School Counseling – II (4)
Emphasis on the social and cultural context of elementary and secondary school counseling. Includes ethical, legal, and cultural issues in the administration and interpretation of psychological tests used in K-12 settings. Focus on a special topic such as school violence or substance abuse prevention, school and community interaction, and the social and cultural context of school counseling, etc. The course will also include observations in schools.

CPSY 449. Elementary and Secondary School Counseling – III (4)
Theory and methods of consultation, development and implementation of student assistance programs; intra- and inter-agency collaborations. The course will also include observations in schools.

CPSY 451. Helping Skills (3)
Helping Skills is a course designed to provide counselor trainees with didactic and experiential learning opportunities to facilitate and enhance beginning counseling skills. Counselor trainees will begin to develop an understanding of the counselor’s role in assisting or inhibiting client change. This course utilizes such techniques as modeling, role-playing, audiotape feedback, as well as other learning modalities. Particular emphasis is given to theoretical frameworks, cultural competency, and self-understanding.

CPSY 452. Counseling Issues and Skills: Facilitating Healthy Adjustment (3)
Course assists counselors in developing proficiency in helping skills and an understanding of the counselor’s role in facilitating or inhibiting client change. Focus is on gaining knowledge related to mental health issues for third culture children and adolescents that include (a) cultural adjustment, (b) eating disorders, (c) depression and suicidality, (d) substance abuse, (e) anxiety, (f) family dysfunction, and (h) career development.

CPSY 453. Counseling Issues and Skills: Building Healthy Communities (3)
The objectives of this course are for students to develop proficiency in counseling skills and gaining knowledge related to constructing prevention programs for children and adolescents that include (a) substance abuse, (b) sexually transmitted disease and teen pregnancy, (c) eating disorders, (d) violence prevention, and (e) resiliency and competency promotion programs. Special focus will be paid to understanding the components of an effective crisis management plan.

CPSY 455. Counseling Issues and Skills: Advanced Techniques in Counseling (3)
The objectives of this course are to help students expand knowledge of traditional counseling theories and facilitate the development of basic counseling and assessment skills. Specifically, the course is designed to: (1) Enhance students’ understanding of the intersection of characteristics of effective helping, stages of the helping relationship, and the uses of counseling techniques; (2) Expand students’ understanding of the difference between foundational skills, commonly used helping skills and techniques that require specialized training;
and (3) Provide students with training experiences that expand conceptual understanding of the counseling process from a multicultural perspective (i.e., from initial intake interviews to integrating assessment information to formulating and carrying out intervention plans to termination).

CPSY 460. (PSYC 475) Theories of Psychological Counseling (3)
Analysis and synthesis of concepts drawn from counseling theorists. Research and current trends in counseling concerning educational, social and vocational problems. Prerequisites: admission to the Ph.D. program in counseling psychology or permission of the counseling psychology program coordinator.

CPSY 461. Assessment of Adult Intellectual Functioning (3)
Administration and interpretation of individual tests/batteries of adult intelligence and neuropsychological functioning. Consideration of psychological and cross-cultural issues in intellectual assessment. Preparation of psychological reports. Prerequisite: CPSY 427 and permission of the instructor.

CPSY 462. Assessment of Personality (3)
Consideration of issues and methods of personality assessment, including ethical and legal issues, and cross-cultural issues. Practice in the administration of instruments used for personality assessment. Supervised experience and report writing. Prerequisites: CPSY 427 and admission to the Ph.D. program in counseling psychology.

CPSY 466. Current Issues in Counseling and Therapy (1-6)
Examination of an area of counseling or therapy that is of topical interest to students and faculty. Permission of program director required. May be repeated for credit.

CPSY 470. Independent Study and Research (1-6)
Individual or small group study in the field of counseling. Approved and supervised by the major adviser. May be repeated for credit.

CPSY 471. (EDUC 471) Diversity and Multicultural Perspectives (3)
Examination of the influence of culture, gender, and disabilities on behavior and attitudes. Historical and current perspectives on race, culture, gender, and Lehigh minority group issues in education and psychology. Lecture/small group discussion. Course is restricted to graduate students in the College of Education only.

CPSY 472. Human Development Across the Lifespan (3)
An examination of prevailing theories of human growth and development across the lifespan. Examination of the interactive effect of various age groups upon one another. Particular emphasis on the helping relationships.

CPSY 473. (SCHP 473) Advanced Research Methods in Applied Psychology (1-3)
For doctoral students in applied psychology. Issues and methods of research design, data collection and data analysis. Advanced discussion of quantitative, qualitative and single-case research design. Admission to the Ph.D. program in counseling psychology or school psychology or permission of the instructor.

CPSY 476. Supervision of Counseling (1-6)
For candidates for supervisor’s certificate or doctorate in counseling. Observation and supervision of counseling practicum students. Prerequisites: CPSY 480 and permission of instructor.

CPSY 480. Practicum (1-4)
Twenty hours of weekly supervised practicum training for advanced graduate students in individual, group, and family counseling and therapy. Prerequisites: CPSY 442 and permission of instructor. May be repeated for credit.

CPSY 481. Advanced Multicultural Counseling (3)
This seminar covers models and theories of multicultural counseling and intervention. Students should be actively engaging in practice with multicultural clients in a practicum or field site, and these cases will form part of the basis of course discussions. Prerequisites: CPSY 471, admission to the doctoral program in counseling psychology, and permission of the counseling psychology program coordinator.

CPSY 483. Field Work in Counseling (3-6)
Twenty hours of weekly supervised professional practice in a school or agency setting as an extension of CPSY 480, Practicum. On-site supervision, audio and/or video recordings and case presentations required. Prerequisites: CPSY 480 and permission of the counseling psychology program coordinator.

CPSY 485. Advanced Psychopathology (3)
This class will cover etiology, assessment, interviewing techniques, establishing a therapeutic alliance, and treatment planning in adult mental disorders. In depth coverage will be given to Axis II disorders. The diagnosis and classification of abnormal behavior using DSM-IV-R medical model will be emphasized. Alternate theories of abnormal psychology will also be discussed. Prerequisite: PSYCH 435, Abnormal Psychology.

CPSY 486. Family Counseling Clinic (3-6)
Supervised practicum training for advanced graduate students in family counseling and therapy. Techniques and methods of conducting family counseling and therapy. Prerequisites: CPSY 480 and CPSY 440.

CPSY 487. Advanced Doctoral Practicum I (4)
Supervised clinical experience with emphasis on advanced skills in interpretation, case conceptualization from a theoretical perspective, termination and referral, and in the broad array of professional activities normally conducted by a counseling psychologist. Audio and video recording, individual and group supervision. Prerequisite: Admission to the doctoral program in counseling psychology and permission of the counseling psychology practicum coordinator.

CPSY 488. Advanced Doctoral Practicum II (4)
Supervised clinical experience with emphasis on advanced skills in interpretation, case conceptualization from a theoretical perspective, termination and referral, and in the broad array of professional activities normally conducted by a counseling psychologist. Audio and video recording, individual and group supervision. Prerequisites: CPSY 487 and permission of the counseling psychology practicum coordinator.

CPSY 489. Advanced Doctoral Practicum III (1)
Supervised field experience in counseling and therapeutic settings for doctoral students with specific populations. In consultation with on-site supervisor, the student will develop an area of focus for this practicum that will include therapy experience, training and additional assessment skills as needed. Repeatable for a total of 3
credits. Prerequisites: CPSY 488 and permission of the counseling psychology practicum coordinator.

CPSY 491. Advanced Doctoral Practicum IV (1)
Supervised field experience in counseling and therapeutic settings for doctoral students with specific populations. In consultation with on-site supervisor, the student will develop an area of focus for this practicum that will include therapy experience, training and additional assessment skills as needed. Repeatable for a total of 3 credits. Prerequisites: CPSY 489 and permission of the counseling psychology practicum coordinator.

CPSY 492. Advanced Field Placement (1)
Students perform counseling in university and community agencies under the supervision of the Ph.D. psychologists at the field placement. Open only to students in counseling psychology. This course does not meet the requirements for CPSY 466. Course may be repeated for up to 2 credits. Prerequisites: CPSY 491 and permission of the counseling psychology practicum coordinator.

CPSY 498. Counseling Psychology Doctoral Internship (1)
A one year full-time or two year half-time supervised internship in professional psychology. Student functions as regular staff member. Regular contact with academic advisor required in addition to end-of-semester evaluation by the internship site and the student. Prerequisite: CPSY 491 and permission of the counseling psychology practicum coordinator. (Repeatable for a total of 3 credits).

Educational Leadership

EDL 400. Introduction to Organizational Leadership: Theory and Practice (3)
Development of theories of administration and applications in educational institutions. Administrative behavior in organizational settings; administrator’s leadership role in decision-making, evaluation, and conflict resolution.

EDL 405. The Principalship (3)
Major problems of organization and administration of schools, types of organization, pupil promotion, program of studies, teaching staff, pupil personnel, contract management, time allotment, plant and equipment, and community relations. Prerequisite: EDL 400.

EDL 406. School Principals Clinic (3-6)
Simulated materials workshop on administrative decision-making open to practicing and prospective elementary and secondary school administrators.

EDL 407. Development and Leadership of Middle Level Programs (3)
Exploration of the design of programs to meet the needs of the pre and early adolescent learners with a focus on organizational structure, instructional practices, curriculum design, staffing, student assessment, and community involvement.

EDL 420. Leading and Managing Curriculum and Instruction Programs (3)
Exploration of the theory, research and practice associated with an effective curriculum and instruction program. Topics include program planning, implementation and evaluation, legal issues, contract management, and budgetary considerations. Emphasis on field-based research and data-based decision making in program design and evaluation.

EDL 422. Curriculum Management for the School Executive (3)
A survey of the methods used to facilitate a curriculum development process based on the theories and findings from research and practice. Application of concepts to practical problems in curriculum leadership to acquire skills in the change process for instruction innovation. Emphasis on current theory and research in standards, technology, and curriculum integration.

EDL 428. Practicum in Supervision of Curriculum and Instruction I (2)
Supervised field experience in all aspects of district-wide curriculum and instructional activities. Requires monthly seminar meetings.

EDL 429. Practicum in Supervision of Curriculum and Instruction II (2)
Advanced supervised field experience in all aspects of district-wide curriculum and instructional activities. Requires monthly seminar meetings. Pre-requisite: EDL 428.

EDL 430. Development and Administration of Special Education Programs (3)
Exploration of the research and practice of an effective special education program. Emphasis on curriculum development, field-based research, and data-based decision making program design and evaluation, and the relationship of the special education program to the pupil services program and the regular curriculum.

EDL 432. Special Education Law (3)
An overview of the relevant legislation, regulations, and case law concerning the education of students with disabilities in pre-k through secondary school.

EDL 434. Leadership and Management of Special Education Programs (3)
Introduction to the management practices related to effective leadership of special education programs including budget development and management, staffing, instructional practices, student assessment practices, and parent involvement.

EDL 438. Practicum in Supervision of Special Education and Pupil Services Programs I (2)
Supervised field experience in all aspects of district-wide special education programs. Requires monthly seminar meetings.

EDL 439. Practicum in Supervision of Special Education and Pupil Services Programs II (2)
Supervised field experience in all aspects of district-wide special education programs. Requires monthly seminar meetings. Pre-requisite: EDL 438.

EDL 440. Development and Administration of Pupil Services Programs (3)
Exploration of the research and practice of an effective comprehensive pupil services program. Emphasis on involvement of community agencies, field-based research, and data-based decision making, program design and evaluation, and the relationship of the pupil services program to the regular and special education curriculum.

EDL 442. Leadership and Management of Pupil Services Programs (3)
Overview of the management practices related to effective leadership of pupil services programs, including
EDL 450. Curriculum Design in a Global Society (3)
Exploration of global issues and their effects on what is taught in schools, specifically in international schools. Emphasis on the analysis of curriculum and the influence that culture plays in decision making.

EDL 452. Comparative Education (3)
Survey of education practices abroad. Systems of articulation, social and legal foundations, and structure in government. Emphasis on the nature and purpose schools in various cultural contexts and the major problems and trends occurring throughout the world.

EDL 461. Facilitating Organizational Inquiry (2)
Exploration into the use of reflective practice and inquiry for professional development and school improvement. Development of group facilitation skills for collective inquiry. Reflection and inquiry will serve as the foundation for development of an action research project.

EDL 462. Transforming the Learner (2)
Exploration of the integration of social, personal, cognitive, and knowledge-building dimensions to support learning and literacy. Focusing on the metacognitive conversations with self and others essential for developing learning and leadership.

EDL 463. Designing Systems of Action (3)
Implementation of action research project. Building understanding of how the project impacts and is influenced by school and community systems. Explores the application of learning theory as related to leadership. Continued development of leadership concept and tools.

EDL 464. Sustaining Learning Communities (2)
Completion of action research. Design and facilitation of a symposium of inquiry results. Review the behaviors of leadership that sustain learning in the classroom, school, and community.

EDL 466. Supervision of Instruction (3)
Analysis of the principles underlying the organization and supervision of instruction; application to specific teaching situations K-12.

EDL 467. Supervision and Professional Development (3)
Emphasis on establishing skills in human resource management and supervision, including staff selection, supervision models, assessment and feedback methods, managing a diverse workforce, and adult development related to professional growth options. This course is designed specifically for individuals enrolled in a supervisory certification program.

EDL 468. Applied Learning Theory for School Leadership (3)
Overview of the foundations, principles, and theories of curriculum, teaching, and learning. Emphasis on historical perspectives, teaching and learning for understanding, and schools as professional organizations. The purpose is to provide prospective administrators with the background for developing a balanced and challenging school-wide curriculum, for supervising instruction, and for supporting school improvement.

EDL 469. Advanced Instructional Supervision (3)
A staff development approach to supervision designed to extend the supervisor's knowledge of and skills in applying clinical techniques to instructional supervision.

EDL 470. Special Topics in Educational Leadership: (with subtitle) (1-6)
Intensive study and discussion of a specialized area. Title will vary. May be repeated for credit as title varies.

EDL 473. Human Resources Management (3)
Overview of the effective utilization of the human resources of educational organizations. Trends in human resource planning, recruitment, selection, development, evaluation, compensation and contract administration.

EDL 476. School Financial Management (3)
Theoretical and practical foundation in financial management emphasizing the economics of education, financing and distribution of funds, and the management of funds at the school and district level.

EDL 477. Seminar in School-Community Relations (3)
Analysis and development of the communication and public relations skills needed by educators in dealing with the public.

EDL 479. School Law (3)
Effect of school law on administration of public school systems; analysis and synthesis of judicial interpretations of the constitutions, statutes, rules, regulations, and common law relating to educational issues.

EDL 481. Policy and Politics in Public Education (3)
Analysis of the forces, factors, agencies, formal governmental systems and informal subsystems that influence educational policy in local districts and state and national governments.

EDL 485. The Superintendency (3)
A theoretical and historical examination of superintendents' leadership, school board/superintendent relations, and the array of duties and demands upon the superintendent.

EDL 486. Superintendency Clinic (3)
Practical experiences in meeting the challenges inherent in the position of superintendent and associated central office positions. Emphasis on the five basic functional roles of the superintendent: CEO to school board, human resources manager, instructional leader, financial manager, and director of community relations.

EDL 488. Program Evaluation (3)
The historical background, theory, methodology, and current practices of program evaluation in the human services area. Emphasis on conducting evaluations of educational programs and gathering data to make effective program decisions. Participants are required to design a program evaluation research plan.

EDL 489. Doctoral Seminar in School Administration (3)
Analysis of the theoretical, empirical, and conceptual aspects of contemporary issues in educational administration and their implications for policy formulation and implementation in educational institutions. Prerequisite: Official standing as a doctoral student in educational leadership.
School Psychology

SCHP 402. (SPED 402). Applied Behavior Analysis (3)
Theory and application of behavior modification methods in classroom and clinical settings. Topics include behavior analysis, outcome research, task utilization, and single case research.

SCHP 404. Historical and Contemporary Issues in School Psychology (3)
History of psychology, education, and school psychology. Roles and function of school psychologist; legal and ethical aspects of school psychology.

SCHP 406. Research Methods and Design (3)
This course is designed to provide skills in the use and application of research methodologies and in the conceptualizing and writing of research proposals. Specifically, the course is focused on developing conceptual knowledge of specific research methods, interpreting data using specific methods of analysis, and developing independent research skills focused around one's own research project.

The course is primarily designed for doctoral students in School Psychology and Special Education. Permission of instructor is required.

SCHP 407. (CPSY 407). Crisis Management in the Schools (3)
This course is designed to provide students with knowledge and skills related to crisis preparedness and intervention in the schools. Relevant theories and research literature will be explored as well as practical elements of crisis response that are applicable to all school systems. In addition, intervention strategies and protocols will be examined and discussed. Permission of instructor is required.

SCHP 412. Consultation Procedures (2)
Observational methodology utilized in consultation; rationale, theory and methods of consultation; individual, group and parent consulting. Study of research on the consultation process. Students must also register for one credit of SCHP 431.

SCHP 422. Assessment of Intelligence (3)
Administration and interpretation of individual tests of intelligence used in school evaluation and preparation of psychological reports. Prerequisite: permission of instructor.

SCHP 423. Behavioral Assessment (3)
Techniques of behavioral assessment including direct observation, interviews, checklists, rating scales, self-monitoring and role-play tests. Prerequisite: permission of instructor.

SCHP 425. Assessment and Intervention in Educational Consultation (3)
Collection and use of data in designing classroom interventions. Curriculum based assessment, direct behavioral assessment, and structured interviews, and the interrelationship with diagnoses are emphasized within the behavioral consultation model. Utilization of data from actual case studies. Prerequisites: SCHP 402, SCHP 423.

SCHP 426. Advanced School and Family Interventions (3)
Overview of school-based and family-based intervention strategies for children and adolescents presenting inter-personal, emotional, developmental or behavioral challenges. Examples of topics covered include crisis intervention, peer-mediated interventions, self-management interventions, behavioral parent training, interventions for child abuse/neglect and computer-assisted instruction. Prerequisite: SCHP 402 or permission of instructor.

SCHP 427. (CPSY 427) Standardized Tests, Measurement and Appraisal (3)
Principles of psychological measurement (e.g., tests construction, technology, validity, reliability, functional utility). Ethical, legal, and cultural issues in the administration and interpretation of psychological tests. Case conceptualization, reporting and presentation.

SCHP 429. Special Topics in School Psychology (with subtitle) (1-3)

SCHP 431. Practicum in Consultation Procedures (1-3)
Supervised experience in conducting school-based consultations. Co-requisite, SCHP 412.

SCHP 432. Practicum in Assessment of Intelligence (1-3)
Supervised experience in the administration and interpretation of intelligence tests. Co-requisite, SCHP 422.

SCHP 433. Practicum in Behavioral Assessment (1-3)
Supervised experience in conducting behavioral assessments in school settings. Co-requisite, SCHP 423.

SCHP 434. (SPED 434) Applied Research Practicum (1-3)
Designing and conducting research projects in applied settings.

SCHP 435. Practicum in Assessment & Intervention in Educational Consultation (1-3)

SCHP 436. Specialized Practicum in School Psychology (with subtitle) (1-3)
Supervised field experience in school psychology with a specific population or setting. May be repeated for credit. Permission of instructor required.

SCHP 437. Advanced Child Psychopathology (3)
Advanced training in the definition, classification, etiology, long-term outcome, and treatment of children and adolescents with various psychopathological disorders. Emphasis is placed upon the assessment and treatment of child and adolescent psychopathology in school settings. Prerequisites: admission to doctoral program or by permission of instructor.

SCHP 438. Health/Pediatric Psychology (3)
Introduction to training in the definition, etiology and behavioral/academic characteristics of children and adolescents with medical disorders. Emphasis is placed on the assessment and treatment of educational and behavioral sequelae of medical disorders in both school and health settings. Prerequisites: admission to doctoral program in school psychology or permission of instructor.

SCHP 439. Comprehensive School Health Programs (3)
Examination of school-wide programs designed to
address health care needs of children and adolescents in school settings. Focus is on development of primary prevention and integration of educational, medical, social and community resources. Permission of instructor required.

**SPED 440. Applications of Pediatric School Psychology**
Focus on further development of students’ knowledge and application of pediatric school psychology. The etiology and developmental course of pediatric medical conditions will be examined, emphasizing the impact on school, family and community environments. Prerequisite: SCHP 438 or SCHP 439 or permission of instructor.

**SPED 442. Doctoral Practicum in School Psychology (1-6)**
Field-based experience in providing psychological services in school and/or clinical settings. Prerequisite: admission to doctoral program. May be repeated for credit.

**SPED 443. Certification Internship (1-6)**
Full-time experience in clinical/educational settings. Student must complete a minimum of 1,200 clock hours under joint supervision of faculty and field supervisor. May be repeated for credit.

**SPED 444. Doctoral Internship (1-6)**
Full-time experience in clinical/educational settings. Student must complete a minimum of 1,500 clock hours under joint supervision of faculty and field supervisor. May be repeated for credit.

For doctoral students in applied psychology. Issues and methods of research design, data collection and data analysis. Advanced discussion of quantitative, qualitative and single-case research design. Admission to the Ph.D. program in counseling psychology or school psychology or permission of the instructor.

**SCHP 496. Doctoral Seminar in School Psychology (with subtitle) (3)**
Selected topics in school psychology (titles will vary) including professional issues, assessment and intervention in school settings, and supervision of school psychology services. May be repeated for credit. Prerequisite: admission to doctoral program.

**Special Education**

**SPED 330. Special Topics in Special Education: (with subtitle)(1-3)**
Current issues in the education of individuals with special needs. Titles vary. May be repeated for credit as title varies.

**SPED 332. Education and Inclusion for Individuals with Special Needs (3)**
Legal, educational and social issues related to the special education of individuals with mental retardation, physical disabilities, emotional/behavioral disorders, learning disabilities, visual and hearing impairments, health impairments and those who are intellectually gifted. Emphasis will be on meeting the diverse needs of students in general education classrooms and settings.

**SPED 338. (PSYCH 338) Emotional and Behavioral Disorders of Children (3)**
Definition, classification, etiology, treatment, and historical perspective of children and adolescent disorders.

**SPED 402. (SCHP 402) Applied Behavior Analysis (3)**
Theory and application of behavior modification methods in classroom and clinical settings. Topics include behavior analysis, outcome research, task utilization, and single case research.

**SPED 418. Life Skills and Transition Strategies (3)**
Curriculum and methods for teaching skills of daily living and preparing students with disabilities for transition to adult living. Includes vocational training, community skills, home and daily living, self-care, leisure, communication and functional academics. Emphasis on transition planning for students with physical disabilities, emotional disturbance, learning disabilities, developmental disabilities, traumatic brain injury, autism, severe disabilities and related challenges.

**SPED 419. Academic and Curricular Strategies for Individuals with Disabilities (3)**
Methods course designed to increase knowledge of instruction of reading, language arts, mathematics and content area skills. Emphasis on instructional design and strategies, evaluation of commercial textbooks and possible modifications needed for use with individuals with disabilities.

**SPED 420. Intern Teaching: Certification (2-3)**
Competency-based practice in application of procedures for teaching a broad spectrum of individuals with special needs in preparation for Level I Certification as a Teacher of the Mentally or Physically Handicapped. Prerequisite: consent of program coordinator one semester before registering for this course.

**SPED 428. Positive Behavior Support (3)**
The design of comprehensive, multicomponent behavior support plans for individuals with disabilities who engage in challenging behaviors. Topics include functional assessment strategies, antecedent and setting event interventions, alternative skill training, consequence strategies, lifestyle interventions and teaming strategies. Taught from a noncategorical perspective. Prerequisite: SCHP 402 or permission of the instructor.

**SPED 429. Professional Seminar (3)**
Master’s seminar on current issues in the area of special education and research design. Prerequisite is 18 graduate credits in special education.

**SPED 430. Advanced Seminar in Special Education (3)**
Advanced issues relating to the field of special education. Titles will vary.

**SPED 434. (SCHP 434) Applied Research Practicum (1-3)**
Designing and conducting research projects in applied settings.

**SPED 440. Early Academic Intervention (3)**
Explores the potential effectiveness of interventions to prevent academic failure of children at risk for learning difficulties. Emphasis on research-based interventions in the areas of beginning reading, language and vocabulary, writing and spelling, awareness of print and exposure to print, and mathematics (number sense).
SPED 444. Classroom Management (3)
Introduction to positive behavior support strategies to improve student behavior. Topics include school-wide and class-wide interventions and functional assessment to develop individualized behavior support plans. Prerequisite: Enrollment in special education program.

SPED 446. Practicum/Seminar in Academic Interventions (3)
Supervised field work with emphasis on designing and implementing academic interventions. Emphasis on collaboration with general education teachers and parents. requires one-hour monthly seminar meetings. This course is restricted to students enrolled in the Academic Intervention Specialist program.

SPED 448. Practicum/Seminar in Positive Behavior Specialist 1 (3)
Introductory supervised field work with emphasis on conducting functional assessments, designing positive behavior support plans, and teaming with families and professionals. Requires one-hour weekly meetings with faculty and other practicum students. This course is restricted to students enrolled in the Positive Behavior Specialist program.

SPED 450. Practicum/Seminar in Positive Behavior Specialist 2 (3)
Advanced field work with emphasis on resolving difficult case problems in positive behavior support. Requires one-hour weekly meetings with faculty and other practicum students. This course is restricted to students enrolled in the Positive Behavior Specialist program.

SPED 452. Assessment and Planning for Individuals with Disabilities (3)
Educational assessment procedures for individuals with special needs. Understanding and applying formal and informal assessments. Emphasis on curriculum-based assessment for placement and monitoring student progress in instructional materials. Translating assessment information to develop an individualized instructional plan for a student with a disability.

SPED 465. Advanced Methods for Inclusion (3)
Advanced techniques for educating students with disabilities in general education based on current research and practice. Accommodations and planning for physical inclusion. Instructional inclusion through embedded instruction, adaptations, and curriculum overlapping. Decision hierarchies for level of instructional adaptation. Social inclusion methods through methods of social facilitation. Taught from a non-categorical perspective and addresses students with all levels of disability (e.g., mild and severe). Prerequisite: SPED 332, admission to the special education program, or permission of instructor.

SPED 490. Doctoral Seminar in Special Education (3)
Advanced knowledge of issues and research in the education of individuals with special needs. Topics will vary. May be repeated for credit. Prerequisite: admitted for doctoral studies.

Teaching, Learning and Technology

EDT 401. Foundations of Educational Technology (3)
History and overview of the field with consideration of key learning theories and principles that guide designers and developers. Identification of prominent figures and organizations, key issues and terms, and useful resources in the field. Consideration of forces affecting adoption of innovation with a focus on future directions in teaching and learning with technology.

EDT 404 Interactive Multimedia Programming (3)
Introduction to programming interactive multimedia applications in education and training. Emphasis on creating applications utilizing sound, video, graphics and other digital resources.

EDT 408. Advanced Learning Theories Applied to Educational Technology: (with subtitle) (3)
Advanced seminar examining theories of socio-historical psychology and their application to educational technology. Topics will vary (for example, Vygotsky's Theories Applied to Educational Technology, Communication Theories Applied to Educational Technologies, Group Dynamics Theories Applied to Educational Technologies). May be repeated for credit under different topic. Prerequisite: EDT 401.

EDT 415. Topics in Educational Technology: (with subtitle) (3)
Current issues and practices related to the use or adoption of educational technology. Topics will vary (for example, The Role of Educational Technology in Teaching Persons with Special Needs; Educational Technology in the Workplace; Managing Educational Technology Product Development). May be repeated for credit as topic varies.

EDT 422. Design 1: The Systematic Design of Instruction (3)
Introductory exploration of instructional design models and philosophies and their implications for teaching and learning using technology. Heavy focus on instructional message design. Applies perception theory, communication theory, and learning theory to the design of instructional media. Students in this course design instructional materials employing the theories and guidelines explored. Prerequisite: EDT 401.

EDT 425. Design 2: Applied Instructional and Interface Design Principles (3)
Exploration and application of design models for learning. Special emphasis on graphical user interfaces in education and training. Prerequisite: EDT 422.

EDT 428. Design 3: Advanced Instructional Design (3)
Advanced instructional design and interface issues. Design of instructional environments, selection of instructional metaphors, impact of the interface on the user, and demands of designing for newer learning technologies. Prerequisite: EDT 425.
EDT 432. Development 1: Website and Resource Development for Learning (3)
Introduction to resource development and HTML editing tools used in the creation of eLearning Websites. Covers fundamentals of: HTML and commercial Web-creation software packages; scanners and digital video cameras; and use of digital resource creation-and-manipulation programs.

EDT 435. Development 2: Interactive Multimedia Programming for Learning (3)
Introduction to creating educational applications utilizing sound, video, graphics and other digital resources. Prerequisite: EDT 432.

EDT 438. Development 3: Advanced Development of Instructional Resources and Technologies (3)
Focus on using more sophisticated Website and digital resource development-and-manipulation tools to create multimedia learning materials. Topics will vary (for example, Database-Driven Web Development; Assistive Devices for Special Populations; Programming Handheld Devices; Audio Resource Development; Media Production for Instructional Programming). May be repeated for credit under different topic. Prerequisite: EDT 435.

EDT 470. Technology Across the Curriculum (3)
Curricular issues related to using technology in various school settings. Technology's varying roles in schools. Emphasis on instructional and curricular concerns and how technology affects educational decisions.

EDT 471. Planning for Implementing Technology in School Settings (3)
Logistics of implementing technology in educational settings. Covers staffing, budgeting, and facilities development and management, staff development, and proposal preparation.

EDT 472. Integrating Technology into Classroom Teaching: (Topic varies) (3)
Fostering teacher awareness of the potential of a particular technology or set of technologies for use with students. Teachers in the course will experience hands-on work with promising technologies and enhance their skills at incorporating such technologies into teaching and learning. Sample technologies (course topics) include the World Wide Web, handheld devices, GIS applications, online databases, and the like.

EDT 482. Critical Reading and Writing in Educational Technology (3)
Using literature to build persuasive written arguments. Searching and identifying promising sources, distilling research findings, synthesizing literature to support an argument, and organizing written materials to enhance persuasiveness. Suited to those writing qualifying proposals, dissertation proposals, dissertations, funding proposals, conference proposals, and journal articles. Prerequisite: EDUC 403.

EDT 485. Applied Research in Educational Technology (3)
Approaches and techniques applicable to empirical research studies in educational technology; both quantitative and qualitative. Students design and carry out small-scale investigations of research questions and hypotheses related to educational technology and write up research reports of their findings and conclusions. Prerequisites: EDT 425 and EDUC 403.

EDT 490. Integrating Experience in Instructional Design and Development (3)
Project-based design and development. Students work in teams to design and develop internal or external instructional technology projects under the direction of a faculty member. Prerequisites: EDT 425 and EDT 435.

LST 401. Overview of Learning Sciences and Technology (3)
Foundations and key concepts in Learning Sciences and Technology. Cognition and brain-based research with a focus on technology's role in learning.

LST 403. Learning Environments (3)
Social, cognitive, and physical factors in teaching and learning. Systems theory applied to learning settings. Special emphasis on motivational theories.

PMGT 401. Project Management: Course Framework & Project Leader Assessment (1)
Introduction to the Project Management Certification Course; syllabus, requirements and deliverables. Students will become acquainted with: the terminology, nine knowledge areas, relationships to other disciplines, project management context and processes. Introduction to the logistical vehicles for course delivery and the tools to be used. Students will also assess themselves as project leaders and explore project leader competencies, roles, responsibilities and stakeholder relationships.

PMGT 402. Project Management: Skills and Abilities for Effective Leadership of Teams (1)
Students will enhance project team leadership skills, define the work environment of project teams, team selection, develop a team charter, clearly define the roles and responsibilities of all project team members, set team guidelines, learn methods to promote teamwork, understand the stages of development, manage team dynamics. Additional skills covered: delegation, managing accountability without direct authority over project team members, managing dysfunctional teams, performance improvement, input to performance appraisals, rewards, recognitions, celebrations. Prerequisite: PMGT 401.

PMGT 403. Project Management: Initiating the Project and Planning Scope and Schedule (2)
Students will learn techniques for deciding whether to undertake a project and for planning project outcomes and schedules. The relationship of projects to organizational planning and budgeting, information and performance appraisals systems will be discussed. Approaches will be shared for identifying and classifying project stakeholders and designing and conducting a cost benefit analysis. How to define desired project outcomes clearly and completely and how to determine project work to be performed using decomposition and templates will be addressed. Students will learn how to develop a project charter, a scope statement, a Work Breakdown Structure, a WBS dictionary and a Linear Responsibility Chart. How to create a network diagram and analyze schedule possibilities using the Critical Path Method (CPM) and the Program Evaluation and Review Technique (PERT) will be explained. Fast tracking and crashing a schedule will also be explored. Displaying a schedule with a Gantt Chart, key events list and activities will be illustrated. How to support these activities
PMGT 404. Project Management: Planning Resources, Communication, Quality and Risk Management (2)
In this course, students will learn how to estimate the needs for personnel and other types of project resources, to develop a project budget and to plan for additional project support activities. Determining the type, amount and timing of resource needs will be emphasized. Approaches to resource leveling will be discussed. The different types of project costs will be explained. The use of analogous estimating, parametric modeling, bottom-up estimating and computerized tools to estimate costs will be explored. Planning to ensure project quality and coordinate project communications will be addressed. Identifying, assessing, and preparing a plan to manage project risks will also be discussed. Planning for project procurement and associated solicitations will be explained. Students will learn how to develop resource matrices, loading charts and graphs and a project budget. How to support these activities using MS Project will be demonstrated. Prerequisites: PMGT 401, PMGT 402, PMGT 403

PMGT 405. Project Management: Project Leader Communications Expertise and Evaluating Team Performance (1)
The purpose of this weekend seminar is to strengthen the project leader's communication skills, change-management skills, conflict resolutions skills, and team evaluation skills. Focus areas will also include the following: understanding the art and science of effective listening, managing multiple expectations, communicating "bad news," and learning tools and techniques for project team evaluation. Prerequisites: PMGT 401, PMGT 402, PMGT 403, PMGT 404

PMGT 406. Project Management: Implementing and Managing Projects (2)
Students will learn techniques and processes to start and perform the actual project work. Suggestions for working successfully in a matrix management environment will be discussed. Information systems to track schedule performance, labor charges and project expenditures will be expressed. Developing escalation procedures to address project conflicts issues will be emphasized. Procedures for controlling labor and fund charges to a project will be introduced. Key project review and decision meetings will be identified. Planning and implementing quality assurance activities will be addressed. Planning for, awarding and administering contracts will be discussed. How to support these activities using MS Project will be demonstrated. Prerequisites: PMGT 401, PMGT 402, PMGT 403, PMGT 404, PMGT 405

PMGT 407. Project Management: Controlling Performance and Assessing Outcomes (2)
Students will learn how to monitor and control project activities in progress and how to bring a project to closure. Approaches for assessing project products and services produced will be explored. Techniques for evaluating schedule and cost performance will be introduced. Variance analysis and earned value analysis will be explained. Quality control and risk monitoring and control will be discussed. Change control systems and procedures will be explained. How to prepare focused progress reports and conduct effective project meetings will be discussed. Requirements for closing out contracts and procurements will be detailed. Obtaining user acceptance, closing labor and fund charge accounts and other administrative activities will be discussed. Designing and conducting a post-project review will be explored. How to support these activities using MS Project will be demonstrated. Prerequisites: PMGT 401, PMGT 402, PMGT 403, PMGT 404, PMGT 405, PMGT 406

PMGT 408. Project Management: Problem Solving, Decision Making and Ethics (1)
This 2-day seminar focuses on developing problem solving and ethical decision-making skills. Students will learn to recognize project problems, frame the problem, assess risk, manage risk, plan contingencies, recognize the escalation points, and apply alternate methods. Students will also participate in ethical exercises to strengthen their ability to recognize ethical dilemmas and evaluate decisions. Prerequisites: PMGT 401, PMGT 402, PMGT 403, PMGT 404, PMGT 405, PMGT 406, PMGT 407

TBTE 312. Classroom Practice (1-3)
Experience in elementary and secondary classrooms as related to theories of child and adolescent development, classroom didactics, and philosophies of education. Prerequisites: PMGT 401, PMGT 402, PMGT 403, PMGT 404

TBTE 314. Seminar in Elementary and Secondary Education (3)
Critical analysis and discussion of classroom instruction-al practices based on experiences of participants as they engage in teaching experiences. Prerequisite: consent of the program director.

TBTE 391. Workshops (1-3)
Cooperative study of current educational problems. Provides elementary, secondary, and special education teachers an opportunity to work at their own teaching levels and in their own fields. Limited to six credits during a summer session but the student may register for more than one workshop provided there is no duplication in subject matter.

TBTE 394. Special Topics in Education: (with subtitle) (1-3)
Examination of a topic of research or professional interest in education. Subtitle will vary. May be repeated for credit as subtitle varies.

TBTE 403. Child Development (3)
A study of physical, intellectual, emotional and social aspects of child development as they relate to the elementary schools.

TBTE 404. Youth in Society (3)
Social development, characteristics, and problems of adolescents and young adults. Impact of relationships with sibling, peers, adults, subcultures, in the context of changing institutions and values.

TBTE 405. Introduction to Testing and Evaluation (3)
Construction and evaluation of the teacher-made test. Selection of published tests and interpretation of individual and group results. Use and misuse of tests in assessing achievement.
TBTE 406. Tools for K-12 Teaching and Learning (3)
Application of technology in school-based instructional settings. This course addresses the use of technology tools and resources to enhance and manage learning. Students will demonstrate skills in design and development of Web sites, evaluation and use of educational software, production and integration of digital media, and other key competencies.

TBTE 407. Designing for K-12 Teaching and Learning (3)
Theoretical, philosophical and curricular foundations of instruction. This course explores theories of learning and their application, implications for the use of technology and standards-based education. Special emphasis on planning, developing and assessing instruction. Prerequisite: Successful prior completion of TBTE 406.

TBTE 410. The Writing Process (3)
Developmental characteristics of children's writing and relationships among writing, spelling and reading. Predictors of writing achievement, teaching strategies and activities, and evaluation schemes will be emphasized, K-12.

TBTE 412. Curriculum and Instruction in Social Studies (3)
Curriculum, content, teaching strategies, and instructional materials of the social studies field. Emphasis will be placed on organizing content, using appropriate methods, testing and evaluation, and innovations for social studies at the elementary, middle, and high school levels. Attention will be given to examining textbooks, courses of study, and teacher-made materials.

TBTE 415. Technology in School Settings: (with substitute) (1-3)
Focused examination of problems, key issues, and approaches to the use of technology in school settings. Topics will vary (for example, Technology's Role in Facilitating School Restructuring; Teaching for Brain-based Learning; Enhancing Gifted Education Through Technology). May be repeated for credit as topic varies.

TBTE 420. Reading in Elementary Education (3)
Principles of teaching reading in elementary schools. Selection of appropriate materials, methods, and techniques. Beginning reading instruction and development of strategies for teaching vocabulary and comprehension in narrative and expository texts.

TBTE 422. Language Arts in Elementary Education (3)
Principles of language learning and the development of communication skills in elementary schools. Methods of teaching listening, speaking, handwriting, spelling, punctuation, and grammar. Selection of appropriate materials and textbooks.

TBTE 424. Children's Literature in Elementary Education (3)
Role of literature in the instructional program of the elementary schools. Use of trade books for individualized instruction in reading, language arts, mathematics, science, and social studies.

TBTE 426. Science in Elementary Education (3)
Principles of the elementary science program. Demonstrations and discussions of appropriate materials and techniques for teaching science concepts to elementary school students. Enrollment limited to available lab space.

TBTE 428. Mathematics in Elementary Education (3)
Mathematical skills and concepts for the elementary school program. Sets, systems of numeration, experience with numbers, operations with numbers, number concepts and numerals, and elements of geometry.

TBTE 440. Reading and Critical Thinking in Middle Level and High School Education (3)
Focuses on expository reading development in content areas such as language arts, mathematics, science and social studies. Practical teaching strategies in critical areas, such as comprehension and study skills. Review of research and methods for improving the reading development of students.

TBTE 442. English in Middle Level and High School Education (3)

TBTE 446. Science in Middle Level and High School Education (3)
Curricula, philosophical, methodology, strategies and safety in the teaching of middle and high school science. Emphasis on laboratory and instructional technology, at-risk and underrepresented students and current models of science education. Permission of the instructor. Enrollment limited to available lab space.

TBTE 448. Mathematics in Middle Level and High School Education (3)
Curricula, instructional activities, and manipulative aids applicable to mathematics courses in middle and high schools. Teaching strategies and materials appropriate for teaching mathematics will be emphasized.

TBTE 461. Participation in Teaching (3)
Study, directed observation of, and initial practice in the various phases of teaching in a laboratory-demonstration school or in area elementary and secondary schools. Prerequisite: consent of the program director.

TBTE 463. Intern Teaching (2-3)
Intensive practice in the application of principles of teaching. Supervision is provided by the cooperating school and by the university. Prerequisite: consent of the program director.

TBTE 464. Intern Teaching Seminar (3)
Critical analysis and discussion of classroom instructional practices. Discussion and illustration based on experience of participants as they engage in intern teaching. Prerequisite: consent of the program director.

TBTE 466. Programs for Gifted and Talented (3)
Characteristics of gifted children; teaching gifted children; programs for the gifted in elementary and secondary schools.

TBTE 471. School Curriculum (3)
Curricular innovations. Applications of curricular designs K-12. Subject matter and course design. Integration and importance of the fine arts and physical education in the curriculum.

TBTE 473. Curriculum Construction (3)
Theoretical models of curriculum design and evaluation. Scope, sequence, articulation, continuity, and balance in designs. Organizing for curriculum planning, development, implementation and change. K-12.
TBTE 480. Curricular Design and Innovation (3) Curricular models and their features, with a focus on how curricular design promotes learning in K-12 settings. Special emphasis on technology-enabled curricula, designing for brain-based learning, and curriculum’s role in innovation.

Electrical and Computer Engineering

Professors. Filbert J. Bartoli, Ph.D. (Catholic University of America), chair, and Chandler Weaver chair; Rick S. Blum, Ph.D. (Pennsylvania), R. W. Wieseman chair of electrical engineering; D. Richard Decker, Ph.D. (Lehigh); Yujie Ding, Ph.D. (Johns Hopkins), Class of ’61 professor; Douglas R. Frey, Ph.D. (Lehigh); Bruce D. Fritchman, Ph.D. (Lehigh); Milestis Hatalis, Ph.D. (Carnegie Mellon); Carl S. Holzinger, Ph.D. (Lehigh); James C. M. Hwang, Ph.D. (Cornell); Thomas L. Koch, Ph.D. (CalTech), Daniel E. and Patricia M. Smith professor, Director of the Center for Optical Technologies; Alastair D. McInayl, Ph.D. (Carnegie Mellon); Marvin H. White, Ph.D. (Ohio State), Sherman Fairchild professor of electrical engineering, Director of the Sherman-Fairchild Center for Solid State Studies.

Associate Professors. Karl H. Norian, Ph.D. (Imperial College, London); Boon Ooi, Ph.D. (Glasgow, UK); Meghanad D. Wagh, Ph.D. (I.I.T., Bombay).

Assistant Professors. Tiffany Jing Li, Ph.D. (Texas A&M); Shalinee Kishore, Ph.D. (Princeton), P. C. Rossin Assistant Professor; Nelson Tansu, Ph.D. (Wisconsin-Madison); Zhiyu Yan, Ph.D. (Illinois Urbana-Champaign); Svetlana Tatic-Lucic, Ph.D. (Cal Tech.)

Professor of Practice. William Haller, M.S. (Lehigh), associate chair, and director of engineering minor program.

The department of electrical and computer engineering (ECE) offers undergraduate and graduate programs of study along with supporting research for students interested in the field of electrical engineering. It also jointly supports undergraduate and graduate programs in computer engineering, and computer science with the computer science and engineering (CSE) department. Graduate study leads to the degrees master of science, master of engineering, and doctor of philosophy in computer engineering.

The undergraduate programs emphasize the fundamental aspects of their respective areas. Engineering design concepts are introduced early in the curriculum, and required instructional laboratories introduce design as a hands-on activity. Electives permit students to tailor their programs according to their interests and goals, whether they be in preparation for graduate study or entry into industry. Students are free to select courses offered by other departments and are encouraged to do so when appropriate. In this way they can prepare themselves for activities which straddle departmental boundaries or for entry into professional schools such as medicine or management. Students have the opportunity to synthesize and apply their knowledge in a senior design project. Students may use the senior design project as a way to participate in the various research projects in the department.

The department maintains a number of laboratories in support of its curricular programs. These laboratories include the sophomore laboratory, junior electronic circuits laboratory, microcomputer laboratory, electromechanics laboratory, lightweight laboratory, digital signal processing laboratory, and the digital systems laboratory. The department has research laboratories in computer architectures, wireless communications, optoelectronics, compound semiconductors, electron device physics, microelectronics fabrication, signal processing, and communications. These laboratories are described more completely in the departmental graduate brochure. These laboratories, among others, are available for undergraduate projects.

The graduate programs allow students to deepen their professional knowledge, understanding, and capability within their subspecialties. Each graduate student develops a program of study in consultation with his or her graduate advisor. Key research thrust areas in the department include:

1. Microelectronics and Nanotechnology.
2. Wireless Communications and Networking.
3. Optoelectronics.

Graduate research is encouraged in these and other areas.

Computers and computer usage are an essential part of the student’s environment. The university provides a distributed network of about 75 high-performance workstations and over 300 PC-compatible microcomputers in public sites throughout the campus. The ECE department, in conjunction with the CSE department, has state-of-the-art systems to augment and extend the generally available university systems. A primary resource is a network of more than 60 Sun workstations, file servers, and compute servers, running the Unix operating system. With over 60 gigabytes of storage, CD-ROM drives, tape drives, and accelerated graphics, these systems provide an array of software tools for students and researchers including programming languages (C, C++, Pascal, FORTRAN, etc.), software development tools, software and hardware simulators, and electronic computer-aided design packages. In addition to the workstations, the department maintains a collection of PC-compatible microcomputers for ECE students, including a set of machines which can be dedicated to hardware/software projects. The workstations and microcomputers are connected via multiple high-speed ethernet, fiber optic, and ATM networks, which are in turn connected to the university’s backbone network, and to the external world through Internet 2. Students are not required by the department nor the university to own a personal computer, but many find such a tool a valuable asset.

A detailed description of the curricular programs follows with a listing of the required courses and with a listing of the departmental course offerings. The departmental courses carry the prefix ECE for electrical and computer engineering. Courses given by the Computer Science and Engineering department have the prefix CSE. Students are urged to search both listings for courses appropriate to their career goals.
Undergraduate Programs

Mission Statement for the Electrical Engineering and Computer Engineering Programs

The mission of the electrical engineering and computer engineering programs is to prepare engineers to meet the challenges of the future, to promote a sense of scholarship, leadership, and service among our graduates, to instill in the students the desire to create, develop, and disseminate new knowledge, and to provide international leadership to the electrical engineering and computer engineering professions.

Program Educational Objectives in Electrical Engineering and Computer Engineering

1. To provide students with the fundamental knowledge for the practice of electrical and computer engineering, and to develop their ability to formulate, analyze and solve electrical and computer engineering problems in practice by applying the fundamental knowledge of mathematics, science, and engineering.
2. To provide the broad education necessary to understand the impact of electrical and computer engineering solutions in a global, societal, and environmental context.
3. To provide students with the foundation and desire for advanced education or graduate study, to instill an awareness of continual changes in their profession in a global context, and to instill the desire for continued lifelong learning.
4. To instill responsible professional attitudes and ethics and to develop skills in communicating effectively in working productively in a multidisciplinary team environment.
5. To provide an environment which enables students to pursue their individual goals in a program which is flexible, challenging and supportive.

Bachelor of Science in Electrical Engineering

The required courses for this degree contain the fundamentals of linear circuits, systems and control theory, electronic circuits, signal theory, physical electronics, electromagnetic theory, energy conversion, digital systems, and computing techniques. A strong foundation in the physical sciences and in mathematics is required. Approved electives, chosen with the advisor’s consent, are selected in preparation for graduate study or entry into industry according to individual interests. The program totals 136 credit hours. The recommended sequence of courses follows:

See freshman year requirements, section III.

Sophomore year, first semester (17 credit hours)
- ECE 33 Introduction to Computer Engineering (4)
- ECE 81 Principles of Electrical Engineering (4)
- PHY 21, 22 Introductory Physics II and Laboratory II (5)
- MATH 23 Analytic Geometry and Calculus III (4)

Sophomore year, second semester (18 credit hours)
- ECE 82 Sophomore Laboratory (1)
- ECE 108 Signals and Systems (4)
- ECE 126 Fundamentals of Semiconductor Devices (3)
- MATH 205 Linear Methods (3)
- ECO 1 Principles of Economics (4)
- HSS elective (3)

Junior year, first semester (17 credit hours)
- ECE 121 Electronic Circuits Laboratory (2)
- ECE 123 Electronic Circuits (3)
- ECE 202 Introduction to Electromagnetics (3)
- MATH 208 Complex Variables (3)
- HSS elective (3)
- free elective (3)

Junior year, second semester (17 credit hours)
- ECE 125 Circuits and Systems (3)
- ECE 138 Digital Systems Laboratory (2)
- ECE 203 Introduction to Electromagnetic Waves (3)
- MATH 231 Probability and Statistics (3)
- approved technical elective* (3)
- free elective (3)

Senior year, first semester (18 credit hours)
- ECE 136 Electromechanics (3)
- ECE 257 Senior Lab I (3)
- HSS elective (3)
- approved technical electives* (6)
- free elective (3)

Senior year, second semester (17 credit hours)
- ECE 258 Senior Lab II (2)
- approved technical electives* (9)
- HSS elective (3)
- free elective (3)

*Approved technical electives are subjects in the area of science and technology. Students must select a minimum of four courses from the ECE or CSE course listings, with a minimum of two courses in one of the technical areas described in the following list. Students must also choose at least one engineering elective in either materials, mechanics, thermodynamics, fluid mechanics or physical chemistry, and at least one science elective in physics, chemistry or biology. For students interested in solid-state electronics, quantum mechanics is recommended for the science elective.

Approved Technical Electives for Electrical Engineering

Breadth Requirement: Minimum of 4 ECE or CSE elective courses.

Depth Requirement: Minimum of 2 courses in one of the technical areas described below.

A. Solid-State Circuits
- ECE 308 Physics and Models of Electronic Devices (3)
- ECE 332 Design of Linear Electronic Circuits (3)
- ECE 333 Medical Electronics (3)
- ECE 351 Microelectronics Technology (3)
- ECE 355 Applied Integrated Circuits (3)
- ECE 361 Introduction to VLSI Circuits (3)
- ECE 362 Introduction to VLSI System Design (3)

B. Signal Processing and Communications
- ECE 337 Intro to Micro-and Nanofabrication (3)
- ECE 212 Control Theory (3)
- ECE 339 Graphical Signal Processing (3)
- ECE 342 Communication Theory (3)
- ECE 343 Digital Signal Processing (3)
- ECE 344 Statistical Signal Processing (3)
- ECE 345 Speech Synthesis and Recognition (3)
- ECE 387 Digital Control (3)
- ECE 389 Control Systems Laboratory (2)
- ME 342 Control Systems (3)
The Master of Engineering degree requires the completion of 30 credit hours of work, which includes design-oriented courses and an engineering project. A program of study must be submitted in compliance with the college rules. An oral presentation of the project is required.

The Ph.D. degree in electrical engineering requires the completion of 42 credit hours of work (including the dissertation) beyond the master's degree (48 hours if the master's degree is non-Lehigh), the passing of a departmental qualifying examination appropriate to each degree within one year after entrance into the degree program, the passing of a general examination in the candidate's area of specialization, the admission into candidacy, and the writing and defense of a dissertation. Competence in a foreign language is not required.

The ECE Department has a core curriculum requirement for graduate students in each of the degree programs. The purpose of this requirement is to guarantee that all students pursuing graduate studies in the department acquire an appropriate breadth of knowledge of their discipline.

**Electrical Engineering:** To satisfy the core curriculum requirements in Electrical Engineering, students must select three (3) courses from the following five (5) different areas: ECE 343 Digital Signal Processing; ECE 401 Advanced Computer Architecture; ECE 402 Advanced Electromagnetic Theory; ECE 420 Advanced Circuits and Systems; ECE 451 Physics of Semiconductor Devices.

**Computer Engineering:** see catalog entry for Computer Engineering.

**M.S. in Photonics**

The Masters of Science degree in Photonics is an interdisciplinary degree that is designed to provide students with a broad training experience in the various aspects of photonics, including topics in Physics, Electrical Engineering and Materials Science and Engineering. It covers both theoretical and practical topics in areas such as fiber optics, integrated optics, lasers, nonlinear optics and optical materials to prepare the students to work in industry directly after graduation. The program is also designed so as to make it possible for students who wish to continue on for a Ph.D. to still satisfy the requirements of their individual departments for the more advanced degree. For details on this program, see the separate catalog section under Interdisciplinary Graduate Study and Research.

**M. S. in Wireless Communications and Network Engineering**

The Master of Science degree in Wireless Communications and Network Engineering at Lehigh University is designed to prepare the next generation of engineers for the communications and networking industries. The curriculum aims to produce graduates that can contribute to the design and analysis of communication systems in the broadest context. To accommodate the student's study of various aspects of wireless communications and networking, we have limited the number of required core courses to allow maximum flexibility in pursuing specific interests. The required core courses are: Communication Theory (ECE 342), Fundamentals of Wireless Communications (ECE 441), and Computer Networks (ECE 404). In addition to the core courses, the students will take advanced courses that are aimed to furnish the student with a...
deeper knowledge of more specific types and aspects of information networks. ECE 342 must be the first course taken and the core courses should precede advanced courses.

**Departmental Courses**

Courses are listed under the prefixes ECE and CSE. Generally, electrical engineering courses carry the ECE prefix and appear in the following listing. Computer science courses carry the CSE prefix. Computer engineering courses are found under either prefix. The CSE courses are listed in the Computer Science and Engineering department section in this catalog. The reader should consult both listings.

**Electrical and Computer Engineering (ECE)**

For Undergraduate Students

**ECE 33 (CSE 33). Introduction to Computer Engineering (4)** fall

Analysis, design and implementation of small digital circuits. Boolean algebra. Minimization techniques, synchronous sequential circuit design, number systems and arithmetic. Microcomputer architecture and assembly level programming. Prerequisite: ENGR 1 or CSE 17.

**ECE 81. Principles of Electrical Engineering (4)** fall and spring


**ECE 82. Sophomore Lab (1)** spring

An introduction to the fundamental laboratory instrumentation and measurement techniques of electrical and computer engineering. Five or six experiments based on the fundamental concepts discussed in the prerequisite courses. Introduction to PSPICE and application of various computer aids to design and documentation. Discussions of electrical components and laboratory safety. Use of an engineering notebook and report writing. One three-hour laboratory per week. Prerequisites: ECE 33 and ECE 81, previously.

**ECE 108. Signals and Systems (4)** spring

Continuous and discrete signal and system descriptions using signal space and transform representations. Includes Fourier series, continuous and discrete Fourier transforms, Laplace transforms, and z-transforms. Introduction to sampling. Prerequisite: ECE 81.

**ECE 121. Electronic Circuits Laboratory (2)** fall

One lecture and one laboratory per week. Experiments illustrating the principles of operation of electronic devices and their circuit applications. Basic electronic instrumentation and measurement techniques. Co-requisite: ECE 123.

**ECE 123. Electronic Circuits (3)** fall

Methods for analyzing and designing circuits containing electronic devices. Topics include device models, basic amplifier configurations, operating point stabilization, frequency response analysis, and computer-aided analysis of active circuits. Prerequisite: ECE 108.

**ECE 125. Circuits and Systems (3)** spring


**ECE 126. Fundamentals of Semiconductor Devices (3)** spring

Introduction to the physics of semiconductors in terms of atomic bonding and electron energy bands in solids. Charge carriers in semiconductors and carrier concentration at thermal equilibrium. Principles of electron and hole transport, drift and diffusion currents, generation and recombination processes, continuity. Treatment of semiconductor devices including p-n junctions, bipolar junction transistors and field effect transistors. Prerequisite: ECE 81.

**ECE 136. Electromechanics (3)** fall

Two lectures and one laboratory per week. An experimental introduction to electromechanical energy conversion. Basic concepts of magnetic fields and forces and their application to electrical apparatus including electromechanical transducers, transformers, AC and DC machines. Prerequisite: ECE 81.

**ECE 138. Digital Systems Laboratory (2)** spring

Experiments on circuits, machines, and electronic devices. Elementary network theory. Survey laboratory for students not majoring in electrical or computer engineering. Prerequisite: ECE 81.

**ECE 201 (CSE 201). Computer Architecture (3)** spring


**ECE 202. Introduction to Electromagnetics (3)** fall

Elements of vector analysis, Coulomb's law, Biot-Savart's and Ampere's laws, Lorentz Forces, Laplace's, and Maxwell's equations, boundary conditions, methods of solution in static electric and magnetic fields, including finite element numerical approach. Quasistationary fields, inductance. Prerequisites: MATH 205, Phys. 21.

**ECE 203. Introduction to Electromagnetic Waves (3)** spring

Uniform plane waves in free space and in materials, skin effect. Waves in transmission lines and waveguides, including optical fibers. Energy and power flow, Poynting's theorem. Reflection and refraction, resonators. Radiation and diffraction. Prerequisite: ECE 202.
ECE 212. Control Theory (3)

ECE 256. Honors Project (1) spring
Open by invitation only to students who have completed ECE 257. Senior Project. Selection based on the quality of the senior project with regard to ingenuity, design approach and completeness. The objective of this course is to carry the successful senior projects forward to completion of a technical paper suitable for publication or submission to a technical conference. A written paper and oral presentation are required by mid-semester. Oral presentations will be made before an appropriate public forum. Enrollment limited.

ECE 257. Senior Lab I (3)
With ECE 258, provides a complete design experience for Electrical and Computer Engineers. Research, planning, and completion of the initial design for a project involving hardware and/or software, integrating the many facets of their undergraduate program. Instruction in technical writing, product development, ethics and professional engineering, and presentation of design and research. Two three hour sessions and one additional two hour session per week.

ECE 258. Senior Lab II (2)
Continuation of ECE 257. Complete design, construction, and testing of projects selected and developed in ECE 257. Present final design reviews and project presentation. Submit a final written report. Discuss development issues, including manufacturability, patents, and ethics. Two three-hour sessions per week. Prerequisite: ECE 257 or departmental approval.

ECE 308. Physics and Models of Electronic Devices (3)
Physics of metal-semiconductor junction, p-n junctions, and MOS capacitors. Models of Schottky barrier and p-n junction diodes, JFET, MOSFET, and bipolar transistors. Prerequisite: ECE 126. Hatalis or White.

ECE 316. Microcomputer System Design (3) spring
Content is primarily hardware oriented, but software issues are covered where required. Includes performance characteristics of the more popular devices on the market today. Specific topics include: basic microcomputer structure, bus interconnections, memory systems, serial and parallel interfacing, CRT controllers, interrupt structures, DMA. Prerequisite: ECE 33. Holzinger.

ECE 319. Digital System Design (3) fall
Design techniques at the register transfer level. Control strategies for hardware architectures. Implementation of microprogramming, intersystem communication and peripheral interfacing. Hardware design languages and their use in design specification, verification and simulation. Prerequisite: ECE 138.

ECE 320. Logic Design (3)
Review of basic switching theory, vector boolean algebra, canonical implementations of medium size circuits, threshold logic, fault detection in combinational and sequential logic. Multivalued and Fuzzy logic, regular expressions, nondeterministic sequential machines. Prerequisite: ECE 33.

ECE 325. Semiconductor Lasers I (3)

ECE 326. Semiconductor Lasers II (3)
Continuation of Semiconductor Lasers I. Topics covered include: Gain and current relations; dynamic effects; perturbation and coupled-mode theory; dielectric waveguides; and photonic integrated circuits. Credit will not be given for both ECE 326 and ECE 426.

ECE 332. Design of Linear Electronic Circuits (3)
Introduction to a variety of linear design concepts and topologies, with contemporary audio networks providing many of the concrete examples. Topics include low- and high-level preamps; equalizers and filters; mixers; voltage-controlled amplifiers; input and output stage modifications; power amplifiers; analog switching and digital interface circuits. Prerequisites: ECE 123 and ECE 125. Frey.

ECE 333. Medical Electronics (3)
Bioelectric events and electrical methods used to study and influence them in medicine, electrically excitable membranes, action potentials, electrical activity of muscle, the heart and brain, bioamplifiers, pulse circuits and their applications. Prerequisite: ECE 123 or equivalent. Notian.

ECE 336 (CSE 336). Embedded Systems (3)

ECE 337. Introduction to Micro- and Nanofabrication (3)
Survey of the standard IC fabrication processes, such as photolithography, dry and wet etching, oxidation, thin-film deposition and chemical mechanical polishing. Embedded hardware: RAM, ROM, flash, timers, UARTs, PWM, A/D, multiplexing, debouncing. Development and debugging tools running on host computers. Real-Time Operating System (RTOS) semaphores, mailboxes, queues. Task priorities and rate monotonic scheduling. Software architecture for embedded systems. Prerequisite: CSE 17.

ECE 338. Quantum Electronics (3)
Introduction to nonlinear optics—second-harmonic generation. Parametric amplification, oscillation, and fluorescence. Third-order optical nonlinearities. Credit will not be given for both ECE 338 and ECE 438. Prerequisite: ECE 203.

ECE 339. Graphical Signal Processing (3)
Application of graphical programming to mathematical principles in data analysis and signal processing. Review of digital signal processing, use of structures, arrays, charts, building virtual instruments, graphical programming for linear algebra, curve fitting, solving differential and difference equations, signal generation, DFT and FFT analysis, windowing and filtering. Prerequisite: ECE 108.

ECE 340. Digital Signal Processing (3)

ECE 341. Fundamentals of Wireless Communications (3)

ECE 342. Communication Theory (3)
Theory and application of analog and digital modulation. Sampling theory with application to analog-to-digital and digital-to-analog conversion techniques. Time and frequency division multiplexing. Introduction to random processes including filtering and noise problems. Integration to statistical communication theory with primary emphasis on optimum receiver design. Prerequisites: ECE 125 and MATH 309 or MATH 231.

ECE 343. Digital Signal Processing (3)
Study of orthogonal signal expansions and their discrete representations, including the Discrete Fourier Transform and Walsh-Hadamard Transform. Development of fast algorithms to compute these, with applications to speech processing and communication. Introduction to the z-transform representation of numerical sequences with applications to input/output analysis of discrete systems and the design of digital filters. Analysis of the internal behavior of discrete systems using state variables for the study of stability, observability, and controllability. Prerequisite: ECE 108.

ECE 344. Statistical Signal Processing (3)
Introduction to random processes, covariance and spectral density, time average, stationarity, and ergodicity. Response of systems to random inputs. Sampling and quantization of random signals. Optimum filtering, estimation, and hypothesis testing. Prerequisites: MATH 231 or MATH 309, and ECE 108. Blum.

ECE 345. Speech Synthesis and Recognition (3)
Application of digital technology to generation and recognition of speech by machines. The analytical tools required for digitizing and encoding speech signals; the methods currently used for synthesizing and recognizing speech; various hardware products available to perform these tasks. Prerequisite: ECE 108. Holzinger.

ECE 346. Introduction to Integrated Optics (3)

ECE 347. Introduction to Cryptography and Network Security
Introduction to cryptography, classical cipher systems, cryptanalysis, perfect secrecy and the one time pad. DES
and AES, public key cryptography covering systems based on discrete logarithms, the RSA and the knapsack systems, and various applications of cryptography. May not be taken with ECE 464 for credit. Prerequisite: Junior or Senior standing.

ECE 371. Optical Information Processing (3)
Introduction to optical information processing and applications. Interference and diffraction of optical waves. 2D optical matched filters that use lenses for Fourier transforms. Methods and devices for modulating light beams for information processing, communications, and optical computing. Construction and application of holograms for optical memory and interconnections. Prerequisite: ECE 108. McAulay.

ECE 372. Optical Networks (3)
Study the design of optical fiber local, metropolitan, and wide area networks. Topics include: passive and active photonic components for optical switching, tuning, modulation and amplification; optical interconnection switches and buffering; hardware and software architectures for packet switching and wavelength division multiaccess systems. The class is supported with a laboratory. Prerequisite: ECE 81. McAulay.

ECE 387 (CHE 387, ME 387). Digital Control (3)
Sampled-data systems; z-transforms; pulse transfer functions; stability in the z-plane; root locus and frequency response design methods; minimal prototype design; digital control hardware; discrete state variables; state transition matrix; Lyapunov stability; state feedback control. Prerequisite: CHE 386 or ECE 212 or ME 342 or consent of instructor.

ECE 389 (CHE 389, ME 389). Control Systems Laboratory (2)
Experiments on a variety of mechanical, electrical and chemical dynamic control systems. Exposure to state-of-the-art control instrumentation: sensors, transmitters, control valves, analog and digital controllers. Emphasis on comparison of theoretical computer simulation predictions with actual experimental data. Lab teams will be interdisciplinary. Prerequisites: CHE 386, ME 343, ECE 212.

ECE 392. Independent Study (1-3)
An intensive study, with report of a topic in electrical and computer engineering which is not treated in other courses. May be repeated for credit. Prerequisite: Consent of instructor.

For Graduate Students

ECE 401. Advanced Computer Architecture (3)
Design, analysis and performance of computer architectures; high-speed memory systems; cache design and analysis; modeling cache performance; principle of pipeline processing; performance of pipelined computers; scheduling and control of a pipeline; classification of parallel architectures; systolic and data flow architectures; multiprocessor performance; multiprocessor interconnections and cache coherence. Prerequisite: ECE 201 or equivalent.

ECE 402. Advanced Electromagnetics (3)

ECE 404 (CSE 404). Computer Networks (3)
Study of architecture and protocols of computer networks. The ISO model; network topology; data-communication principles, including circuit switching, packet switching and error control techniques; sliding window protocols; protocol analysis and verification; routing and flow control; local area networks; network interconnection; topics in security and privacy.

ECE 407. Linear and Nonlinear Optics (3)
Diffraction theory, Gaussian beams. Optical resonators and waveguides. Crystal optics, second harmonic generation, parametric amplification. Third order nonlinearities and associated phenomena such as phase conjugation, optical bistability, self-focusing, optical switching, solutions, etc. Photorefractive effect. Brilouin and Raman scattering.

ECE 410. Digital Communication Systems (3)
Unified description of digital communication systems based on signal space concepts. Analysis of system performance in the presence of channel noise and bandwidth limitations. Comparison of many different types of digital-modulation techniques, combined with error correction, against theoretical limits. Both bandpass and baseband systems are considered. Optimum methods of detection are considered for all systems.

Suboptimum techniques such as adaptive equalization are considered for baseband systems. Basic spread-spectrum concepts are introduced. Prerequisites: ECE 108 and either MATH 231 or MATH 309 or equivalents.

ECE 411. Information Theory (3)
Introduction to information theory. Topics covered include: development of information measures for discrete and continuous spaces study of discrete-stochastic information courses, derivation of noiseless coding theorems, investigation of discrete and continuous memoryless channels, development of noisy channel coding theorems. Fritchman

ECE 412. Advanced Digital Signal Processing (3)
Design and analysis of signal processing algorithms, number theoretic foundations of algorithm design, linear filters, computational techniques for digital filtering and convolution, Fourier transform and its algorithms, number theoretic transforms and applications to digital filtering, general and special purpose signal processor designs, application specific techniques in signal processing. Prerequisite: ECE 343 or consent of the department chairman. Wagh

ECE 414. Signal Detection and Estimation (3)
Brief review of probability and random process theory. Hypothesis Testing as applied to signal detection. Various optimization criteria including Bayes and Neyman-Pearson and their applications in digital communications, radar, and sonar systems. Optimum and locally optimum detection schemes for Gaussian and non-Gaussian noise. Estimation of unknown signal parameters. Topics of current interest including, distributed signal detection, robust signal detections and quantization for detection as time permits. Prerequisites: ECE 108 and MATH 231 or MATH 309. Blum

ECE 415. Numerical Processors (3)
Design strategies for numerical processors, cellular array adders and multipliers, conditional sum and carry-save
ECE 416. VLSI Signal Processing (3)
The fundamentals of performance-driven VLSI systems for signal processing. Analysis of signal processing algorithms and architectures in terms of VLSI implementation. Includes research projects and advanced assignments. Prerequisite: ECE 343, or equivalent.

ECE 417. Pattern Recognition (3)
Decision-theoretic, structural, and neural network approaches to pattern recognition. Statistical pattern recognition, parametric and nonparametric approaches. Introduction to neural networks, with examples of back propagation and self-organization algorithms. Prerequisites: MATH 205 and MATH 231, or equivalent.

ECE 420. Advanced Circuits and Systems (3)
Review of the fundamentals of Circuits and Systems theory, including the time and frequency domain response of linear time-invariant circuits. Equation formulation for general lumped circuits, including node voltage and loop current analysis. Basic graph theoretic properties of circuits including Tellegen’s Theorem. Discussion of passivity and reciprocity including multiprotocol network properties. State space formulation and solution of general circuits (and systems). Modern filter concepts, including synthesis techniques for active filters and externally linear filters, such as Log Domain filters. Techniques for the analysis of weakly nonlinear systems, as time permits. Prerequisites: Graduate standing. ECE 125 or equivalent.

ECE 423. Digital Image Processing (3)
Fourier, Hadamard, Walsh and Wavelet Transforms and their usage in image segmentation and understanding. High-pass and low-pass filtering in frequency and spatial domains. Multiresolution analysis and spatial scale filtering. Shape and texture representation and recognition. Prerequisite: ECE 343 or equivalent.

ECE 425. Semiconductor Lasers I (3)
Review of elementary solid-state physics. Relationships between Fermi energy and carrier density and leakage. Introduction to optical waveguiding in simple double-heterostructures. Density of optical modes, Blackbody radiation and the spontaneous emission factor. Modal gain, modal loss, and confinement factors, Einstein’s approach to gain and spontaneous emission. Periodic structures and the transmission matrix. Ingredients. A phenomenological approach to diode lasers. Mirrors and resonators for diode lasers. Gain and current relations. This course, a version of ECE325 for graduate students, requires research projects and advanced assignments. Credit will not be given for both ECE 325 and ECE 425. Prerequisite: ECE 203.

ECE 426. Semiconductor Lasers II (3)
Continuation of Semiconductor Lasers I. Topics covered include: Gain and current relations; dynamic effects; perturbation and coupled-mode theory; dielectric waveguides; and photonic integrated circuits. This course, a version of ECE326 for graduate students, requires research projects and advanced assignments. Credit will not be given for both ECE 326 and ECE 426.

ECE 431. Topics in Switching Theory (3)
Emphasis on structural concepts motivated by recent advances in integrated circuit technology. Major topics include: logical completeness, decomposition techniques, synthesis with assumed network forms, systolic architectures, systolic lemma and its applications, bit serial architectures. Prerequisite: ECE 320 or equivalent. Wagh

ECE 432. Spread Spectrum and CDMA (3)
Fading and dispersive channel model, direct sequence spread spectrum, frequency hopping spread spectrum, DS-CDMA, FH-CDMA, spread sequences and their properties, multi-user detection, PN code acquisition, wireless communication systems, industrial standards (IS-95, WCDMA, CDMA2000). Prerequisite: ECE341 or ECE342 or ECE410 or consent of instructor.

ECE 433 (CHE 433, ME 433). State Space Control (3)
State-space methods of feedback control system design and optimization. Review of the fundamentals of time data of second-order systems; pole placement, observability, controllability, modal control, observer design, the theory of optimal processes and Pontryagin’s Maximum Principle, the linear quadratic optimal regulator problem, Lyapunov functions and stability theorems, linear optimal open loop control; introduction to the calculus of variations; introduction to the control of distributed parameter systems. Intended for engineers with a variety of backgrounds. Examples will be drawn from mechanical, electrical and chemical engineering applications. Prerequisite: ME 343 or ECE 212 or CHE 386 or consent of instructor.

ECE 434 (CHE 434, ME 434). Multivariable Process Control (3)
A state-of-the-art review of multivariable methods of interest to process control applications. Design techniques examined include loop interaction analysis, frequency domain methods (Inverse Nyquist Array, Characteristic Loci and Singular Value Decomposition) feed forward control, internal model control and dynamic matrix control. Special attention is placed on the interaction of control design and process control. Most of the above methods are used to compare the relative performance of intensive and extensive variable control structures. Prerequisite: CHE 433 or ME 433 or ECE 433 or consent of instructor.

ECE 435. Error-Correcting Codes (3)
Error-correcting codes for digital computer and communication systems. Review of modern algebra concentrating on groups and finite fields. Structure and properties of linear and cyclic codes for random or burst error correction covering, Hamming, Golay, Reed-Muller, BCH and Reed-Solomon codes. Decoding algorithms and implementation of decoders. Prerequisite: CSE 261 or equivalent.
ECE 203. and advanced assignments. Prerequisites: ECE 202 and advances. The course is an extension of ECE 347 for Fabrication of semiconductor components. Recent magneto-optic modulators. Semiconductor lasers. Inversion modulators; electro-optic, acousto-optic and light in dielectric guides: phase, frequency and polarization beams to planar structures. Switching and modulation of formalism and periodic structures. Coupling of optical approaches. Modes in planar slab optical guides and in Theory of dielectric waveguides (ray and wave approach). Mode and multimode fibers. PIN and avalanche photodetectors. Optical receiver design. Transmission link analysis. The course is an extension of ECE 348 for graduate students and it will include research projects and advanced assignments. Prerequisite: ECE 203.

ECE 437 (CHE 437, ME 437). Stochastic Control (3)
Linear and nonlinear models for stochastic systems. Controllability and observability. Minimum variance state estimation. Linear quadratic Gaussian control problems. Computational considerations. Nonlinear control problem in stochastic systems. Prerequisite: CHE 433 or ME 433 or ECE 433 or consent of instructor.

ECE 438. Quantum Electronics (3)
Electromagnetic fields and their quantization. Propagation of optical beams in homogenous and lens-like media. Modulation of optical radiation. Coherent interactions of radiation fields and atomic systems. Introduction to nonlinear optics-second-harmonic generation. Parametric amplification, oscillation, and fluorescence. Third-order optical nonlinearities. This course, a version of ECE 338 for graduate students, requires research projects and advanced assignments. Credit will not be given for both ECE 338 and ECE 438. Prerequisite: ECE 203.

ECE 441. Fundamentals of Wireless Communications (3)
Characterization of mobile radio channels. Wireless information transmission: modulation/demodulation, equalization, diversity combining, coding/decoding, multiple access methods. Overview of cellular concepts and wireless networking. This course, a version of ECE 341 for graduate students, requires research projects and advanced assignments. Credit will not be given for both ECE 341 and ECE 441. Prerequisite: ECE 342 or equiv.

ECE 443. RF Power Amplifiers for Wireless Communications (3)
Review of linear power amplifier design. Discussion of major nonlinear effects, such as high-efficiency amplifiers modes, matching network design for reduced conduction angle, overdrive and limiting effects, and switching mode amplifiers. Discussion of other nonlinear effects, efficiency enhancement and linearization techniques. Companion course to ECE 463. Prerequisite: ECE 346 or equivalent.

ECE 447. Introduction to Integrated Optics (3)
Theory of dielectric waveguides (ray and wave approach). Modes in planar slab optical guides and in waveguides with graded index profiles. Coupled-mode formalism and periodic structures. Coupling of optical beams to planar structures. Switching and modulation of light in dielectric guides: phase, frequency and polarization modulators; electro-optic, acousto-optic and magneto-optic modulators. Semiconductor lasers. Fabrication of semiconductor components. Recent advances. The course is an extension of ECE 347 for graduate students and it will include research projects and advanced assignments. Prerequisites: ECE 202 and ECE 203.

ECE 448. Lightwave Technology (3)
Overview of optical fiber communications. Optical fibers, structures and waveguiding fundamentals. Signal degradation in fibers arising from attenuation, intramodal and intermodal dispersion. Optical sources, semiconductor lasers and LEDs. Rate equations and frequency characteristics of a semiconductor laser. Coupling efficiency of laser diodes and LEDs to single-mode and multimode fibers. PIN and avalanche photodetectors. Optical receiver design. Transmission link analysis. The course is an extension of ECE 348 for graduate students and it will include research projects and advanced assignments. Prerequisite: ECE 203.

ECE 450. Special Topics (3)
Selected topics in electrical and computer engineering not covered in other courses. May be repeated for credit.

ECE 451. Physics of Semiconductor Devices (3)
Crystal structure and space lattices, crystal binding, lattice waves and vibrations, electrons and atoms in crystal lattices. Quantum mechanics and energy band theory, carrier statistics, Boltzmann transport theory, interaction of carriers with scattering centers, electronic and thermal conduction. Magnetic effects. Generation and recombin- nation theory. Application to p-n junctions. Prerequisite: ECE 126 or equivalent. Decker, Hatals or White

ECE 452. Advanced Semiconductor Diode and Transport Theory (3)
Properties of metal-semiconductor contacts, Schottky barriers, ohmic contacts, hot electrons, intervalley scattering, velocity saturation, secondary ionization, avalanche breakdown. Applications to microwave devices such as avalanche and Gunn diodes, Schottky barrier diodes, tunnel diodes and PIN diodes. Prerequisite: ECE 451. Decker

ECE 454. Turbo Codes and Iterative Decoding (3)

ECE 455. Theory of Metal Semiconductor and Heterojunction Transistors (3)

ECE 460. Engineering Project (3-6)
Project work in an area of student and faculty interest. Selection and direction of the project may involve interaction with industry. Prerequisite: consent of department chairperson.

ECE 461. Theory of Electrical Noise (3)
ECE 463. Design of Microwave Solid State Circuits (3)
Equivalent circuit modeling and characterization of microwave semiconductor devices, principles of impedance matching, noise properties and circuit interaction, introduction to the design of high power and non-linear circuits. Decker

ECE 464. Introduction to Cryptography and Network Security (3)
Introduction to cryptography, classical cipher systems, cryptanalysis, perfect secrecy and the one time pad, DES and AES, public key cryptography covering systems based on discrete logarithms, the RSA and the knapsack systems, and various applications of cryptography. This graduate version of ECE 364 requires additional work. May not be taken with ECE 364 for credit. Prerequisite: Graduate student status.

ECE 467. Semiconductor Material and Device Characterization (3)
This course covers the main characterization techniques used in semiconductor industry. Emphasis is given to the electrical characterization methods although some optical, and physical analytical techniques are reviewed. The principles and the experimental setup for measuring the following parameters are covered: resistivity, carrier and doping concentration; contact resistance and Schottky barrier height; device series resistance; MOSFET's channel length and threshold voltage; carrier mobility; oxide and interface trapped charge; and carrier lifetime. Laboratory sessions provide hands-on experience on some of the above methods. Prerequisites: ECE 126 and ECE 308, or equivalent. Hatalis

ECE 469. Process Modeling for Semiconductor Devices (3)
Students will design and "manufacture" a Si or GaAs transistor through process simulation of ion implantation, epitaxial growth, diffusion and contact formation, etc. I-V characteristics and small signal parameters, suitable for digital and microwave circuit simulation, will be derived. Complimentary to ECE 463 and 471. Prerequisite: ECE 308 or 351. Hwang

ECE 471. Optical Information Processing (3)
Introduction to optical information processing and applications. Interference and diffraction of optical waves. 2D optical matched filters that use lenses for Fourier transforms. Methods and devices for modulating light beams for information processing, communications, and optical computing. Construction and application of holograms for optical memory and interconnections. The course is an extension of ECE 371 for graduate students and it will include research projects and advanced assignments. Prerequisite: ECE 108.

ECE 472. Optical Networks (3)
Study the design of optical fiber local, metropolitan, and wide area networks. Topics include: passive and active photonic components for optical switching, tuning, modulation and amplification; optical interconnection switches and buffering; hardware and software architectures for packet switching and wavelength division multiaccess systems. This class is supported with a laboratory. The course is an extension of ECE 372 for graduate students and it will include research projects and advanced assignments. Prerequisite: ECE 81.

ECE 474. Analog CMOS VLSI Design (3)
The fundamentals of analog circuit design with CMOS linear IC techniques. Discrete Analog Signal Processing (DASP) is accomplished with switched-capacitor CMOS circuits. Analog building blocks include operational amplifiers, S/H circuits, comparators and voltage references, oscillators, filters, modulators, phase detectors/shifting, charge transfer devices, etc. Analog sub-system applications are phase-locked loops (PLLs), A/D and D/A converters, modems, sensors, adaptive filters and equalizers, etc. The emphasis is on the physical operation of analog CMOS integration circuits and the design process. Prerequisite: ECE 355 or equivalent. White

ECE 476. Analysis and Design of Analog Integrated Circuits (3)
Device and circuit models of bipolar and field effect transistors; bipolar and MOS integrated circuit technology: passive components; parasitic and distributed elements; amplifier gain stages; subthreshold gain stages; current sources and active loads; temperature and supply independent biasing; output stage design; frequency response and slew rate limitation; operational amplifier and analog multiplier design. Circuit simulation using SPICE. Prerequisite: ECE 308 or equivalent.

Large signal models and transient behavior of MOS and bipolar transistors. Basic inverter and logic gate circuits. Noise margins, operating speed, and power consumption of various logic families, including MOS, CMOS, saturated logic TTL, ECL, and IIL. Regenerative logic circuits and digital memories. Circuit design and computer-aided circuit analysis for LSI and VLSI circuits. Prerequisite: ECE 308 or equivalent.

ECE 479. Advanced MOS VLSI Design (3)
The design of very large scale NMOS and CMOS integrated circuits. Strong emphasis on device physics, and on novel circuit design approaches for VLSI implementation. Examination of second-order effects involved in designing high performance MOS digital integrated circuits, with the goal of pushing the design process to the limits determined by our current understanding of semiconductor device physics and of the currently available technologies. The topics include device physics (subthreshold conduction, short channel effects), important circuit innovations (substrate bias generators, sense amplifiers), systems aspects (clocking, timing, array structures), as well as static and dynamic circuit implementations. Design project, using VLSI design automation tools. Prerequisites: ECE 308 (or equivalent) and ECE 361.

ECE 483. Advanced Semiconductor Devices for VLSI Circuits (3)
Theory of small geometry devices for VLSI circuits. Emphasis of MOS bipolar device static and dynamic electrical characteristics. Carrier injection, transport, storage, and detection in bulk and interfacial regions. Limitations of physical scaling theory for VLSI submicron device structures. MOS physics and technology, test pattern device structures, charge-coupled devices, MNOS nonvolatile memory devices, and measurement techniques for device and process characterization. The influence of defects on device electrical properties. Prerequisite: ECE 451. White
ECE 485. Heterojunction Materials and Devices (3)
Material properties of compound semiconductor hetero-
junctions, quantum wells and superlattices. Strained
layer epitaxy and band-gap engineering. Theory and per-
formance of novel devices such as quantum well lasers,
resonant tunneling diodes, high electron mobility tran-
sistors, and heterojunction bipolar transistors.
Complementary to ECE 452. Prerequisite: ECE 451.
White

ECE 486. Integrated Solid-State Sensors (3)
The physical operation of sensor-based, custom integrat-
ed circuits. Emphasis on the integration of sensors,
analog, and digital circuits on a silicon chip with CMOS
technology. Sensors include photocells, electrochemical
transducers, strain gauges, temperature detectors, vibra-
tion and velocity sensors, etc. Analysis of sensor-circuit
performance limits including signal-to-noise, frequency
response, temperature sensitivity, etc. Examples of sen-
ror-based, custom I.C.'s are discussed and analyzed with
CAD modeling and layout. Prerequisite: ECE 451.

ECE 491. Research Seminar (1-3)
Regular meetings focused on specific topics related to the
research interests of department faculty. Current research
will be discussed. Students may be required to present
and review relevant publications. May be repeated for
credit up to a maximum of three (3) credits. Prerequisite:
Consent of instructor.

ECE 492. Independent Study (1-3)
An intensive study, with report, of a topic in electrical
and computer engineering which is not treated in other
courses. May be repeated for credit. Prerequisite:
Consent of instructor.

ECE 493. Solid-State Electronics Seminar (3)
Discussion of current topics in solid-state electronics.
Topics selected depend upon the interests of the staff and
students and are allied to the research programs of the
Sherman Fairchild Laboratory for Solid State Studies.
Student participation via presentation of current research
papers and experimental work. Prerequisite: consent of
instructor. May be repeated for credit.

Electrical Engineering

See listings under Electrical and Computer Engineering

Electrical Engineering and
Engineering Physics

This dual-degree curriculum is particularly well suited
for students seeking thorough preparation in the field of
electronic device physics. It is a combination of the basic
electrical engineering and engineering physics curricu-
lums and requires 162 credit hours, distributed over five
years. The student will earn two degrees: B.S. in elec-
trical engineering and B.S. in engineering physics.
Two alternative course sequences are listed below.
Students who follow the course sequence in the column
on the left will complete 135 credit hours, including all
of the required electrical engineering courses, by the end
of the fourth year and the rest of 163 credit hours at the
end of the fifth year. Since the electrical engineering
degree requires 156 credit hours, students normally will
complete the requirements for that degree at the end of
the ninth semester. It is possible for a student to earn the
electrical engineering degree at the end of the eighth
semester by accumulating the extra credit hours through
advanced placement and/or overload credits.

In the alternate course sequence in the column on the
right, the student completes 132 credit hours by the end
of the fourth year, including all the required physics
courses, and the rest of the 163 credits at the end of the
fifth year. Since 131 credit hours are required for the
engineering physics degree, the student will complete the
requirements for that degree at the end of the fourth
year, and the requirements for the electrical engineering
degree at the end of the fifth year.

Students interested in a dual-degree program combining
physics (rather than engineering physics) and electrical
engineering should consult the Physics section of this
catalog. That program allows the student to earn the
B.S. in physics and the B.S. in electrical engineering.

Students interested in either dual-degree program should
contact Prof. G. J. Borse, Department of Physics.

The recommended sequences of courses for the two dif-
ferent EEEP sequences are:

<table>
<thead>
<tr>
<th>ECE-EP</th>
<th>EP-EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman year (see Section III)</td>
<td></td>
</tr>
<tr>
<td>Sophomore year, first semester</td>
<td></td>
</tr>
<tr>
<td>PHY 21</td>
<td>(4) PHY 21</td>
</tr>
<tr>
<td>PHY 22</td>
<td>(1) PHY 22</td>
</tr>
<tr>
<td>ECE 33</td>
<td>(4) ECE 33</td>
</tr>
<tr>
<td>ECE 81</td>
<td>(4) ECE 81</td>
</tr>
<tr>
<td>MATH 23</td>
<td>(4) MATH 23</td>
</tr>
<tr>
<td>[17]</td>
<td>[17]</td>
</tr>
<tr>
<td>Sophomore year, second semester</td>
<td></td>
</tr>
<tr>
<td>PHY 31</td>
<td>(3) PHY 31</td>
</tr>
<tr>
<td>ECE 108</td>
<td>(4) ECE 108</td>
</tr>
<tr>
<td>ECE 82</td>
<td>(1) ECE 82</td>
</tr>
<tr>
<td>MATH 205</td>
<td>(3) MATH 205</td>
</tr>
<tr>
<td>MATH 208</td>
<td>(3) MATH 208</td>
</tr>
<tr>
<td>ECO 1</td>
<td>(4) ECO 1</td>
</tr>
<tr>
<td>[18]</td>
<td>[18]</td>
</tr>
<tr>
<td>Junior year, first semester</td>
<td></td>
</tr>
<tr>
<td>ECE 121</td>
<td>(2) ECE 121</td>
</tr>
<tr>
<td>ECE 123</td>
<td>(3) ECE 123</td>
</tr>
<tr>
<td>PHY 212</td>
<td>(3) PHY 212</td>
</tr>
<tr>
<td>MATH 322</td>
<td>(3) MATH 322</td>
</tr>
<tr>
<td>HSS</td>
<td>(3) HSS</td>
</tr>
<tr>
<td>[17]</td>
<td>[17]</td>
</tr>
<tr>
<td>Junior year, second semester</td>
<td></td>
</tr>
<tr>
<td>PHY 213</td>
<td>(3) PHY 213</td>
</tr>
<tr>
<td>PHY 215</td>
<td>(4) PHY 215</td>
</tr>
<tr>
<td>ECE 125</td>
<td>(3) ECE 125</td>
</tr>
<tr>
<td>ECE 126</td>
<td>(3) ECE 126</td>
</tr>
<tr>
<td>ECE 138</td>
<td>(2) PHY 262</td>
</tr>
<tr>
<td>HSS</td>
<td>(3) HSS</td>
</tr>
<tr>
<td>[18]</td>
<td>[18]</td>
</tr>
</tbody>
</table>
Senior year, first semester
- ECE 257 (3) PHY 340 or ME 104 (3)
- PHY 362 (3) PHY 362 (3)
- PHY 363 (3) PHY 363 (3)
- HSS (3) HSS (3)

Senior year, second semester
- ECE 136 (3) ECE 138 (2)
- HSS (3) HSS (3)
- Elective (3) Electives (6)

Fifth year, first semester
- Electives (6) MATH 231 (3)
- PHY 340 or ME 104 (3)
- Electives (6)

Fifth year, second semester
- PHY 262 (2) ECE 136 (3)
- Electives (6) Elective (3)

Total Credits: 163 Credits in 4 yrs: 135

The 23 credits of EP-approved electives must include at least three courses from the following: PHY 363, 369, 352 or 355, 348 or 365, and 380. The 24 credits of ECE-approved electives must be approved by the student’s advisor.

Engineering
ENGR 1 and ENGR 5 are required of all engineering and applied science majors and are taken in the recommended freshman year.

ENGR 1. Engineering Computations (3) fall
An introductory survey of computing for students in engineering and the sciences. The course covers basic programming concepts, structures and algorithms. Applications to solving scientific problems. Case studies from utilization of computers in various engineering disciplines. Prerequisite: none.

ENGR 5. Introduction to Engineering Practice (3)
First year practical engineering experience; introduction to concepts, methods and principles of engineering practice. Problem solving, design, project planning, communication, teamwork, ethics and professionalism; innovative solution development and implementation. Introduction to various engineering disciplines and degree programs.

ENGR 160. Engineering Internship (1-3)
This course offers students who have attained at least Jr2 standing an opportunity to complement coursework with a work experience. Detailed rules for this course can be obtained from the Associate Dean of Engineering. Report required. P/F grading.

ENGR 200. Engineering Co-op (3)
Undergraduate students who are officially enrolled in the college’s co-op program are eligible for 1-6 credits of free electives. These credits will be taken P/F. Typically, students will take 3 credits of ENGR 200 for the fall semester of junior year work experience and another 3 credits the following summer.

ENGR 211. Integrated Product Development (IPD) I (3) spring
Business, engineering, and design arts students work in cross-disciplinary teams of 4-6 students on conceptual design including marketing, financial and economic planning, economic and technical feasibility of new product concepts. Teams work on industrial projects with faculty advisors. Oral presentations and written reports. Prerequisite: junior standing in engineering, business or arts and science. (Mechanical Engineering students must register for ME 211).

ENGR 212. Integrated Product Development II (2) fall
Business, engineering and design arts students work in cross-disciplinary teams of 4-6 students on the detailed design including fabrication and testing of a prototype of the new product designed in the IPD course 1. Additional deliverables include a detailed production plan, marketing plan, detailed base-case financial models, project and product portfolio. Teams work on industrial projects with faculty advisors. Oral presentations and written reports. Prerequisite: ENGR 211.

Engineering Mathematics
Professors: Philip A. Blythe, Ph.D. (Manchester, England); Terry J. Delph, Ph.D. (Stanford); D. Gary Harlow, Ph.D. (Cornell) chair; Jacob Y. Kazakia, Ph.D. (Lehigh); Alistair K. Macpherson, Ph.D. (Sydney); Herman F. Nied (Lehigh); Kenneth N. Sawyer, Ph.D. (Brown); Eric Varley, Ph.D. (Brown).
Associate professor: Alparslan Özütem (Illinois).
Emeritus professors: Dominic G.B. Edelen, Ph.D. (Johns Hopkins); Fazil Erdogan, Ph.D. (Lehigh); Stanley H. Johnson, Ph.D. (Berkeley); Arturs Kalnins, Ph.D. (Michigan); Gerald F. Smith, Ph.D. (Brown).
The Division of Engineering Mathematics was established within the Department of Mechanical Engineering and Mechanics to foster interdisciplinary research in the application of mathematics to the engineering and physical sciences. Interaction with industry is actively encouraged, and appropriate programs are designed for part-time students. Program content for all students is developed through close consultation with division faculty.
For a description of the graduate programs in applied mathematics see the discussion under Interdisciplinary Graduate Programs. Engineering mathematics courses are listed under mechanical engineering and mechanics.

English
Professors: Alexander M. Doty, Ph.D. (Illinois), chairperson; Peter G. Beidler, Ph.D. (Lehigh), Lucy G. Moses Distinguished Professor; Addison C. Bross, Ph.D. (Louisiana State); Jan S. Fergus, Ph.D. (C.U.N.Y.); Elizabeth N. Filer, Ph.D. (Michigan); Edward J.
The major in English is designed to give students experience in reading, analyzing, and formulating thoughts about people and ideas that matter; an understanding of how literary artists find the appropriate words to express their thoughts and feelings; and a basic knowledge of the historical development of British, American and world literature.

Students who major in English go on to careers in teaching, writing, law, business, science, medicine, engineering—and many others. The analytical and communication skills acquired in the study of literature and writing will be of use in almost any profession or human activity. Depending on their interests, abilities, and career plans, students who major in English are encouraged to consider double majors or one or two minors in other fields. The major in English is flexible enough to allow cross-disciplinary study with ease.

The student majoring in English chooses from an extensive list of courses. To ensure breadth of coverage each English major is required to take the following courses:

- English 100 Working with Texts (4)
- English 290 Senior Seminar (4)

Four 300-level courses distributed over the following periods (British or American survey may substitute for one 300 level course):

- British to 1660 (ENGL. 125, 327, 328, 360, 362, 364)
- British 1660-1900 (ENGL. 125, 126, 331, 366, 367, 369, 371, 372)
- American to 1900 (ENGL. 123, 374, 376, 377, 378)
- 20th C American, British, World, Film, Popular Culture (ENGL124, 126, 379, 380, 383, 384, 385, 386, 387)

In addition, each English major elects at least three more courses in literature or film with the following qualifications:

- at least one at the 300-level if a survey fulfills one of the period requirements
- at least one at the 300-level if a survey fulfills one of the period requirements

These nine courses are the minimum for the major. Many of our students will elect to take more, depending on their career plans, their other majors and minors, their plans to study abroad, and so on. Each major has a departmental advisor to assist in selecting courses and to offer counsel about career plans.

The department strongly recommends that any student contemplating the possibility of advanced study of literature at the graduate level should work toward departmental honors.

**English Major with Concentration in Creative Writing**

Minimum number of hours: 16 (4 courses)

To have entered on the transcript Concentration in Creative Writing, the students must take: ENGL 142, 143, or 144. They must also take: ENGL 342, 343 or 344, and at least 4 credit hours of elective courses chosen from: ENGL 142, 143, 144, 170, 201, 281, 342, 343, 344 or 483. Note: the same course cannot fulfill both the core requirement except in the case of courses that can be repeated for credit—201, 342, 343 and 344—which can be taken twice, once for core credit and once as an elective. And must take both: ENGL 305 and 306.

**Departmental Honors in English**

In order to receive departmental honors the English major must attain a 3.5 grade-point average in courses presented for the major and must complete at least 44 credit hours of course work in English (beyond English 1 and 2). For the additional credits beyond the 36 required of all English majors, honors students must take the following courses:

- ENGL 309 Interpretation: Critical Theory & Practice, or
- ENGL 312 Studies in Literary and Cultural Theory and
- ENGL 307 Thesis Proposal, and
- ENGL 308 Thesis

Because most graduate schools require language examinations, the department also strongly recommends that students going for honors achieve at least second-year college competency in at least one foreign language. Students who complete the courses required for departmental honors but who do not achieve the necessary grade-point average will receive the bachelor of arts degree with a major in English.

**Presidential Scholars**

Students who anticipate becoming Presidential Scholars should speak to the Director of Graduate Studies in their junior year.

**Minors in English**

The Department of English offers three minors, each requiring 16 hours of course work beyond English 1 and 2. Students’ major advisors monitor the minor programs, but students should consult the minor advisor in the Department of English when setting up a minor program.

To minor in English students take 4 courses in literature or film, one at the 300 level.

To minor in creative writing, students take ENGL 142, 143, or 144 and a literature course at the100- or 300-level. They must also take ENGL 342, 343, or 344 and a 4 credit elective taken from the following ENGL 142, 143, 144, 170, 201, 281, 342, 343, 344 or 483. Note: the same course cannot fulfill both the core requirements except in the case of a course that can be repeated for credit—201, 342, 343, and 344—which can be taken twice, once for core credit and once as an elective.
To minor in writing, students take ENGL 142, 143, 144, or 171, and ENGL 201, 342, 343 or 344. They may also take two more courses chosen from: ENGL 142, 143, 144, 171, 201, 281, 342, 343, 344; JOUR 11, 111, 123, 212. **Note:** The same course cannot fulfill both the core requirements except in the case of a course that can be repeated for credit — 201, 342, 343, and 344 — which can be taken twice, once for core credit and once as an elective.

**Graduate Work in English**

We prepare our students to meet contemporary demands for faculty who value excellence in teaching and scholarship.

**The Master of Arts Program**

Applicants for the M.A. program should have an undergraduate English major. Students who did not major in English may be admitted but will need to supplement their undergraduate training in English.

Candidates for the master's degree must complete at least 33 credit hours. Students take at least seven of the required courses (including Thesis) at the 400 level but may select the balance of their curricula from 300-level course offerings. Course work for the M.A. must include one course in medieval British or early American literature (origins through 1776); two courses in British literature, origins through 1660; two courses in American literature, origins through 1820, in addition to the one fulfilling the previous requirement; two courses in British literature, 1660 through 1900; or American literature, 1820 through 1900; two courses, British, American, or world literature, 1900 to present; and one theory course, in literature, writing, or film. At least two of the courses must be in American literature, at least four in British literature. This distribution allows for some concentrated study at the master's level. English 485 and 486, the required courses for new teaching fellows, are not counted in the 33 credits toward the M.A. but will be counted later toward the Ph.D., even if rostered during the M.A. program.

M.A. candidates write a Thesis Paper, certified by a faculty advisor as ready for submission to a session organizer as a conference presentation or to a professional journal for possible publication, and present a short talk on the thesis paper in a public forum.

**The Doctor of Philosophy Program**

The department admits to its doctoral program only students of proven competence and scholarly promise. An average of 3.5 in M.A. course work and strong endorsements from graduate instructors are minimum requirements for acceptance.

Doctoral candidates with a Lehigh master's degree are required to take eight courses and register for 42 credit hours beyond the M.A. Those entering the doctoral program with a master's from another institution are required to take nine courses and register for 48 credit hours.

Candidates must also demonstrate a reading knowledge of one or two foreign languages after having agreed on choices with the director of graduate studies. No later than six months after completing their course work, candidates will take written and oral examinations in one major field and two minor fields.

Candidates write their dissertations after having their dissertation proposals approved by the department and being admitted to candidacy by the appropriate college.

**Freshman Composition Requirement**

With the two exceptions noted below, all undergraduate students take six credit hours of freshman English courses: English 1 and English 2 (or one of the alternatives to ENGL 2 such as 4, 6, 8 or 10). The exceptions are:

- Students who receive Advanced Placement or received 700 or higher on SAT II.
- Students with English as a Second Language.
- Categories include students on non-immigrant visas, students on immigrant visas, registered aliens, and citizens either by birth or by naturalization.

Students in all these categories for whom English is not the first language may petition for special instruction through the program in English as a Second Language. At matriculation, all foreign students take an English language competence test to determine the kind of instruction best suited to their needs. Matriculating freshmen judged to be qualified will roster ENGL 1, followed by ENGL 2, 4, 6, 8, or 10. Others will be enrolled in ENGL 3, followed by ENGL 5 (or 2, 4, 6, 8, or 10).

Students enrolled in the English as a Second Language program are expected to reach a level of competence comparable to those in the usual freshman program. The form of instruction, however, will differ in the ESL program by taking into account the special language and cultural needs of non-native speakers. Matriculating students in all the above categories who are entering at a level above the freshman year, but who need composition credit, should consult the department for advice.

**Freshman Courses**

**ENGL 1. Composition and Literature (3) fall**

Emphasis on the writing process, especially on revising for cogency and clarity. Topics drawn mainly from everyday life and culture. Students must receive a grade of C- or higher to advance to English 2.

**ENGL 2. Composition and Literature II (3) spring**

Continuation of ENGL 1. Emphasis on making informed, thoughtful, and well-supported claims about issues of broad public concern. Topics vary by section. Texts include both expository and literary selections, as well as films and other media. Prerequisite: a grade of C- or higher in ENGL 1.

**ENGL 3. Composition and Literature I for International Writers (3) fall**

Idiomatic English both oral and written, with a strong emphasis on producing well-organized, coherent essays. Enrollment limited to non-native speakers; placement is determined by placement testing or ESL director's recommendation.

**ENGL 4. Composition and Literature II: Special Topic A (3) spring**

Continuation of ENGL 1. Similar to ENGL 2, except that the topic will be announced in advance. Topics vary from year to year. Students must register through the English department. Prerequisites: ENGL 1 and consent of department.
ENGL 5. Composition and Literature II for International Writers (3) spring
Continuation of English 5.

ENGL 6. Composition and Literature: Special Topic B (3) spring
Continuation of ENGL I. Similar to ENGL 2, except that the topic will be announced in advance. Topics vary from year to year. Students must register through the English department. Prerequisites: ENGL 1 and consent of department.

ENGL 8. Composition and Literature: Special Topic C (3) spring
Continuation of ENGL I. Similar to ENGL 2, except that the topic will be announced in advance. Topics vary from year to year. Students must register through the English department. Prerequisites: ENGL 1 and consent of department.

ENGL 10. Composition and Literature: Special Topic D (3) spring
Continuation of ENGL I. Similar to ENGL 2, except that the topic will be announced in advance. Topics vary from year to year. Students must register through the English department. Prerequisites: ENGL 1 and consent of department.

ENGL 11. Literature Seminar for Freshmen (3) fall
Alternative to Composition and Literature for freshmen who have earned exemption from English 1 and qualify for a seminar in literature. Recommended especially for qualified students who are considering a major in the humanities. Topics vary by section. Prerequisite: score of 4 or higher on Advanced Placement Test in English or 700 or higher on the SAT II Subject Test in Writing.

Undergraduate Courses
English 52, 54, 56, and 58 are open to all undergraduates, including first-year students also taking freshman English. Courses numbered at the 100-level are open to students who have completed or who are exempt from the required six hours of freshman English. First-year students who have completed English 1 with a grade of A or A– may roster one of the 100-level courses as a second English course to be taken concurrently with the second-semester English composition requirement. Prerequisites: Each course is a self-contained unit. None has any other prerequisite than two semesters of freshman English. Thus, students may roster English 126 whether or not they have had, or ever plan to take, English 125. For all courses above 200, it is understood that students will have completed six hours of freshman English, even though that is not specified in the course description.

ENGL 38. (AAS 38) Introduction to African Literature (3)
Sub-Saharan African literary themes and styles; historical and social contexts, African folktales, oral poetry, colonial protest literature, postcolonial writing, and films on contemporary Africa. (HU)

ENGL 52. (CLSS 52) Classical Epic (3)
Study of major epic poems from Greece and Rome. Works include Homer's Iliad and Odyssey, Apollonius' Argonautica, Vergil's Aeneid, and Ovid's Metamorphoses. (HU)

ENGL 54. (CLSS 54, THTR 54) Greek Tragedy (3)
Aspects of Greek theater and plays of Aeschylus, Sophocles, and Euripides in their social and intellectual contexts. (HU)

ENGL 56. (CLSS 56) The Ancient Novel (3)
Examination of the origins of the novel in Greece and Rome. Includes the picaresque novel. (HU)

ENGL 58. (CLSS 58, THTR 58) Greek and Roman Comedy (3)
Study of comedy as a social form through plays of Aristophanes, Menander, Plautus, and Terence. (HU)

ENGL 60. (THTR 60) Dramatic Action (4)
How plays are put together; how they work and what they accomplish. Examination of how plot, character, aural and visual elements of production combine to form a unified work across genre, styles and periods. Recommended as a foundation for further studies in design, literature of performance. (HU)

ENGL 91. Special Topics (1-4)
A course to help students to become, through intense practice, independent readers of literary and other kinds of texts; to discern and describe the devices and process by which texts establish meaning; to gain an awareness of the various methods and strategies for reading and interpreting texts; to construct and argue original interpretations; to examine and judge the interpretations of other readers; to write the interpretive essay that supports a distinct position on some literary topic of importance; and to learn to find and assimilate into their own writing appropriate information from university library resources. To be rostered as early as possible in the English major's program. Departmental approval required. (HU)

ENGL 120. Literature from Developing Nations (4)
Contemporary literature from Africa, Central and South America, and Asia. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 121. Topics in African-American Literature (4)
Selected works of African American literature and/or the literatures of the African diaspora. May be repeated for credit as title varies. Prerequisite: six hours of first-year English. (HU) Cannot be taken pass/fail.

ENGL 123. American Literature I (4)
American literary works through the mid-19th century. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 124. American Literature II (4)
American literature from the middle of the 19th century to the present. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 125. British Literature I (4)
British literature and literary history from Beowulf through the Pre-Romantics. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 126. British Literature II (4)
British literature and literary history from the Romantic period into the 20th century. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.
ENGL 127. (THTR 127) The Development of Theatre and Drama I (4)  
Historical survey of western theatre and dramatic literature from their origins to the Renaissance. (HU)

ENGL 128. (THTR 128) The Development of Theatre and Drama II (4)  
Historical survey of western theatre and dramatic literature from the Renaissance to the modern era. (HU)

ENGL 142. Introduction to Writing Poetry (4)  
Instruction in the craft of writing poetry, with a focus on prosody. Practice in and classroom criticism of poems written by students taking the course. Prerequisite: six hours of freshman English. (ND)

ENGL 143. Introduction to Writing Creative Non-Fiction (4)  
Practice in writing non-fiction from immediate experience, with emphasis on accurate, persuasive description writing. Prerequisite: six hours of freshman English. (ND)

ENGL 144. Introduction to Writing Fiction (4)  
Instruction in the craft of writing fiction. Practice in and classroom criticism of stories written by students taking the course. Prerequisite: six hours of freshman English. (ND)

ENGL 155. The Novel (4)  
Selected novels, with attention to such matters as narrative, characterization, and cultural context. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 157. Poetry (4)  
Selected traditional and modern poetry, with attention to voice, form, and cultural context. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 163. Topics in Film Studies (4)  
History and aesthetics of narrative film. May be repeated for credit as subject varies. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 160. Amaranth (1)  
Amaranth editorial staff. Students can earn one credit by serving as editors (literary, production, or art) of Lehigh’s literary magazine. Work includes soliciting and reviewing manuscripts, planning a winter supplement and spring issue, and guiding the magazine through all phases of production. Editors attend weekly meetings with the faculty advisor. Prerequisite: consent of the department chairperson. May be repeated for credit. (ND)

ENGL 171. Writing for Audiences (4)  
Practice in writing in a variety of discourse modes for different audiences. Consideration of the role of style, clarity, and careful observation in writing. Prerequisite: six hours of freshman English. (ND)

ENGL 175. Individual Authors (4)  
Intensive study of the works of one or more literary artists, such as Austen, Hemingway, and Kerouac. May be repeated for credit as artists and works vary. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 177. Individual Works (4)  
Intensive study of one or more literary works, such as Moby Dick and Stories of John Cheever. May be repeated for credit as works vary. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 183. Independent Study (1–4)  
Individually supervised study of a topic in literature, film, or writing not covered in regularly listed courses. Prerequisite: consent of the department chairperson. (HU)

ENGL 187. Themes in Literature (4)  
Study of a theme as it appears in several works of literature, such as Utopia and the quest. May be repeated for credit as titles and themes vary. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 189. Popular Literature (4)  
The form of literature that has been designated in one way or another as “popular,” such as folklore and detective fiction. May be repeated for credit as titles vary. Prerequisite: six hours of freshman English. (HU) Cannot be taken pass/fail.

ENGL 191. Special Topics (1–4)  
A topic, genre, or approach in literature or writing not covered in other courses. Prerequisite: six hours of freshman English. (HU)

ENGL 281. Writing Internship (1–4)  
Approaches not covered in other writing courses. Individual projects. May be repeated for credit. (ND)

ENGL 282. Professional Internship (2–4)  
Supervised projects, on- or off-campus, in professional, governmental, or service organizations. Experience must include extensive writing that can be submitted for review. Enrollment limited to juniors or seniors with a major or minor in English. May be repeated for credit. Prerequisite: approval of department internship adviser or department chair. (ND)

ENGL 290. Senior Seminar (4)  
In-depth study of a problem, issue, question, or controversy. Enrollment limited to 15 students. Required of all writing intensive course for English majors. May be repeated for credit, space permitting, as title varies. Department Approval Required. Prerequisite: senior English major standing. (HU)

ENGL 291. Special Topics (1–4)  
A topic, genre, or approach in literature or writing not covered in other courses. (HU) Graduate Students taking 300-level courses receive 3 credits; undergraduates receive 4 credits.

ENGL 301. Topics in Literature (4)  
A theme, topic, or genre in literature, such as autobiography as literature and the gothic novel. May be repeated for credit as titles vary. (HU)

ENGL 305. Creative Writing Thesis Proposal (fall only) (1)  
Preparation to write creative thesis. Requirements include writing a proposal and bibliography. (ND)
ENGL 306. Creative Writing Thesis (spring only) (3)
Portfolio of original creative work in poetry, fiction, or creative non-fiction, plus introductory researched essay. Required for concentration in creative writing. (ND)

ENGL 307. Undergraduate Thesis Proposal (1)
Course to be enrolled by senior honors students preparing to write honors thesis. Course requirements include conducting preliminary research for the thesis and writing a detailed thesis proposal and bibliography. May not be rostered concurrently with English 308. (HU)

ENGL 308. Undergraduate Thesis (3)
Open to advanced undergraduates who wish to submit theses in English. Prerequisite: consent of department chairperson. (HU)

ENGL 309. Interpretation: Critical Theory and Practice (4)
Introduction to recent literary and cultural theory, such as New Criticism, Structuralism, Marxism, Psychoanalytic approaches, Reader-response Criticism, Deconstruction, Feminist Theory, New Historicism, and Cultural Criticism. (HU)

ENGL 310. Introduction to Methods of English as a Second Language Instruction (4)
An introduction to teaching English as a second language including the theory and principles of second language acquisition, ESL methods, materials, and current trends such as computer assisted language instruction. With sufficient effort, students will learn to plan and teach an ESL/EFL class in the four areas of Listening, Reading, Speaking and Listening, choose appropriate materials for varying age and proficiency levels, and most importantly, have a concrete approach to teaching ESL/EFL. Required classroom observing and tutoring hours that can be completed in Lehigh’s ESL classes, in Lehigh’s ELLC language lab, or in the local public school ESL classes. Course restricted to upperclass and graduate students.

ENGL 311. (WS 311) Literature of Women (4)
Women’s works about women. Besides re-reading familiar feminists’ fiction, drama, and poems, an introduction to contemporary and often experimental works by less famous writers. (HU)

ENGL 312. Studies in Literary and Cultural Theory (4)
Study of a particular contemporary theoretical approach to literature, film, or other cultural texts. May be repeated for credit as the topic changes. (HU)

ENGL 314. Teaching English as a Second Language: A Practicum (1-3)
Companion course to English 310 (Intro to Methods of English as a Second Language). This course will include class meetings that focus on guided discussions of the practical application of principles and practices of ESL pedagogy in a real-world environment. Supervised ESL classroom student teaching/tutoring required for students taking the 3-credit option. Prerequisite: English 310.

ENGL 316. Native American Literature (4)
Fiction by modern American Indian writers like N. Scott Momaday, Leslie Marmon Silko, James Welch, Michael Dorris, and Louise Erdrich. Some attention given to the history of the relationships and conflicts between Native Americans and the federal government, white agricultural and business interests, and educational and religious interests. (HU)

ENGL 318. Topics in African-American Literature and Culture (4)
Special Topics in African-American culture and/or the cultures of the African diaspora. Topics may be focused by period, genre, thematic interest or interdisciplinary method including, for example, “Nineteenth-century African-American Literature and Politics”, “African-American Folklore”, “Black Atlantic Literature”, “The Harlem Renaissance”, “African-American Women Writers”. May be repeated for credit as title varies. (HU)

ENGL 327. Chaucer (4)
The Canterbury Tales, with some attention to other Chaucerian works and other works that may have provided source-materials for Chaucer’s tales. Chaucer’s language and the literary, intellectual, social, and historical backgrounds to his work. (HU)

ENGL 328. (THTR 328) Shakespeare (4)
An introduction to Shakespearean drama including comedies, histories, tragedies, and romances. Emphasis on textual study, cultural contexts, and performance strategies. (HU)

ENGL 331. Milton (4)
The poetry and prose of John Milton in the context of the English Revolution. Particular attention to the intersection of theology and philosophy, and of the personal with the political. (HU)

ENGL 342. Advanced Poetry Writing (4)
An intensive writing workshop in which student poems and related literary texts receive close reading and analysis. Prerequisite: ENGL 142 or permission of writing minor advisor. May be repeated for credit. (ND)

ENGL 343. Advanced Creative Non-Fiction (4)
Practice of the essay, including such forms as the personal, academic, or argumentative essay. Emphasis on developing a strong personal voice and learning to use other voices. Intensive revision. May be repeated for credit. Prerequisite: ENGL 143, or permission of writing minor advisor. (ND)

ENGL 344. Advanced Fiction Writing (4)
An intensive writing workshop in which student stories and related literary texts receive close reading and analysis. May be repeated for credit. Prerequisite: ENGL 144, or permission of writing minor advisor. (ND)

ENGL 360. Middle English Literature (4)
Major literary works of the Middle English period by authors other than Chaucer. Emphasis on Piers Plowman, the Gawain/ Pearl Poet, and the metrical romances. (HU)

ENGL 362. The Sixteenth Century (4)
Humanist, Petrarchan and dramatic traditions in the literature of renaissance England. Readings from such authors as Erasmus, More, Wyatt, Sidney, Spenser, and Marlowe. (HU)

ENGL 364. The Seventeenth Century (4)
Literature of the seventeenth century, by such writers as Donne, Herbert, Jonson, Browne, Burton, Milton, Hobbes, Bunyan, and Locke, chronicling the unprecedented variety of aesthetic, political, and social innovations in this “century of revolution.” (HU)
ENGL 366. The Restoration and Early Eighteenth Century (4)
Restoration and early eighteenth-century literature, with attention to the cultural forces that shaped the writers and their works. Readings will include Dryden, Behn, Rochester, Wycherley, Congreve, Swift, Finch, Pope, Addison and Steele. (HU)

ENGL 367. The Eighteenth Century (4)
Poetry, drama and prose of the eighteenth century, with attention to cultural forces that shaped the writers, their works, and their position in the canon. Readings of Montagu, Burney, Wollstonecraft, Austen, Fielding, Richardson, Johnson, Sheridan, Sterne, in addition to a few earlier writers. (HU)

ENGL 369. British Romantic Literature (4)
Poetry and prose of Wordsworth, Coleridge, Byron, Shelley, and Keats within the contemporary political, religious, and social context. (HU)

ENGL 371. British Victorian Literature: Prose and Poetry (4)
Poetry and prose of Tennyson, Browning, Arnold, Swinburne, Carlyle, Mill, Newman, and Ruskin within the contemporary political, religious, and social contexts. (HU)

ENGL 372. British Victorian Literature: Fiction (4)
Major fiction of the Victorian era by such writers as Dickens, Eliot, Thackeray, and Hardy within historical, social, and aesthetic contexts. (HU)

ENGL 374. Early National Literature (4)
United States literature from the Revolution until 1820, emphasizing fiction, poetry and non-fiction that was engaged in forming, and contesting, a national literature and a new national consciousness. Writing will include Franklin, Jefferson, the Federalist writers, Crevecoeur, Occum, Wheatley, Brown, Rowson, Foster, Irving, Cooper, and Rush. (HU)

ENGL 375. Major Authors (1-4)
The works of one or more major literary figures studied in depth. May be repeated for credit as titles and authors vary. (HU)

ENGL 376. Early American Literature (4)
The literature of New England, the Middle Colonies, the South, and the Southwest from Columbus to the close of the eighteenth century, emphasizing our cultural and artistic diversity. (HU)

ENGL 377. American Romanticism (4)
Emerson, Thoreau, Whitman, Hawthorne, Melville, Dickinson, Poe, and their contemporaries. Philosophical, historical, and social background, as well as the aesthetic study of romantic literary works. (HU)

ENGL 378. American Realism (4)
Theory and practice of realistic and naturalistic fiction from the Civil War to the early twentieth-century: Twain, Howells, James, Norriss, Crane, Dreiser, Wharton, and regionalists. (HU)

ENGL 379. Modern American Literature (4)
American literature before World War II. Lectures and class discussion of major fiction and poetry. (HU)

ENGL 380. Contemporary American Literature (4)
American literature since World War II. Lectures and class discussions of new writers and of recent works of established writers. (HU)

ENGL 382. Themes in American Literature (4)
Intensive study of one topic in American literature. Readings from the colonial period to the present. May be repeated for credit as title varies. (HU)

ENGL 383. Modernism and Post-Modernism in Fiction (4)
The "anti-realistic" novel; time/space, point of view, narrative voice, structure as meaning. Kafka, Woolf, Beckett, Nabokov, Robbe-Grillet, Faulkner, Borges, Hawkes, Stein. (HU)

ENGL 384. Twentieth-Century World Literature (4)
World literature (Europe, Asia, South America, Africa) from 1900 to present. (HU)

ENGL 385. Modern British and Continental Literature (4)
World English literature and continental literature before World War II. Lectures and class discussion of major fiction. (HU)

ENGL 386. Contemporary British and Post-Colonial Literature (4)
World English literature and continental literature after World War II. (HU)

ENGL 387. Film History, Theory, and Criticism (4)
Study of film with the focus on particular genres, directors, theories, periods, or topics. Weekly film screenings. May be repeated for credit as title varies. (HU) Cannot be taken pass/fail.

ENGL 388. Independent Study (1-4)
Individually supervised study of a topic in literature, film, or writing not covered in regularly listed courses. Prerequisite: consent of department chairperson. (HU)

ENGL 391. Special Topics (1-4)
A topic, genre, or approach in literature or writing not covered in other courses. (HU)

Graduate Courses in English
The following courses are seminars, ordinarily limited to no more than twelve graduate students, but undergraduate English majors who are planning to go on to graduate school in English and who have shown proficiency in the study of literature may petition to take one of these seminars in their senior year.

ENGL 400. Supervised Teaching (1)
Practical experience in teaching through assisting a faculty teacher in conduct of a regularly scheduled undergraduate course. Open only to graduate students with at least one semester of graduate course work at Lehigh University and a GPA of at least 3.5 Usually rostered in conjunction with 485. Prerequisite: Consent of the department chairperson.

ENGL 423. Anglo-Saxon Language and Literature (3)
The phonology, grammar, and lexicon of English from the beginnings to the present. (HU)

ENGL 424. Anglo-Saxon Language and Literature (3)
An introductory study of the Anglo-Saxon culture through its language and literature. Special attention given to translation and interpretation of the epic poem Beowulf.
ENGL 433. Middle English Literature (3)
Course may be repeated for credit as title varies. Possible offerings:
Medieval Comedy. Analysis of the short comedic and often raucous comic tales and plays that seemed to bring out what was most fresh, original, and daring in the literature of thirteenth- and fourteenth-century France, Italy, the Low Countries, and England. We will be taking a broadly comparative approach, tracing particular plot elements (e.g. treatment of the "lower body parts"), character types (e.g., the cuckolded husband), motifs (e.g., antifeminism), and themes (e.g., criticism of the clergy), through a large number of these early comic tales and farces. We will spend several weeks on the richness of the French fabliau, but we will also work in important ways with works by Boccaccio and Chaucer. We will place a smaller emphasis on Middle Dutch tales and plays. All readings will be in translation with the exception of the two or three of Chaucer's Canterbury Tales (Miller's Tale, Shipman's Tale, and possibly the Reeve's Tale). The Miller's Tale will provide us with a focal point for a third or so of our course together. For the Chaucer tales, we will do a quick lesson in Middle English (it is easier than you think).
Medieval Drama. An exploration of the major modes of medieval drama: the miracle, morality, and mystery play. Primary texts may include The Croxton Play of the Sacrament, Mary Magdalen, Mankinde, Everyman, the York mystery cycle. The forms of medieval drama will be examined in light of theoretical works by J.L. Austin, Pierre Bourdieu, and Ludwig Wittgenstein. There will also be a focus on the particular historical and material contexts for the performance of the plays under consideration.
Chaucer. Selected works by Chaucer, with attention to his language, his sources, the cultural backgrounds that inform his works, and trends in modern criticism of his work.
Writing, Rebellion, and Reform: Medieval Literature of Dissent. An examination of Middle English literature in relation to the social, religious, and political conflicts of the late fourteenth and early fifteenth centuries. Primary texts include Piers Plowman, chronicles of the English Rising, poems from the "Piers Plowman Tradition," selections from The Canterbury Tales, and The Book of Margery Kempe. Consideration will also be given to the legacy of medieval dissent and its representation in early modern works such as Shakespeare's 2 Henry VI, Latimer's "Sermon on the Plow," and Foxe's Book of Martyrs.

ENGL 439. Sixteenth-Century British Literature (3)
Course may be repeated for credit as title varies. Possible offerings:

ENGL 441. Seventeenth-Century British Literature (3)
Course may be repeated for credit as title varies. Possible offerings:
Satan in Literature. When we think of Satan, we tend to imagine a ruddy fellow with a widow's peak and goat's beard. But this figure is the traditional symbol of Satan, not the reality. In fact, to imagine Satan in this way is to commit a precisely Satanic error. Properly understood, the term 'Satan' refers to a quite specific tendency of human thought: the tendency to take signs for the reality to which they refer. This error can take many forms. To religion, it is known as 'idolatry.' To science, it is known as 'magic.' To economics, it is known as 'capitalism.' Satan can certainly also manifest himself outside the human mind, but these external manifestations may not be the most appropriate site for studying his nature. The Hebrew word 'Satan' means both enemy and accuser, and we ought to contemplate the effects of this alien and hostile element in human psychology. In this course we will investigate the nature of Satan as described in a variety of literary texts drawn from a wide range of historical and cultural situations. The authors studied will include Johann Spies, Christopher Marlowe, John Milton, Lord Byron, Edgar Allen Poe, Fyodor Dostoevsky, Thomas Mann, and Ngugi Wa Thiongo.

Magic in Renaissance Poetry. The late-sixteenth and early seventeenth-centuries saw a precipitous rise of interest in and practice of magic throughout Europe. Magicians such as Cornelius Agrippa, Paracelsus, Giordano Bruno and John Dee achieved unprecedented influence in popular and intellectual milieus alike. This course will look for the influence of magical thinking on the literature of the period, with special attention to the theories of representation. Magic presupposes a performative view of the sign, it assumes that words can do things. Similar beliefs appear to animate the poetry of Donne, Traherne, Herbert, Marvell and Vaughan. We will read these and other poets, alongside some of the periods most influential texts of theoretical and practical magic.

ENGL 442: British Literature of the Restoration (3)
Course may be repeated for credit as title varies. Possible offerings:
Cultural Fictions and Public Lying. The English Civil War taught many thinkers that stable cultures require subjects to agree not to see certain "truths," that public life depends on necessary fictions about which all must deceive themselves. Primary texts by Hobbes, Cavendish, Behn, Wyckerley, Swift, and Mandeville; recent writing by Goffman, Bourdieu, Keller, and Haraway.

Witchcraft and History. Eighteenth-century texts continue to use the contradictory "logic" of witchcraft to policewomen's behavior. Primary texts (Shakespeare, Behn, Defoe, Haywood, Pope, Davys) and recent theoretical writings (Bourdieu, Foucault) will help us think through how we make claims about the past that the participants themselves may have been unaware of or unable to articulate.

ENGL 443: Eighteenth-century British Literature (3)
Course may be repeated for credit as title varies. Possible offerings:
Austen, Burney, Edgeworth and the 1790s. This course emphasizes these women’s writers’ complex relation to the rebellious and conservative 1790s and will include not only their fiction from the period (including novels Austen drafted then: Pride and Prejudice, Sense and Sensibility, and Northanger Abbey) but also that of some representative gothic novelists (especially Radcliffe) as well as some radical writers (Hays, Wollstonecraft) along with conservative ones (More, Burke).

Literature in the Marketplace. Novels, magazines, children’s books and other new forms of prose fiction took shape in eighteenth-century England. The course focuses on ways in which these forms are now being re-read against evidence about the eighteenth-century marketplace, where readers and writers (consumers and producers) intersect with each other and with developments in the book trade (issues of copyright, the professionalization of authorship, etc.) as studied in the relatively new discipline of book history. We will consider archival materials as well as canonical and uncritical literature.

ENGL 445: British Romantic Literature (3)
Course may be repeated for credit as title varies. Possible offerings:
Romanticism and the Cult of Childhood. Investigating the gender, class, and race issues raised by idealizing particular kinds of childhood in the Romantic era, we will read works that feature children by Rousseau, Wordsworth, Coleridge, Robinson, and Blake. We will also contextualize children’s literature by Edgeworth, Smith, Trimmer, Barbauld, the Lamb’s, etc., within the heated debate about the relative value of moralistic, utilitarian, and imaginative works for children.

ENGL 447: British Victorian Literature (3)
Course may be repeated for credit as title varies. Possible offerings:
Nineteenth-century Narrative and the Making of Selves. This course investigates the intersection of narrative and the construction of interiority and subjectivity in nineteenth-century British novels, poetry, and autobiography. Our study will interrogate notions of the “self,” psychic or moral growth, the un- or sub-conscious. We will examine the ways in which narratives construct “selves,” in the context of nineteenth-century theories of the mind as well as more recent Psychoanalytical, Gender, and Cultural Theory.

The Problem of Knowledge in the Victorian Age: Nineteenth-century Britain was haunted by the problem of knowledge. “We have but faith; we cannot know,” wrote Tennison in In Memoriam, echoing the common quandary concerning the status of spiritual experience. Earlier Thomas Love Peacock had rejected poetry’s claim to be a serious pursuit: such a way of grasping the world is obsolete; the new and the only reliable mode of knowing is science. Readings—drawn from the work of Mill, Tennison, Browning, Arnold, Clough, Pater, Wilde, Darwin, and Huxley—will reveal the intensity of this debate and the striking formulations it produced in poetry, scientific writing, and social critique.

ENGL 449: Modern British Literature (3)
Course may be repeated for credit as title varies. Possible offerings:
Virginia Woolf and the Limits of Biography. Where is the line between diagnosis and interpretation? To what purpose do scholars studying Woolf’s work invoke her biography? How does Woolf herself play with and interrogate biography as a genre? Reading Woolf’s novels and essays, we will examine the achievements and limits of “psychiatric criticism,” interrogate our culture’s desire to “know” a writer, and discuss Woolf’s own complex rendering of the biographical impulse in her fiction.


ENGL 451: Contemporary British Literature (3)
Course may be repeated for credit as title varies. Possible offerings:
Contemporary British and Postcolonial Literature. Survey course featuring British, South Asian, African, and Caribbean writers, between 1945 and the present. The course is organized around themes which vary at the discretion of the instructor.

Contemporary Literature from the United Kingdom and the Commonwealth. The course includes authors such as Rushdie, Munro, O’Brien, Phillips, and Carter among others. Themes include political and social change, race, gender and ethnicity, cultural and historical conflict.

ENGL 471. Early American Literature (3)
Course may be repeated as title varies. Possible offerings:
First Contact: Then and Now. When worlds collide. Voices from and about various frontiers, borderlands, and liminal spaces, from Canada to the Caribbean, from New England to New Spain. Imagining, discovering, exploring, conquering, domesticating, and inventing “America” in original accounts and modern film representations.

The Literature of Justification. How did the European nations justify making war on and taking lands from Native Americans? What were the philosophical and legal justifications of imperial and colonial expansion? Study of the discourse of conquest, of language as the perfect instrument of empire.

ENGL 473: Antebellum American Literature (3)
Course may be repeated for credit as title varies. Possible offerings:
Class in Antebellum American Literature. The category “class” has been under-explored, often invisible, within U.S. culture. Reading primarily sentimental and sensational fiction (from Cummins’ The Lamplighter to Lippard’s Quaker City), we will ask: where and how is class rendered visible?

The Global Nineteenth Century. An exploration of internationalism in antebellum U.S. literature and culture. We will examine the ways that nineteenth-century Americans laid the political, economic, technological, and cultural groundwork for our current U.S.-dominated era of globalization. In addition to reading what recent scholars have to say about the history of globalization, we will read such nineteenth-century American authors as Whitman, Melville, John Rollin Ridge, and Martin Delany, and study such phenomena as the transatlantic telegraph and the Crystal Palace Exhibition.

ENGL 475. Late Nineteenth-century American Literature (3)
Course may be repeated for credit as title varies. Possible offerings:
Realism and Romanticism in Urban and Regional Turn of the Century Novels. This course takes as its starting point...
the representation of writing in modern literary texts, specifically the power of writing to inscribe both "identity" and "difference." We begin with the premise that the self-constituting power of writing (expressed through rhetorics of authorship) is closely tied to writing's role in the construction of various concepts of the "other." Primary texts by twentieth-century British and postcolonial writers and the introduction of the post-structuralist tradition in literary theory.

**ENGL 480. Composition and Rhetoric (3)**
Course may be repeated for credit as title varies. Possible offerings:
- Ethics and the Teaching of College English. What does it mean to be a good teacher of college English? In this seminar we're going to consider this basic question, with a twist: while good usually means "effective" in this question, we are going to take it suggest "ethical." My hope is that we can find ways to deploy "ethics" to explore some concerns at the heart of college teaching, opening a space to talk about why the teaching of English matters. The Subject in Cultural Studies: The Criticism of Agency. Cultural Studies takes as its founding gesture a concern for subjectivity, the ways in which the individual human subject is shaped by culture. After making this gesture, various branches of the discipline divide according to a particular subject matter: feminism, colonialism, historicism, popular culture, and so on. In this course we will pay particular attention to the founding gesture and the tricks that it can play on us. We will read literary criticism and rhetorical criticism in order to understand the often hidden assumptions and beliefs behind cultural studies in all its forms. We will consider works by Bourdieu, Cixous, Burke, Butler, Bakhtin, Paul Smith, Said, Kristeva, Foucault, and others.

**ENGL 481. Theory and Criticism (3)**
Course may be repeated for credit as title varies. Possible offerings:
- Theories of Gender and Feminism. In this course we will study the critical works of some of the most important feminist theorists. We will be interrogating foundational concepts such as woman, gender, sex, love, pleasure, desire, the body, the unconscious, oppression, agency, patriarchy, equality, difference, the local and the global. Theorists will include: Simone de Beauvoir, Diana Fuss, Judith Butler, Julia Kristeva, Denise Riley, Chandra Talpade Mohanty, Gayle Rubin, Joan Scott, Teresa de Lauretis, Eve Kosofsky Sedgwick, Gayatri Chakravorty Spivak, Donna Haraway, bell hooks, Pierre Bourdieu, Rosi Braidotti, Jessica Benjamin, and Chela Sandoval.

**ENGL 482. Queer Film Theory and Criticism.** In the early 1990s a cycle of films dubbed "New Queer Cinema" emerged along with a "new queer" film theory—both influenced by political activism and by academic work by figures like Michel Foucault, Eve Sedgwick, and Judith Butler. Questions arose about this queer film and film theory, How were they different from the gay and lesbian films and film theory that came before? Was "queer" being used to erase specific lesbian, gay, bisexual, and trans approaches to film? What did "queer" mean, exactly? This course will address these questions, and many others, that were provoked by Queer 90s films and film theory. Topics and issues covered in the course will include the history of representation, audience/spectatorship, production contexts and sub-textual coding. Also examined will be the intersection of queerness with race, class, and gender.
The New Economic Criticism. Over the last few years, a long-standing tendency among some literary critics to draw analogies between their discipline and economics seems to have coalesced into something resembling a "school". Recent anthologies, conferences and articles have made reference to it as the "new economic criticism". The course will ask whether we are justified in speaking of such a movement, and if so, what are its distinguishing characteristics, and why has it emerged at the present historical juncture. We will read theoretical texts (Derrida, Lyotard, Jameson), secondary studies (Hans-Christophe Binomte, Marc Shell, Jean-Joseph Goux), and also some of the primary studies to which these refer (Goethe, Mallarme, Shakespeare).

How to Read Deconstructively. Deconstruction aims to produce a way of thinking that weakens the scope of authority itself—any authority—through creative skepticism. This course will begin by directly engaging some of the key theoretical texts by writers such as Friedrich Nietzsche, Martin Heidigger, Jacques Derrida, Gayatri Chakravorty Spivak. But the real goals of the course are to show how deconstruction is used and, crucially, how it is useful.

ENGL 483. Creative Writing and Literary Studies (3) Course may be repeated for credit as title varies. Possible offerings:
From the Inside: Creative Writing and Reading. A combination of seminar and workshop, this course uses instruction and practice in the techniques and genres of creative writing (prosody, narratology, characterization, etc.) to develop tools for studying literary texts. Prerequisite: consent of instructor.

ENGL 485. Introduction to Writing Theory (2) Survey of major approaches and theoretical issues in the field of composition and rhetoric. Required of all new teaching assistants in the department. Usually rostered in conjunction with 400 or 486.

ENGL 486. Teaching Composition: A Practicum (1) Introduction to teaching writing at Lehigh. Bi-weekly discussions of practical issues and problems in the teaching of freshman composition. Required of all new teaching assistants in the department. Usually rostered in conjunction with English 485.

ENGL 487. Teaching with Technology: A Practicum (1) Hands-on introduction to the tools and skills necessary to teach with the computer, along with some attention to appropriate pedagogy. Prerequisite: consent of graduate program coordinator.


ENGL 491. Special Topics (1-3) A topic, genre, or approach in literature or writing not covered in other courses. May be repeated for credit as title varies. Prerequisite: consent of graduate program coordinator.

ENGL 493. Graduate Seminar (3) Intensive study of the works of one or more authors, or of a type of literature. May be repeated for credit as title varies.

ENGL 495. Independent Study (3) Individually supervised course in an area of literature, film or writing not covered in regularly listed courses. Prerequisite: consent of graduate program coordinator.

ENGL 499. Dissertation (1-9) Research and study for comprehension exams.

English as a Second Language

Program Director: Timothy Bonner
Credit Instruction: English as a Second Language (ESL) credit courses are offered to both undergraduates and graduates who wish to increase English proficiency in the areas of writing, reading, speaking, and presentation skills. All credit courses are at an advanced level of English study. For undergraduates, these courses are designed to supplement English department required courses, such as courses towards the freshman writing requirement. Graduate students should contact their departments regarding acceptance of credit towards residency requirements. ESLP courses may be repeated for credit with a maximum of three repetitions. ESL credit courses are open to regularly enrolled students or General College Division students with placement or permission by ESL Director.

StepUp Intensive English Program. A non-credit intensive ESL program called StepUp is offered to intermediate to advanced ESL students who wish to study university/academic English in a challenging environment. This program is open to the general public. Contact the ESL program for information and a brochure or refer to our website, www.lehigh.edu/ESL.

English Language Learning Center. Private tutoring and computer-assisted language learning for students, staff, faculty and their families.

English Testing. English language proficiency testing is required for all incoming undergraduate and graduate students whose first language is not English during student orientations in August and January. Placement in courses will be determined based on the results. New Teaching Assistants must take the S.P.E.A.K. test prior to the beginning of their teaching semester (A TSE score of 55-60 is acceptable). Students who do not pass the S.P.E.A.K. are not eligible for a TA position. Contact the ESL Office for an appointment upon arrival to campus. Refer to our website for additional information.

The Freshman Composition Requirement. The courses English 3 and English 5 (Composition and Literature for International Writers I and II) may be applied towards the composition requirement for undergraduates. See the department course listings for additional information.

ESL Teacher Training. ESL in conjunction with the English Department offers English 310 (Introduction to Theories and Methods of ESL Instruction) and English 314 (ESL Teaching Practicum). See the Department course listings for descriptions. (These teaching courses can also be taken for graduate credit through the College of Education.)

For more information about English as a Second Language at Lehigh, refer to our web site at www.lehigh.edu/ESL.

Courses:

ESLP 1 ESL Academic Writing and Grammar (1) Instruction in understanding and using advanced English sentence structures in writing. Advanced academic vocabulary and grammar development to improve writing sophistication and accuracy. Required for gradu-
ate students who do not achieve a sufficient score on the Lehigh ESL Writing Sample and/or for students needing additional writing proficiency. 4 hours per week.

**ESLP 2 ESL Academic Writing and Reading (1)**
The writing process and composing skills, editing skills, vocabulary development and reading fluency for ESL students. Required for graduate students who do not achieve a sufficient score on the Lehigh ESL Writing Sample and/or for students needing additional writing proficiency. 4 hours per week.

**ESLP 3 ESL Clear Speech and Conversation (1)**
Conversational English, colloquial language and idioms, pronunciation and accent reduction and practice in basic listening skills for an academic setting. 4 hours per week.

**ESLP 4 ESL Academic Speaking (1)**
Correct use of grammatical structures in oral English and practice in accurate pronunciation. ESL students will explore the functions of American English in an academic setting. 4 hours per week.

**ESLP 11 ESL Technical Writing and Composition (1)**
Formal composition and technical writing including general technical vocabulary, technical sentence structure, and research skills for the advanced ESL student. Prerequisite: successful completion of ESLP 1 and 2 (ESL Academic Writing and Reading) or ENGL 5, or with permission of ESL Director. 4 hours per week.

**ESLP 12 ESL Advanced Speech and Presentation Skills (1)**
Development of advanced speaking skills and presentation techniques through a study of formal spoken rhetoric, accent improvement, and presentation skills. For the undergraduate or graduate student seeking formal speech skills and/or for teaching assistants. Prerequisite: successful completion of ESLP 3 or 4 , or SPEAK score 200+, or permission of ESL Director. 4 hours per week.

**ENGL 3. Composition and Literature I for International Writers (3)** fall
Idiomatic English both oral and written, with a strong emphasis on producing well-organized, coherent essays. Enrollment limited to non-native speakers; placement is determined by placement testing or ESL director's recommendation.

**ENGL 4. Composition and Literature II for International Writers (3)** spring
Continuation of English 3.

**ENGL 310. Introduction to Methods of English as a Second Language Instruction (4)**
An introduction to teaching English as a second language including the theory and principles of second language acquisition, ESL methods, materials, and current trends such as computer assisted language instruction. With sufficient effort, students will learn to plan and teach an ESL/EFL class in the four areas of Writing, Reading, Speaking and Listening, choose appropriate materials for varying age and proficiency levels, and most importantly, have a concrete approach to teaching ESL/EFL. Required classroom observing and tutoring hours that can be completed in Lehigh's ESL classes, in Lehigh's ELLC language lab, or in the local public school ESL classes.

**ENGL 314. Teaching English as a Second Language: A Practicum (1-3)**
Companion course to English 310 (Intro to Methods of English as a Second Language). This course will include class meetings that focus on guided discussions of the practical application of principles and practices of ESL pedagogy in a real-world environment. Supervised ESL classroom student teaching required for students taking the 3 credit option. Prerequisite: English 310. Variable credit.

---

**Entrepreneurship**

Program Management: CBE and RCEAS faculty committee.

Minor Program Director: Graham Mitchell

**Minor in Entrepreneurship**
The purpose of the entrepreneurship minor is to enable students to supplement their major with knowledge and skills that increase their ability to realize their entrepreneurial goal and/or make them more marketable upon graduation. It will also work to create an environment and campus center of gravity that fosters an entrepreneurial spirit and mindset among students and also serve as a locus for community building among entrepreneurial students, faculty, and alumni. This minor is available for students at Lehigh University.

**Required pre-requisite course:**
- ECO 1 Principles of Economics (4 credit hours)

**ECO 1 must be completed prior to entering the entrepreneurship minor program.**

**Required Courses:**
- ENTP 101: Entrepreneurship 1 (3 credit hours) Pre-requisite ECO 1.
- ENTP 201: Entrepreneurship and Enterprise (3 credit hours) Pre-requisite ENTP 101 or permission of minor program director.
- One of the following ILE options (3 credit hours)
  - ENTP 311: Entrepreneurship Practicum (3)
  - IBE 395: Capstone Projects 1 (3)
  - MGT 311: LUMAC Management Assistance Counseling (3)
  - Or other independent experiential project approved by the minor program director.
- ENTP 312: Launching Entrepreneurial Ventures (3 credit hours) Pre-requisite: Junior standing, ENTP 311, or equivalent ILE option, or permission of minor program director.

**Recommended Additional Courses:**
- ACCT 108 or 151/152
- Law 201 and 202
- MGT 306
- MKT 211 and 319
- SCM 309
- Excel Competency Course/Exam

Students must complete the minor sequence with an average GPA of at least 2.0 in those courses in order to qualify for the minor. Courses in the Entrepreneurship minor cannot be used towards either the Engineering Minor or the Business minor.
Entrepreneurship Courses:

ENTP 101. Entrepreneurship (3 credit hours)
Introduction to the nature and process of entrepreneurship. Emphasizes entrepreneurial opportunities, creativity, innovation and vision, and pursuit of opportunities beyond resources. Topics include: concepts of entrepreneurship; attributes of entrepreneurs; new venture creation; introduction to entrepreneurial finance and marketing in resource-constrained environments; intellectual property; new venture business planning for both emerging and existing enterprises.

ENTP 201. Entrepreneurship and Enterprise (3 credit hours)
Investigates skills and steps for entrepreneurial success: mindset; opportunity scanning and screening; informal networking; finding and managing external resources; developing marketing plans; sales; investors; debt and venture capital; horizontal management; developing a leadership team and creative culture; technology cycles; structuring; managing change; ethics; exit strategies. Cross-functional team-based experiential practice and discussions with entrepreneurs. Prerequisites: ENTP 101 or permission of minor program director.

ENTP 311. Entrepreneurship Practicum (3 credit hours)
Cross-disciplinary teams of 4-6 students with faculty and alumni: marketing and financial planning; business and technical feasibility of products or service. Students may work on projects related to LU intellectual property, or ideas from outside entrepreneurs, or on their own projects. Oral and written presentations and discussions with guest speakers are integral parts of the course. Prerequisite: Junior standing and ENTP 201, or permission of minor program director.

ENTP 312. Entrepreneurship IV: Launching Entrepreneurial Ventures (3 credit hours)
Investigates in detail the critical steps and activities necessary when entrepreneurs seriously consider starting their own businesses. Organizational structure, governance and legal forms of business. Advisory boards. Business and product liability. Intellectual property protection. Sources of capital, establishing credit, seeking angel investors and venture capital. Writing and circulating the Venture Profile. Generating and defending financial projections, revenue streams and expense categories, cost and price estimates, pro-forma financial statements. Negotiating contracts. Licensing. Methods of valuation. Exit strategies. Discussions with successful entrepreneurs are integral to the course. Prerequisites: Junior standing and ENTP 311, or equivalent ILE option, or permission of minor program director.

Environmental Studies

Professors: Stephen H. Cutcliffe, Ph.D. (Lehigh), Professor of Science, Technology and Society and History and Director of Science, Technology and Society program; Sharon M. Friedman, M.A. (Penn State), Professor of Journalism and Communication and Director of Science and Environmental Writing Program; John B. Gatewood, Ph.D. (Illinois), Professor of Sociology and Anthropology; John Martin Gillroy, Ph.D. (Chicago), Professor of Environmental Studies and International Relations; Kenneth L. Kraft, Ph.D. (Princeton), Professor of Religion Studies; Gerard P. Lennon, Ph.D. (Cornell), Professor of Civil Engineering; Anne S. Metzger, Ph.D. (Rice), Dean and Professor of Earth and Environmental Sciences; Vincent G. Munley, Ph.D. (SUNY at Binghamton), Professor of Economics; Dork Sahagian, Ph.D. (Chicago), Professor of Earth and Environmental Sciences and Director of the Environmental Initiative; David B. Smith, Ph.D. (Cambridge), Professor of Sociology and Anthropology.

Associate Professors: Edward E. Lotto, Ph.D. (Indiana), Associate Professor of English and Director of the Center for Writing, Math and Study Skills; Albert H. Wurth, Jr., Ph.D. (North Carolina), Associate Professor of Political Science.

Assistant Professors: Alec M. Bodzin, Ph.D. (North Carolina State), Assistant Professor of Education; Chad Briggs, Ph.D. (Carleton), Assistant Professor of Environmental Studies and International Relations; Derick G. Brown, Ph.D. (Princeton), Assistant Professor of Civil and Environmental Engineering; Beena Holland, Ph.D. (Chicago), Assistant Professor of Environmental Studies and Political Science; Kristen L. Jellison, Ph.D. (MIT), Assistant Professor of Civil and Environmental Engineering.

BA Program Director: Sharon M. Friedman, Department of Journalism and Communication. Graduate Certificate Program Director: John Martin Gillroy, Environmental Studies and Department of International Relations. Environmental Initiative Director: Dork Sahagian.

The Bachelor of Arts degree in Environmental Studies is a major component of the educational arm of a large interdisciplinary program of education, research and outreach called the Environmental Initiative (EI).

The Environmental Studies BA program examines the cultural, economic, historical, political and social factors that influence local, national, international and global environmental issues and policies. Investigating a wide range of perspectives, it includes a broad exposure to many factors confronting humans as they grapple with complex problems and possible solutions to environmental questions.

The interdisciplinary program includes courses in 4 colleges and 10 different departments. Most of its courses are in social science disciplines but there are also offerings in humanities, education, science, mathematics and engineering. The program has been designed so students will develop a broad understanding of social science environmental concerns, along with a basic familiarity with environmental science, statistics and research methods. Of benefit to all students interested in environmental issues, this new B.A. degree will complement existing B.A. and B.S. programs in Earth and Environmental Sciences and the B.S. program in Environmental Engineering.

Another educational component of the EI is its new Graduate Certificate in Environmental Law & Policy. This graduate certificate allows students to examine how ethics, politics, and science policy influence the natural environment and shape human relationships to it at the local, national and international levels. The certificate provides expertise in existing law that regulates environmental pollution, planning and land use. Students will learn how to analyze these laws and to address the laws’ deficiencies by creating new policy designs. Courses in this certificate will become a part of a planned MA in Policy Design and Analysis.
The B.A. Program

The B.A. program is intended for students who are interested in environmental affairs from the perspective of the social sciences and humanities. This degree will prepare students for a variety of career options including positions in policy agencies at the federal, state and local government levels, corporate management, non-profit organizations, environmental journalism, environmental education or environmental law. It also will prepare students for graduate studies in a number of environmental policy and social science fields.

The B.A. is specifically designed to be broadly inclusive yet flexible enough to allow for double majors and minors in other fields. Double majors or minors in social science fields such as anthropology, communication, history, international relations, journalism, political science, psychology, science and environmental writing or sociology could easily be accomplished. Minors in the sciences, such as Earth and Environmental Sciences, also can be completed. If students are not pursuing a double major, a minor in another field to complement the Environmental Studies major is highly recommended but not required.

The major consists of four required and three core courses, plus three elective courses chosen from a list that follows. The B.A. is considered a social science major and most of its courses fulfill college social science distribution requirements. Its collateral requirements, which include a social science research methods course, one course in statistics and two science courses, can be used to fulfill college math and science distribution requirements.

HONORS: To graduate with honors, a major in Environmental Studies must maintain a 3.2 overall average, attain a 3.5 average in the courses constituting the major program, and complete an honors thesis in the senior year.

Environmental Studies Major

Required and Core Courses (28 credits)

**Required Courses:**

- ES 1 Introduction to Environmental Studies (4)
- ES 2 (EES 2) Introduction to Environmental Science (3)
- ES 4 (EES 4) The Science of Environmental Issues (1)
- ES 105 (POLS 105) Environmental Policy and Planning (4)
- ES 381 Senior Seminar: Issues in Environmental Studies (4)

**Core Courses: At Least 3 of the 7 following courses:**

- ES 10 Environment and the Consumer Society (4)
- ES 106 (POLS 106) Environmental Values and Ethics (4)
- ES 111 (ECO 111) Introduction to Environmental Economics (4)
- ES 121 (ANTH 121) Environment and Culture (4)
- ES 125 (JOUR 125) Environment, the Public and the Mass Media (4)
- ES 171 (CEE 171) Fundamentals of Environmental Technology (4)
- ES 315 (HIST 315) American Environmental History (4)

**Major Electives:** (12 credits including 1 course at the 200 level or above. Additional core courses can be used to fulfill this requirement):

- ANTH 145 Human Evolution (4)
- ANTH. 305 Anthropology of Fishing (4)
- ARTS 196 Sustainable Development: The Costa Rican Experience (3)
- CEE 272 Risk Assessment (2)
- CEE 379 (EES 379) Environmental Case Studies (3-4)
- ECO 311 Environmental Economics (3)
- ENGL 201-11 The Environmental Imagination (4)
- EES 89 Geographical Analysis of our Changing World (4)
- ES 107 (POLS 107) Politics of the Environment (4)
- ES 115 (JOUR 115) Communicating about the Environment (4)
- ES 116 (JOUR 116) Risky Business (4)
- ES 131 Internship (1-2)
- ES 181 Independent Study (1-4)
- ES 331 U.S. Environmental Law I: Pollution & Risk Abatement (4)
- ES 333 (IR 333) International Environmental Law & Policy (4)
- ES 336 Environmental Justice & the Law (4)
- ES 338 Environmental Risk: Perception & Communication (4)
- ES 343 (IR 343) Comparative Environmental Law & Policy (4)
- ES 371 Special Topics (1-4)
- ES 391 Honors Thesis (4)
- IR 344 Politics of Oil (4)
- JOUR 123 Basic Science and Technical Writing (4)
- JOUR 323 (STS 323) Controversies (4)
- POLS 328 U.S. Politics and the Environment (4)
- POLS 375 Seminar: Green Polity (4)
- REL 6 Religion and the Ecological Crisis (4)
- REL 254 Buddhism and Ecology (4)
- REL 258 Special Topics in Education - Environmental Education (3)

In addition, new courses may be offered annually. Students should check with the program director for an updated list.

**Collateral Requirements (14-16 credits)**

**Required (8 credits):**

- MATH 12 Basic Statistics (4)
- A calculus course may be substituted with permission of the program director.
- SR 111 Research Methods and Data Analysis (4)

**Science Electives:** At least one EES and one other science course (6-8 credits)

**Minor in Environmental Studies**

A minor in Environmental Studies consists of four 4-credit courses, for a total of 16 credits. These should include ES 1, one course from the core set for the major, and two courses from either the core or elective courses for the major. One of the two courses must be at the 300-level course.
Environmental Studies undergraduate Courses

ES 1. Introduction to Environmental Studies (4) Fall
Gateway to the field of Environmental Studies, the course surveys central issues and themes confronting humanity in the natural world on a national and global basis. Topics include humankind’s role in environmental change; society’s response to the dynamism of nature; cultural evaluations of nature; population dynamics; resource availability and pollution sinks; land use patterns; sustainability and consumerism; environmental justice and ethics; policy and planning. Gillroy (SS)

ES 2 (EES 2). Introduction to Environmental Science (3) Spring
Focuses on natural and human-induced drivers and consequences of environmental change. Exploring options for mitigating and adapting to environmental change in ecosystems, physical and social systems, we will examine such topics as biogeochemical cycles, population pressure, ecosystem diversity, productivity and food security, energy, water resources, climate change, pollution, ozone, urban issues and sustainability. Stresses interactions and inter-relationships, using a series of case studies. Intended for non-science majors with an interest in the environment. Sahagian (NS)

ES 4 (EES 4). The Science of Environmental Issues (1)
Analysis of current environmental issues from a scientific perspective. The focus of the course will be weekly discussions based on assigned readings. Kodama, Zeitler (NS)

Is there such a thing as sustainable consumption, or will life on Earth become increasingly imbalanced? Will our grandchildren accuse us of “devouring” their future? This multidisciplinary course investigates these issues, both locally and globally from the perspectives of anthropologists, history, communication and politics. Topics include cultural causes of and responses to past environmental disasters; biological and cultural limits to growth; overfishing the commons; resources and land use issues; communication in a consumer culture; and politics and governmental regulations. Team projects researching the environmental impacts of campus consumption will be included. Cutchiffe, Friedman, Gatewood and Wurth (SS)

ES 105 (POLS 105). Environmental Policy and Planning (4) Fall
Analysis of the framework that has been established to protect the environment and promote sustainable growth. Focus on the roles of the different branches of the U.S. government and the relative responsibilities of state and local governments within this framework. Consideration of the political nature of environmental issues and the social forces influencing environmental protection in different areas of domestic environmental policy, such as climate change, toxic waste disposal, and natural resources conservation. Holland (SS)

ES 106 (POLS 106). Environmental Values and Ethics (4) Spring
A broad survey of the role of values and ethics in environmental issues. How have humans perceived their relation to nature across vast spans of time and culture? Do premodern ecological views still have lessons to teach contemporary citizens? Contemporary developments such as environmental justice, deep ecology, ecofeminism, bioregionalism, campus ecology, ecopsychology and issues of ecological identity will be explored. Holland (SS)

ES 107 (POLS 107). The Politics of the Environment (4)
A survey of the major environmental, resource, energy and population problems of modern society, focusing on the United States. The politics of people’s relationship with nature, the political problems of ecological scarcity and public goods, and the response of the American political system to environmental issues. Wurth (SS)

ES 111 (ECO 111). Introduction to Environmental Economics (4)
An examination of the interactions between our economic systems and the environment. Pollution as a consequence of human activity within a framework for analyzing the relationships between environmental quality, scarcity of resources and economic growth. How to develop appropriate public policies to deal with these issues. Prerequisite: ECO. 1. (SS)

ES 115 (JOUR 115). Communicating about the Environment (4)
Introduction to the need for and ways to communicate about environmental issues to laypersons, government officials, journalists, members of the judiciary and technical experts. Explores case studies of good and bad communication about environmental issues. Internet communication, including the efficacy of placing governmental reports and databases on the Web for public consumption, will be evaluated. (SS)

ES 116 (JOUR 116). Risky Business (4) Summer
This course explores the risks and effects of environmental contamination on human health and behavior as well as the role of the mass media in alerting citizens to potential environmental health risks. Environmental topics vary but usually include air and water pollution, endocrine disrupters and radioactive waste. Friedman (SS)

ES 125 (JOUR 125). Environment, the Public and the Mass Media (4) Fall
Extensive exploration of local, national and international environmental problems and their social, political and economic impacts. Analysis of mass media coverage of complex environmental issues and the media’s effects on public opinion and government environmental policies. Examination of environmental journalism principles and practices in the United States and around the world. Friedman (SS)

ES 131. Internship (1-2)
Practical experience in the application of environmental studies for both on- and off-campus organizations. Course is designed to provide credit for supervised experiential learning experiences. May be repeated for credit up to four credits. Prerequisite: consent of the program director. (ND)

ES 171 (CEE 171). Fundamentals of Environmental Technology (4)
Pollution control technologies and how they work for water, air and solid wastes. Assessment and management of risk as applied to remediation of contaminated wastes.
Role of life cycle analysis of products in risk reduction. Emphasis on technologies leading to sustainable environment, Government policies and regulations, including litigation and Best Engineering Practices. Prerequisite: A course designated NS. Not available to students in RCEAS. (ND)

ES 181, Independent Study (1-4)
Directed readings or research on an Environmental Studies topic. May be repeated for credit up to four credits. Prerequisite: consent of the program director. (HU or SS)

For Advanced Undergraduates and Graduate Students

ES 331. U.S. Environmental Law I: Pollution & Risk Abatement (4-3)
This course studies the practical reality of environmental regulation as codified law. It also aims at understanding the law's foundation in argument and justification as both existing law and proposed policy through the use of cases, statutes, and regulations on air, water, land, waste and environmental impact. Utilizing two legal paradigms for charting the relationship between humanity and nature, it examines a wide range of environmental law as well as ethical, political, economic, scientific, and policy dimensions. Gillroy (SS)

ES 333 (IR 333). International Environmental Law & Policy (4-3)
Examining the basic international legal setting for the protection and management of the environment, this course focuses on how international law is made and applied, the role of international environmental regimes or institutions, enforcement strategies, and compliance mechanisms. Emphasis will be placed on human rights and the environment, the interface of free trade and environmental protection, the protection of biodiversity, North-South issues, as well as a review of various regulatory regimes for the protection of the global commons, including the history and legal sources of the Global Climate Change Convention. Gillroy (SS)

ES 333 (IR 333). Comparative Environmental Law & Policy (4-3)
This course studies the different ways in which domestic legal systems handle the regulation of humanity's relationship to the natural world. The first part of the course concentrates on comparative law that examines the evolution of distinct types of legal systems from their origins in the ancient world. The second part of the course specifically and comparatively examines environmental law as it has developed in Canada, China, the European Union and the United States. Ranges of alternatives for environmental law and policy as practiced in various parts of the world will be explored. Gillroy (SS)

ES 371. Special Topics (1-4)
Intensive, research-oriented study of a subject or issue in Environmental Studies not covered in other courses. For students of demonstrated ability and adequate preparation. May be repeated for credit up to four credits. Prerequisite: consent of the program director. (HU or SS)

ES 381. Senior Seminar: Issues in Environmental Studies (4)
Advanced seminar focusing on discussion and research on specialized subjects in Environmental Studies. Subject matter varies from semester to semester. Intended for Environmental Studies majors and minors but open to others. Prerequisites: ES 1, 2 or another EES course, and one core course or consent of the program director. (SS)

ES 391. Honors Thesis (1-4)
Directed undergraduate research thesis required of students who apply and qualify for graduation with program honors. Prerequisite: consent of the program director. (HU or SS)

Graduate Certificate in Environmental Law and Policy

This graduate certificate offers a credential in environmental law and policy for individuals with a background in various science, engineering, social science, and humanities fields who wish to understand the theory and practice of environmental and natural resource law at the national, comparative or international level. It is especially valuable for those in various environmental fields who come in contact with the law in the course of their work, to policy makers at all levels of government who routinely handle legal affairs, to lawyers without specific training in environmental law, and to business people who want to know what the law says about the legality of their business' impact on the natural environment. The certificate also can be preparation for further studies in law, policy, or politics or for professional positions in the private or public sector.

Requirements

The certificate program requires 4 courses with 1 course from each of the 2 core groups and 2 other courses from either the core groups or electives selected in consultation with the program advisor. No more than 6 credits can be taken at the 300 level and the certificate must be completed within 3 years.

Core Courses In Environmental Law:

ES 331/431 U.S. Environmental Law I: Pollution & Risk Abatement (3)
ES 432 U.S. Environmental Law II: Natural Resources & Public Lands (3)
ES 333/433 International Environmental Law & Policy (3)
ES 343/443 Comparative Environmental Law & Policy (3)

Core Courses In Policy Analysis, Valuation & The Law:
ES 435 Environmental Valuation For Policy Design & Legal Analysis (3)
ES 336/436 Environmental Justice & The Law (3)
ES 437 Environmental Risk: Decision Making & Management (3)
ES 338/438 Environmental Risk: Perception & Communication (3)

Elective Courses:
Elective courses will be chosen from existing Environmental Studies, Environmental Science or Environmental Engineering courses (ES, EES or CEE) at the 300/400 level in consultation with the program advisor. Students are encouraged to choose their elective courses from ES core offerings, however, they can select a specific elective pertinent to their studies or background in consultation with their advisor.

Graduate Courses
ES 432. U.S. Environmental Law II: Natural Resources & Public Lands (3)
This course combines a study of natural resources law with an understanding of the politics and legal processes that create, change, and regulate the economic use of nature. It studies extraction law from two models of regulation: the Market Sector Approach and the Ecosystem Approach. Using these two standards for charting the relationship between humanity and nature, students will analyze timber, water, mineral extraction, public lands regulations, wildlife, wilderness and federal planning and environmental impact assessment in terms of their ethical, political, economic and policy components. Gilroy

ES 435. Environmental Valuation For Policy Design & Legal Analysis (3)
Reviewing the history and legal context that gave rise to the current use of the “contingent valuation method” for pricing environmental resources, this course assesses empirical and normative strengths of this method, as well as the weaknesses that challenge its effectiveness and political legitimacy. Students will evaluate the recent turn to “deliberative” methods of resource valuation and consider empirical and normative problems that deliberative methods address. Holland

ES 437. Environmental Risk: Decision Making & Management (3)
Starting with the distinction between traditional pollution problems and environmental risk, this course focuses on the internal dynamics of the risk policy process in terms of the formulation of law and policy in response to various risk dilemmas. Alternative policy paradigms for risk choices and the management of environmental risk will be examined as will the standing law regulating risk in the United States, abroad, and in terms of international governance. Briggs

Finance
Professors. Stephen G. Buell, Ph.D. (Lehigh); Richard J. Kish, Ph.D. (Florida), chairman, Perella Department of Finance; Nandu Nayar, Ph.D. (Iowa), Hans Baer Chair in International Finance; Geraldo M. Vasconcellos, Ph.D. (Illinois).
Assistant Professors. Anne-Marie Anderson, Ph.D. (Arizona).

Professors of Practice. Mark R. Adams, J.D. (Baltimore), MBA (Pittsburgh); David H. Myers, Ph.D. (Washington); Samuel C. Weaver, Ph.D. (Lehigh).
Adjunct Professors. David L. Muething, Ph.D. (M.I.T.); Timothy J. Timura, M.B.A. (Wisconsin).
In the era of a growing competitive global economy, finance has become increasingly important and complex. This has led to an expansion of career opportunities within corporations, investment firms, and financial institutions worldwide. These opportunities are varied and often overlap with other disciplines such as accounting, information systems, and marketing. It is also important that students engage in extracurricular activities that might complement their academic studies. The domestic financial services industry has been at the forefront of global finance and will remain as one of our relative strengths within a global economy. Lehigh, in turn, enjoys a relative advantage in this regard as Lehigh alumni are well respected in all areas of finance. Our program has also been able to take advantage of our proximity to many financial institutions. The finance major offered by the Perella Department of Finance requires 18 credit hours beyond the core requirements. Each finance major must successfully complete the 2-course foundation requirement; the 2-course depth requirement; and the 2-course breadth requirement as outlined below.

2-Course Foundation Requirement
FIN 323 Investments
FIN 328 Corporate Financial Policy

2-Course Depth Requirement
Choose 2 depth electives from the following list of finance offerings.
FIN 324 Security Analysis and Portfolio Management
FIN 330 Financial Markets and Institutions
FIN 333 Global Finance
FIN 334 Derivatives and Management of Risk
FIN 335 Advanced Topics-Financial Management
FIN 336 Real Estate Finance

2-Course Breadth Requirement
Choose 2 breadth electives within one of the following four breadth tracks.
Track 1: Financial Analysis
ACCT 315 Financial Accounting I
ACCT 316 Financial Accounting II
ACCT 318 Financial Statement Analysis

Track 2: Financial Engineering
ECO 327 Real Options
ECO 346 Numerical Methods for Business Decisions
FIN 333. Global Finance (3)
Issues that underlie the investment, financing, and dividend decisions of multinational firms from both the buyer’s and seller’s viewpoints. Current transactions in foreign currencies, direct and portfolio investment and associated risk management when dealing in foreign countries. Prerequisite: FIN 323 and FIN 328.

FIN 334. Derivatives and Management of Risk (3)
Theoretical and practical aspects of various instruments and markets that involve financial derivative instruments. Emphasis on the management of risk for corporate managers and portfolio managers. Prerequisite: FIN 323 and FIN 328.

FIN 335. Advanced Topics – Financial Management (3)
Advanced topics relating to specific areas of corporate finance such as bond refunding, asset valuation and capital budgeting including the role of uncertainty, imprecise forecasts, risk preferences, inflation, market conditions, and the global marketplace; working capital management, leasing, mergers, and financing. The course content may vary between instructors and over time, therefore, the course descriptor is subject to change each time the course is offered. May be repeated. Prerequisite: FIN 323 and FIN 328.

FIN 336. Real Estate Finance (3)
An advanced survey of modern residential and commercial real estate financing techniques from the perspective of the borrower and the lender. Topics include: the principles of financing decisions; financing methods and techniques, institutional sources of funds for real estate, and real estate financing decision-making. The course includes lectures, demonstrations, spreadsheet software exercises, and guest speakers. Prerequisite: FIN 323 and FIN 328.

Additional finance offerings that cannot be used to fulfill the finance depth requirement:
FIN 371. Directed Readings (3) 
Readings in various fields of finance designed for the student with a special interest in some field of finance not covered in scheduled courses. May be repeated. Prerequisite: consent of sponsoring instructor.

FIN 372. Special Topics (1-3)
Special problems and issues in finance for which no regularly scheduled course work exists. When offered as group study, coverage varies according to interests of instructor and students. May be repeated. Prerequisite: consent of sponsoring instructor.

FIN 273. Finance Internship I (1 credit)
Based on a student’s work experience, a sponsoring faculty member shall direct readings, projects, and other assignments—including a “capstone report.” It should be noted that the work experience (at least 80 hours), by itself, is not the basis for academic credit. The faculty directed activity must be provided concurrent with the work. Course registration and related arrangements must be made in advance of the work engagement. This course must be taken Pass/Fail and cannot be used to satisfy finance major requirements. Prerequisites: ECO 129, ECO 145, MATH 21, ACCT 151, declaration of a finance major, and department approval.

FIN 330. Financial Markets and Institutions (3)
Functions and portfolios of financial intermediaries. Sectional demand and supply of funds, nature and role of interest rates, term structure and forecasting, impact of inflation and regulation on financial intermediaries and markets, and current developments in the financial system. Management of assets and liabilities within the U.S. financial institution’s legal and economic constraints. Prerequisites: FIN 323 and FIN 328.
FIN 373. Finance Internship II (1 credit)
Based on a student’s work experience, a sponsoring faculty member shall direct readings, projects, and other assignments—including a “capstone report.” It should be noted that the work experience (at least 80 hours), by itself, is not the basis for academic credit. The faculty directed activity must be provided concurrent with the work. Course content and work experience should have added rigor from Finance Internship I due to the satisfactory completion of the finance core (FIN 323 and FIN 328). Course registration and related arrangements must be made in advance of the work engagement. This course must be taken Pass/Fail and cannot be used to satisfy finance major requirements. Prerequisites: FIN 323, FIN 328, declaration of a finance major, and department approval.

FIN 374. Portfolio Management Practicum (1-3)
Readings, projects and papers designed to complement the leadership and analytical activities associated with the management of the Student Investment Club or Thompson portfolios and similar activities. May be repeated. Prerequisites: FIN 323 and permission of instructor. Course descriptions for the College of Business and Economics graduate courses can be found in this section (Section V) under the heading of Business and Economics Graduate Courses.

Fine Arts
See listings under Art and Architecture.

Five-Year Programs
Several ways exist for students to obtain two degrees in five years of study. See listings under ARTS-Engineering; ARTS-Master of Business Administration; Civil Engineering and Earth and Environmental Sciences; Electrical Engineering and Engineering Physics; Engineering-Master of Business Administration; and College of Education.

Foreign Culture and Civilization
See listings under Modern Languages and Literature.

Foreign Literature
See listings under Classics and under Modern Languages and Literature.

French
See listings under Modern Languages and Literature.

Geology
See listings under Earth and Environmental Sciences

German
See listings under Modern Languages and Literature.

Global Citizenship

Global Citizenship Program
Hannah W. Stewart-Gambino, faculty program director; Magdalena Grudzinski-Hall, program development officer
As the world becomes more interdependent in commerce, technology, and popular culture, people of different cultures must reconcile diametrically opposed views of fairness, equity, and conduct—often constructed through theological and cultural traditions. Religious extremism, trade policies, human rights, and gender equity are but a few examples of controversies born out of belief systems colliding on the global stage. How will individuals from different national, religious, and cultural traditions understand their personal responsibilities in a world increasingly strained by increasing nationalism and the pressures of globalization?

Students planning any major can apply to join the Global Citizenship Program during the matriculation process prior to the beginning of the first year. The first-year experience in Global Citizenship includes a writing-intensive fall and spring course sequence in addition to travel during the intersemester break. The first-year experience leads students to explore what it means to be not only a citizen of one’s community or nation but of the world. In addition to the curricular elements of the program, students are required to take advantage of co-curricular opportunities like speaker programs, alternative spring break activities, and Lehigh’s status as a United Nations non-governmental organization.

The Certificate program in Global Citizenship is selective and will admit about 30 students in each entering class, but all Lehigh students will benefit from the program. Each year, a group of faculty from all of Lehigh’s colleges participates in a development seminar, which stimulates the incorporation of elements of the Global Citizenship program’s intent and content into courses throughout the undergraduate curriculum.

Certificate in Global Citizenship
Year 1 fall: GC/MLL 006 Globalization and Cultures (3)
GC 085 Practicum (1)
Year 1 intersemester: Global Citizenship intersession trip (0 credits)
Year 1 spring: GC/ENGL 007 Global Literature (3)
Years 2 and 3: one GC-designated introductory course (see list below)
three additional GC-designated courses (9 to 12 credits)
study abroad (see note below)
Year 4: GC 385 Global Citizenship Capstone (4)
GC-designated introductory courses: Econ 001 (additional courses will be added in due time)

Study abroad in year 2 or 3. The student may transfer credits back to Lehigh from the Study Abroad experience but credits are not required for the GC program. Acceptable Study Abroad experiences must be at least 5 weeks in length, take place in a non-English-speaking country, and include language instruction. Home-stay is encouraged. Students are encouraged to spend at least a semester abroad, but summer programs are acceptable.
Courses in Global Citizenship

GC 006 (MLL 006). Globalization and Cultures (3)
This course is a reflection on the processes of globalization and their consequences, both good and bad, on the world’s societies and on our concepts of culture and identity. It provides a multidisciplinary examination of what cultures gain and lose from their interaction with the rest of the world and what it means to be a citizen of a globalized yet diverse world. (HU/GC)

GC 007 (ENGL 007). Global Literature (3)
This multidisciplinary seminar asks students to develop informed opinions about what it means to be a global citizen, using rhetorical and persuasive techniques to address issues in economics, exile, and the environment. Additional narrative and expository reflections on students’ intersession trip are required. Open only to students in the Global Citizenship program. Fulfills the English 2 requirement where needed. (HU)

GC 085. Practicum (1)
Preparation for first year Global Citizenship intersession trip. Focus on the country of travel will include culture, politics, economics, art, religion, trade and technology. Taught by the faculty leader of the inter-session trip. (ND)

GC 385. Global Citizenship Capstone Course (4)
Students are required to complete a senior project or paper that reflects on their personal concept of global citizenship as it relates to a specific topic in their individual disciplines. Students meet weekly in a seminar format to discuss their projects and peer review each other’s work. Global Citizenship projects can be wrapped into other senior projects that are required for students’ majors or programs. Seminar is taught by the Director of Global Citizenship, who will work closely with students and their faculty advisors. (ND)

Global Studies Program

Program directors: Henri Barkey, Ph.D. (Pennsylvania), Bernard and Bertha F. Cohen Professor of International Relations; Mary A. Nicholas, Ph.D. (Pennsylvania), associate professor of Russian.

The multidisciplinary Global Studies program is offered jointly by the Department of International Relations (IR) and the Department of Modern Languages and Literature (MLL). The program, which offers a Bachelor of Arts, incorporates courses from both IR and MLL, as well as electives from a broad cross-section of other departments, for a challenging program that requires overseas study, language facility, and undergraduate research.

The program in Global Studies recognizes that Lehigh graduates must be adequately prepared to play an active role in the world of the 21st century. For that, they will need an acute understanding of essential issues of global politics, broad linguistic and cultural skills, significant overseas experience, and both intellectual and cultural sophistication. The Global Studies major meets those requirements with courses in economics, international relations, language, and culture. Extended study abroad and undergraduate research in more than one language are also required. The program will help students develop a deeper and richer understanding of cultural, linguistic, and political diversity around the world.

The program requires a total of 16 courses for 60-64 credits. At least one semester of study abroad in an approved Lehigh program is required, as is undergraduate research that uses sources in at least one foreign language. Each student will have two major advisors, one each from IR and MLL.

Required courses (50-52 credits), as follows:
6 courses in International Relations (24 credits), as follows:
- IR 10
- IR 125
- IR 205
- Two IR advanced courses number 300-387 or 393.
- Eco 1
6 courses in Modern Languages and Literature (22-24 credits), as follows:
- Four courses (16 credits) in one language, either Chinese, Japanese, Russian, Hebrew, Arabic, French (above the level of French 2), German (above the level of German 2), or Spanish (above the level of Spanish 2).
- Two culture courses (6-8 credits), as follows:
- Any two courses from an approved list or in consultation with the MLL advisor.
1 independent study (4 credits). The course will include original research in at least one foreign language.

Study abroad. 1 semester or more in an approved Lehigh program.

Electives (10-12 credits), as follows:
3 electives from an approved list, including courses from the departments of Sociology and Anthropology, Economics, English, International Relations, Journalism, Modern Languages and Literature, Political Science, History, Religion, and/or programs in Africana Studies, Asian Studies, Global Citizenship, Latin American Studies, Russian Studies, Sociology and Social Psychology, Science, Technology and Society, Women’s Studies, or other courses as approved by IR and MLL advisors. (Courses must be chosen from at least two departments.)

Global Studies Program

Program directors: Henri Barkey, Ph.D. (Pennsylvania), Bernard and Bertha F. Cohen Professor of International Relations; Mary A. Nicholas, Ph.D. (Pennsylvania), associate professor of Russian.

The multidisciplinary Global Studies program is offered jointly by the Department of International Relations (IR) and the Department of Modern Languages and Literature (MLL). The program, which offers a Bachelor of Arts, incorporates courses from both IR and MLL, as well as electives from a broad cross-section of other departments, for a challenging program that requires overseas study, language facility, and undergraduate research.

The program in Global Studies recognizes that Lehigh graduates must be adequately prepared to play an active role in the world of the 21st century. For that, they will need an acute understanding of essential issues of global politics, broad linguistic and cultural skills, significant overseas experience, and both intellectual and cultural sophistication. The Global Studies major meets those requirements with courses in economics, international relations, language, and culture. Extended study abroad and undergraduate research in more than one language are also required. The program will help students develop a deeper and richer understanding of cultural, linguistic, and political diversity around the world.

The program requires a total of 16 courses for 60-64 credits. At least one semester of study abroad in an approved Lehigh program is required, as is undergraduate research that uses sources in at least one foreign language. Each student will have two major advisors, one each from IR and MLL.

Required courses (50-52 credits), as follows:
6 courses in International Relations (24 credits), as follows:
- IR 10
- IR 125
- IR 205
- Two IR advanced courses number 300-387 or 393.
- Eco 1
6 courses in Modern Languages and Literature (22-24 credits), as follows:
- Four courses (16 credits) in one language, either Chinese, Japanese, Russian, Hebrew, Arabic, French (above the level of French 2), German (above the level of German 2), or Spanish (above the level of Spanish 2).
- Two culture courses (6-8 credits), as follows:
- Any two courses from an approved list or in consultation with the MLL advisor.
1 independent study (4 credits). The course will include original research in at least one foreign language.

Study abroad. 1 semester or more in an approved Lehigh program.

Electives (10-12 credits), as follows:
3 electives from an approved list, including courses from the departments of Sociology and Anthropology, Economics, English, International Relations, Journalism, Modern Languages and Literature, Political Science, History, Religion, and/or programs in Africana Studies, Asian Studies, Global Citizenship, Latin American Studies, Russian Studies, Sociology and Social Psychology, Science, Technology and Society, Women’s Studies, or other courses as approved by IR and MLL advisors. (Courses must be chosen from at least two departments.)

Global Studies Program

Program directors: Henri Barkey, Ph.D. (Pennsylvania), Bernard and Bertha F. Cohen Professor of International Relations; Mary A. Nicholas, Ph.D. (Pennsylvania), associate professor of Russian.

The multidisciplinary Global Studies program is offered jointly by the Department of International Relations (IR) and the Department of Modern Languages and Literature (MLL). The program, which offers a Bachelor of Arts, incorporates courses from both IR and MLL, as well as electives from a broad cross-section of other departments, for a challenging program that requires overseas study, language facility, and undergraduate research.

The program in Global Studies recognizes that Lehigh graduates must be adequately prepared to play an active role in the world of the 21st century. For that, they will need an acute understanding of essential issues of global politics, broad linguistic and cultural skills, significant overseas experience, and both intellectual and cultural sophistication. The Global Studies major meets those requirements with courses in economics, international relations, language, and culture. Extended study abroad and undergraduate research in more than one language are also required. The program will help students develop a deeper and richer understanding of cultural, linguistic, and political diversity around the world.

The program requires a total of 16 courses for 60-64 credits. At least one semester of study abroad in an approved Lehigh program is required, as is undergraduate research that uses sources in at least one foreign language. Each student will have two major advisors, one each from IR and MLL.

Required courses (50-52 credits), as follows:
6 courses in International Relations (24 credits), as follows:
- IR 10
- IR 125
- IR 205
- Two IR advanced courses number 300-387 or 393.
- Eco 1
6 courses in Modern Languages and Literature (22-24 credits), as follows:
- Four courses (16 credits) in one language, either Chinese, Japanese, Russian, Hebrew, Arabic, French (above the level of French 2), German (above the level of German 2), or Spanish (above the level of Spanish 2).
- Two culture courses (6-8 credits), as follows:
- Any two courses from an approved list or in consultation with the MLL advisor.
1 independent study (4 credits). The course will include original research in at least one foreign language.

Study abroad. 1 semester or more in an approved Lehigh program.

Electives (10-12 credits), as follows:
3 electives from an approved list, including courses from the departments of Sociology and Anthropology, Economics, English, International Relations, Journalism, Modern Languages and Literature, Political Science, History, Religion, and/or programs in Africana Studies, Asian Studies, Global Citizenship, Latin American Studies, Russian Studies, Sociology and Social Psychology, Science, Technology and Society, Women’s Studies, or other courses as approved by IR and MLL advisors. (Courses must be chosen from at least two departments.)

Government
See listings under Political Science

Greek
See listings under Classics.

Hebrew
Modern Hebrew is taught in the Department of Modern Languages and Literature. Biblical Hebrew is taught in the Department of Religion Studies.

History
Profe sso rs. Michael G. Baylor, Ph.D. (Stanford), chairperson; Stephen H. Cutcliffe, Ph.D. (Lehigh), History and STS; Ian P.H. Duffy, D.PHIL. (Oxford, England); Steven L. Goldman, Ph.D. (Boston), Andrew W. Mellon Distinguished Professor in the Humanities; Tom F. Peters, Dr. Sc. (Swiss Federal Institute of Technology, ETH Zurich); C. Robert Phillips, Ph.D. (Brown), Classics and
**Ancient History**; James S. Saeger, Ph.D. (Ohio State); William R. Scott, Ph.D. (Princeton); Roger D. Simon, Ph.D. (Wisconsin); Jean R. Soderlund, Ph.D. (Temple).

**Associate Professors**; Gail A. Cooper, Ph.D. (U.C., Santa Barbara); Monica Najar, Ph.D. (Wisconsin); John Pettegrew, Ph.D. (Wisconsin); John K. Smith, Ph.D. (Delaware).

**Assistant Professors**; Michelle LeMaster, Ph.D. (Johns Hopkins); John Savage, Ph.D. (N.Y.U.).

**Professor of Practice**; Kimberley Carrell-Smith, Ph.D. (Delaware).

The history major introduces students to the study of the causes and consequences of change through an examination of political, economic, social, cultural, and intellectual developments and institutions over time. The department's goal is to train its majors to think critically about the events and forces that have shaped the modern world, to analyze and interpret sources and evidence, and to view issues from a variety of perspectives. Those skills have served students well in a wide range of careers. Lehigh history majors have frequently gone on to law school or to work in various areas of education, journalism, public affairs, and business. The major also provides an excellent basis for graduate training in a wide range of public policy fields. The department offers a program of independent research under the direction of an individual faculty member (History 391, 392). A maximum of six credits may be used toward this project. Normally students pursue their research in the second semester of the junior year and the first semester of their senior year; the project may also be undertaken during the senior year. Students who do well on their research project will graduate with department honors. The writing intensive requirement must be filled by a course in the history department. For advanced placement, please see Section I.

The department recommends that students intending to major in history take MATH 12, Basic Statistics, to fulfill their college math requirement.

**Department Major Requirements**

A history major consists of 35 hours, normally nine courses, as follows:

- **HIST 11** Survey of Europe to 1648.
- **HIST 12** Survey of Europe Since 1648.
- **HIST 201** Historical Perspectives, or HIST. 202 Historical Research

One course in the history of Asia, Africa, or Latin America: HIST 5, 49, 50, 75, 76, 177, 340, 341, 342, 359, 368.

- **HIST 104, 300, 303, 331, 371, 391, 392, or provisional courses** may be used to fulfill this requirement in accordance with their contents and emphases.

Minimum of 12 hours of courses numbered 303 or higher (except HIST 306).

To graduate with a history major, a minimum of 24 hours must be graded course work taken at Lehigh.

**Requirements for Honors**

Students wishing to graduate with honors must have a minimum GPA of 3.40 in history, 39 credits and must have completed History 391.

**History Minor Requirements**

Each student's minor program is prepared in consultation with the advisor of minors in the history department. Advanced placement credit may not be used for the minor program.

- 15 credits
- at least 4 credits at 200 or 300 level
- maximum of one course (4 credits) of transfer or cross-listed courses may count toward minor.

**Concentration in Public History**

History majors may earn a concentration in Public History by completing a total of 16 hours in the following courses:

- **HIST 305** Public History (4), required
- **HIST 306** Internship in Public History (4), required
- **ART 175, 275**, 370, or 375 Museology (3)
- **EDT 405** Website and Resource Development (3) (seniors by petition)
- **HIST 336** Bethlehem and the Lehigh Valley (4)
- **HIST 338** Techniques in Public History (2-4 credits, may be repeated for up to 8 credits)
- **HIST 339** Managing Nonprofit Organizations (4)
- **HIST/ANTH 370** Historical Archeology (4)

**Undergraduate Courses in History**

Petitions are required for first-year students to take 100-level or higher courses, and for sophomores to take 200-level or higher courses. HU - fills humanities distribution requirements; SS - fills social science requirements; ND - not designated.

**HIST 5. (AAS 5) African Civilization (4)**

Sub-Saharan Africa through the millennia of the ancient world to the present. Human origins, state and non-state systems, the external slave trade, colonialism, resistance to European rule, independence movements, and neocolonialism. (SS) Keim, Scott

**HIST 7. Technology in America's Industrial Age (4)**

Traces the development of American technology from the pre-industrial colonial era until America's emergence as the world's leading industrial power. The interactions between technology and culture, society, politics, and the economy will also be addressed. (SS) Smith

**HIST 8. Technology in Modern America (4)**

Traces the evolution of modern American technology, including automobiles, aircraft, computers, nuclear weapons, television, space, pharmaceuticals, and biotechnology. Includes critiques of technology such as environmentalism. The interactions of technology and culture, society, politics, and the economy will also be addressed. (SS) Smith

**HIST 11. Survey of Europe to 1648 (4)**

Development of European history from Rome to the 17th century. End of the ancient world, origins and growth of medieval civilization, the Renaissance and Reformation. (HU) Baylor

**HIST 12. (GCP 012) Survey of Europe Since 1648 (4)**

The rise of modern nation states; the scientific and industrial revolutions; social movements and the French
and Russian revolutions; impact of Enlightenment philosophy, nationalism, liberalism, imperialism and fascism; the development of modern class structure and transformations in gender relations, art, popular culture and society. (HU) Savage

HIST 15. English History (4)
The history of England to 1688. The origins of representative government, the development of English social institutions, the unification of England, and the Reformation in England. (HU) Duffy

HIST 16. English History (4)
English political and social institutions from 1688 to the present. The evolution of parliamentary government, the rise of modern parties, the industrial revolution, and recent social philosophies. (HU) Duffy

HIST 21. (CLSS 21) Greek History (4)
The development of civilization from paleolithic times to the world empire of Alexander the Great. The social, economic, religious, philosophic, artistic, and literary development of the ancient world; the origin of political institutions. (SS) Phillips

HIST 22. (CLSS 22) Roman History (4)
Rome from its origins to A.D. 476. Political, social and religious developments. Transformation of the late Roman Empire to the early medieval period. (SS) Phillips

HIST 41. United States to 1865 (4)
Native American cultures; European settlement; development of slavery and free labor systems; the Revolution; founding of the new nation; 19th century social, economic, cultural, and political development; Civil War. (SS) Najar, Soderlund

HIST 42. United States, 1865-1941 (4)
America's transformation into an industrial and global power from Reconstruction after the Civil War to the Great Depression; includes social, political, and cultural developments. (SS) Carrell-Smith

HIST 43. United States Since 1939 (4)
World War II; Cold War at home and abroad; Civil Rights movement; the 1960s; Vietnam; the welfare state and social upheavals; new forms of cultural expression; feminism; rise of neo-conservatism. (HU) Pettegrew

HIST 49. History of Latin America (4)
Spanish and Portuguese colonization of America and the struggles for independence, preceded by a brief view of the ancient American civilizations and Iberian backgrounds. (SS) Saeger

HIST 50. History of Latin America (4)
Continuation of HIST 49. The development of the Latin American nations in the 19th and 20th centuries. (SS) Saeger

HIST 64. (AAS 64, ECO 64) Plantation to Ghetto (2)
Examination of topics in the economic history of African Americans from the 1500s to the present. Explores the slave trade, slavery, post-Civil War South, the black family, migration, urbanization, and race and poverty. (SS) O’Brien, Scott

HIST 75, (MLL 75, Asia 75) Chinese Civilization (4)
The development of traditional Chinese thought, beliefs, technology, and institutions from a historical perspective, from earliest times to China’s encounter with the West. (HU or SS) Pankenier

HIST 76 (Asia 76, MLL 76) Understanding Contemporary China (4)
An overview of recent history, politics, economy, religion, problems of modernization, popular culture, and attitudes. Contemporary Chinese society viewed against the backdrop of tradition and the tumultuous history of twentieth-century China. (SS)

HIST 90. First-Year Seminar in History (3)
Seminar for first-year students on a particular theme or topic. (HU or SS depending on topic of seminar).

HIST 104. Themes in History (2 - 4)
Seminar on a particular theme or topic not covered by a currently listed offering. (HU or SS depending on topic of seminar).

HIST 105. Sports in Modern America (4)
Surveys the social, cultural, and political role of sports in America since the Civil War. By addressing the development of sports and its relationship with race, class, ethnicity, gender, the media, popular culture, and government, this class will examine the impact of sports in making the America and Americans of the twentieth century. (HU)

HIST 107. Technology and World History (4)
Development of technology and its relationship to political, economic, military and cultural aspects of world civilization from pyramids to the present. (SS) Smith

How the physical environment of New York City, particularly Manhattan, came to be. Course themes include the evolution of land use, housing, changing economic functions of the city, immigration, cultural life, social communities, and changing technology. Topics include: settlement of lower Manhattan, the street system, immigrant neighborhoods and the Lower East Side, Greenwich Village, Central Village, Central Park, the elevated trains and the subways, the Brooklyn Bridge, apartment living, specialized shopping and entertainment districts, skyscrapers, Harlem, Rockefeller Center, the automobile and highway system, public housing, the World Trade Center. Usually taught in the summer in New York with walking tours to many of the locations listed above. (HU) Simon

HIST 110. American Military History (4)
The American military tradition from colonial times to the present. America’s wars and the development and operation of military institutions within the political, economic, ideological, and technological milieu of American society. (SS) Saeger

HIST 111. Engineering in the Modern World (4)
Roles played by engineers and engineering in the modern world, focusing on major achievements and failures, prominent engineers, and evolution of the profession. (SS) Smith

HIST 117. (STS 117/WS117) Women, Science and Technology (4)
Explores the impact of technology and science on women’s social roles and the contribution of women engineers and scientists to their disciplines. Will focus on the American experience. Among the topics discussed are invention, design, laboratory research, education, engineering, professionalism, labor force participation, office mechanization, household appliances, virtual spaces, childcare and reproduction. (SS) Cooper
HIST 120. Revolutionary America (4)
Origins and development of the American republic from 1750 through the adoption of the Federal Constitution. (SS) Najar, Soderlund

HIST 124. (WS 124) Women in America (4)
Roles of women in American society from colonial to present times: attitudes toward women, female sexuality, women’s work, and feminism. (SS) Cooper, Najar

HIST 130. (AAS 130) African American History (4)
Blacks in America from the first importation of Africans to the implementation of civil rights laws. West African origins, slave trade, slavery, free blacks and emancipation and study of Reconstruction, segregation, urbanization, and the struggle for racial equality. (SS) Scott

HIST 132. An Introduction to Canada (2)
A brief overview of major themes in Canadian history with emphasis on economic and political developments in the 19th and 20th centuries. (SS) Simon

HIST 135. Era of Jefferson and Jackson (4)
Colonial beginnings; the Articles of Confederation and the Constitution; the creation of a new nation; the development of American political parties; the antebellum American state. (SS) Najar

HIST 136. Era of the Civil War and Reconstruction (4)
American abolitionism and the origins of the Civil War; the Second American Revolution; Reconstruction and its sequel. (SS) Najar

HIST 145. (STS 145) Introduction to the History of Science (4)
The history of modern science, primarily physical and biological, with emphasis on the development of major theoretical models since the 17th century. (SS) Goldman

HIST 150. Medieval Civilization (4)
Formation and development of western culture to about 1400. Rise of universities and towns, legal development and origins of representative government, origins of nation-states, scholasticism and decline of the medieval church. (HU) Savage

HIST 153. (WS 153) Women in European History, 1500-Present (4)
Examines the position of women in Europe since the 15th century. Particular attention is given to changing conceptions of women and their roles in society, the evolution of women’s work, the origins, growth, and impact of feminism, and gender distinctions as reflected in law, politics, popular culture and leisure. (SS)

HIST 154. (REL 154) The Holocaust: History and Meaning (4)
The Nazi Holocaust in its historical, political and religious setting. Emphasis upon the moral, cultural and theological issues raised by the Holocaust. (HU)

HIST 156. The Late Middle Ages and the Renaissance (4)
The transition from medieval to early modern society from the fourteenth to the early sixteenth centuries. The general crisis of European civilization in the late Middle Ages; the rise and development of the Italian Renaissance; the spread of Renaissance culture from Italy to northern Europe. (HU) Baylor

HIST 157. (REL 157) Europe in the Age of the Reformation (4)
The breakup of the religious culture of medieval Christian Europe in the reformation movements of the sixteenth century. The origins and varieties of Protestantism; the intersection of religious ideas and politics in Germany, Switzerland, Britain, France, and the Netherlands; the “wars of religion” and the emergence of the European state system. (HU) Baylor

HIST 158. Europe in the 17th and 18th Centuries (4)
Transformation of European civilization from the 30 Years War to the outbreak of the French Revolution. Origins and development of the European state system; absolutism; commercial expansion and competition for empire; science; the Enlightenment and its impact on European culture and politics. (HU) Baylor

HIST 159. Revolutionary Europe, 1789-1870 (4)
Revolutions and reactions; the rise and spread of liberalism, nationalism, and socialism. (HU) Duffy

HIST 160. Europe in the Age of Total War, 1870-1945 (4)
Origins of two world wars; revolutionary governments in Germany, Italy, and Russia. (HU) Duffy

HIST 161. (CLSS 161) Roman Law (4)
Examination of Roman legal systems from the Twelve Tables to the Digest of Justinian. Emphasis on development of legal concepts and their historical context. Readings in primary sources; lectures; discussion. (SS) Phillips

HIST 162. Contemporary Europe (4)
Development of European States since 1945; European Community; Soviet influence and collapse. (HU) Savage

HIST 163. France Since 1789 (4)
France’s tumultuous transformation from an absolutist monarchy to a modern democratic republic. Explores major cultural, social and economic changes, with particular attention given to industrialization and urbanization, gender and class, church and state relations, the French Left and France’s unique contribution to modern philosophy, art and culture. (SS) Savage

HIST 177. (Asia 177, MLL 177) China Enters the Modern Age (4)
The collapse of the imperial order and China’s agonizing transformation into a modern nation over the past 150 years. The impact of imperialism, war, radical social change, and protracted revolution on Chinese beliefs, values, and institutions. (HU or SS) Pankenier

HIST 179. (AAS 179) Black Political Thought in America (4)
Black leadership, organizations, and philosophy in America from Reconstruction to the Civil Rights Era; ideas and programs of Booker T. Washington, W.E.B. DuBois, Marcus Garvey, Malcolm X and Martin Luther King, Jr. (SS) Scott

HIST 180. (REL 180) Religion and the American Experience (4)
The historical development of major religious groups in this country from colonial times to the present. Their place in social and political life, and the impact of the national experience upon them. Emphasis on religious freedom and pluralism, and the church-state relationship. (HU)
For Advanced Undergraduates And Graduate Students

Graduate students may take 300 level courses, for which they receive 3 credits. Undergraduates must take them for 4 credits.

HIST 201. Historical Perspectives (4)
Methodologies and interpretations of Western historians from ancient times to the present. (HU) Baylor

HIST 202. Historical Research (4)
An introduction to historical interpretation, research design, and methodology. Students will research and write a paper on a historical topic using secondary and primary sources. (SS)

HIST 213. (CLSS 213, REL 213) Ancient Roman Religion (4)

HIST 303. Topics in History (2-4)
Intensive study in a particular area of history for advanced students. Topics may vary; may be repeated for credit with consent of advisor. (HU or SS depending on topic of seminar)

HIST 305. Public History (3-4)
An examination of the public role of history in modern society, with focus on issues facing historians in museums, historical societies, archives, historic preservation, the federal government, and other organizations in the public sphere. (SS) Carrell-Smith

HIST 306. Internship in Public History (2-4)
Professionally supervised work in a museum, historical society, archive, or other historical agency. Written journal or report evaluating the experience is required. Permission of department chair required. May be repeated for a maximum of six credits. May not be counted toward the major requirement of 12 hours of courses numbered 303 or higher. (ND) Carrell-Smith

HIST 308. Industrial America Since 1945 (3-4)
Explores efforts to achieve both prosperity and security in the postwar era. Among the topics discussed: new technologies, consumer culture, disposable products, advertising, defense spending, technical assistance, and multinational corporations. (SS) Cooper

HIST 311. (CLSS 311) Twins and Sins: The Rise of Rome (3-4)
Rome from its origins to the mid-third century B.C. Emphasis on foundation legends, the power of the monarchy, and development of Roman political and religious institutions. Papers, quizzes, discussions. (SS) Phillips

HIST 312. (CLSS 312) Decline and Fall of the Roman Empire (3-4)
Political, social, and economic history of the Roman Empire, A.D. 117-A.D. 565. Romanization of the provinces, diffusion of Christianity, and special attention to transformation to medieval period. Includes readings in translation of primary sources. (SS) Phillips

HIST 313. (CLSS 313) Golden Age of Greek Democracy (3-4)
Greek history of the seventh through fifth centuries B.C. Emphasis on the contrasting political and social systems of Athens and Sparta with consideration of related economic and military history. Attention to art, gender, literature, religion. Discussion and lectures; papers. (SS) Phillips

HIST 314. (CLSS 314) Age of Caesar and Christ (3-4)
Roman history of the first century A.D. Political, cultural, and socio-economic changes; special attention to the evolution of absolute power. Lectures, discussions, papers. (SS) Phillips

HIST 315. (ES 315) American Environmental History (3-4)
Relationship between Americans and their natural environment from the colonial period to the present: impact of European settlement, attitudes toward wilderness, role of technological development, rise of preservation and conservation movements, establishment of national parks, recent environmental protection legislation. (SS) Cutcliffe

HIST 318 History of North American Indians (3-4)
The history of American Indians from before European contact to the present. Emphasis will be placed on the diversity of native peoples of eastern North America and how patterns of interaction between native Americans and Euro-Americans have changed over time. Discussion format, research paper. (SS) Soderlund

HIST 319. Colonial America (3-4)
Founding and growth of colonies in North America through 1763. Emphasis on motives for settlement, Native American-European relations, and the economic, social, and political development of the British West Indies and mainland provinces. (SS) Soderlund

HIST 323. American Cultural History Since 1900 (3-4)
Development of American popular culture and media: popular press, Hollywood, radio, television, sports, and advertising, and the meanings these institutions have created in 20th-century United States. (HU) Pettigrew

HIST 325. (SSP 325, WS 325) History of Sexuality and the Family in the U.S. (3-4)
Changing conceptions of sexuality and the role of women, men, and children in the family and society from the colonial to the post-World War II era. Emphasis on the significance of socio-economic class and cultural background. Topics include family structure, birth control, legal constraints, marriage, divorce, and prostitution. (SS) Najar

HIST 326. (SSP 326) Social Class in American History (3-4)
Emphasis on the 19th and 20th century, focusing on: emergence of a white-collar middle class; condition and treatment of the poor and growth of the welfare state; conditions of industrial workers, struggle to organize unions and their later decline; indicators of social status and exclusion among the rich; changing distribution of income and wealth over time and extent of social mobility. (SS) Simon
HIST 328. American Intellectual History Since 1900 (3-4)
Social, literary, and political thought in the 20th-century United States, with emphasis on pragmatism and progressivism, maturation of American literary culture, ideas of American exceptionalism at mid-century, civil rights movement and feminism, neo-conservatism and recent trends. (HU) Pettegrew

HIST 331. (AAS 331) United States and Africa (3-4)
Reciprocal relationships between North America and the African continent from the slave trade in the 17th century to the 20th century Afrocentric movement; impact of Americans on the shaping of modern Africa, Pan-African relations; influence of African Americans on US policies toward Africa. (SS) Scott

HIST 332. (AAS 332) Slavery and the American South (3-4)
The emergence and demise of the "peculiar institution" of African American slavery in British North America and the Old South. African background; colonial beginnings; 19th century slave community; the ruling race and slavery ideology; the death of slavery and its aftermath; slavery and freedom in a comparative context. (SS)

HIST 333. American City to 1900 (3-4)
Settlement and planning of colonial towns; role of towns in the revolutionary era; industrialization and relationship of economic and technological change to urbanization; establishment of urban institutions; Irish and German immigration; beginnings of urbanization; downtowns and the creation of a civic culture. Required field trip. (SS) Simon

HIST 334. American City in the Twentieth Century (3-4)
Immigration; Progressive reforms; urban planning and zoning; impact of automobile and suburbanization; Depression and New Deal; public housing and racial ghettos; urban decline and "renewal." Required field trip. (SS) Simon

HIST 336 Bethlehem and the Lehigh Valley (3-4)
Local history focusing on Native American communities, Moravian settlement, natural resources, industrial firms, immigration and ethnic communities, organized labor, housing patterns and urban sprawl, high-tech industry, and tourism. Includes an analysis of techniques used in presenting these topics to the public. (SS) Smith

HIST 337 History and Community Memory (3-4)
This public history course provides students with the opportunity to research the history of a community. The community focus of the course will change each year. We will explore what constitutes community, what historical memory means, and how history functions to build or divide a community. Students will use both documents and oral history methods, and practice will be a major component of this course. (SS) Carrell-Smith

HIST 338 Techniques in Public History (2 or 4)
Designed to introduce students to a variety of public history techniques. Instructor will focus on one of the following topics each term: archives, documentary film, exhibit design, historical editing, material culture, oral history. May be repeated to a maximum of 8 credits. (HU)

HIST 339. Managing Nonprofit Organizations (3-4)
Addresses the effective management of nonprofit organizations, focusing on operations, administration, legal, marketing, finance and accounting issues in the nonprofit environment and emphasizing organizations such as museums and preservation organizations. (SS)

HIST 340. (Asia 340) History of Japanese Industrialization since 1800 (3-4)
The late Tokugawa economic development, rise of an entrepreneurial class, importation of western technology, and the rise of social, political, and economic institutions which support industrial growth. (SS) Cooper

HIST 341. Mexico and Central America (3-4)
Emphasis on Mexico and Guatemala from the era of the Aztec through the wars of independence to the 20th century revolutions. (SS) Saeger

HIST 342. Argentina, Brazil and Chile (3-4)
Eighteenth-century Spanish imperial readjustments, independence, the emergence of new societies, 20th-century extremist movements, and the problems of developing nations. (SS) Saeger

HIST 345. Victorian Britain (3-4)
Development of democracy, liberalism, religious ferment, industrialization, class conflict, socialism, and empire in Victorian Britain. (HU) Duffy

HIST 346. Great Britain in the 20th Century (3-4)
Effects of world wars, loss of great power status, economic decline, social conflict, welfare state, modern political parties, Irish problem in 20th century Britain. (HU) Duffy

HIST 347. Russia to 1855 (3-4)
Emergence of Russian autocracy; impact of the Mongol invasions; Westernization and transformation of society and culture; economic development toward emancipation of the serfs. (HU)

HIST 348. Russia Since 1855 (3-4)
Russia in the context of European history; emancipation of the serfs and impact upon political, social, economic development; reasons for the growth of revolutionary pressure; collapse of autocracy; the revolutions of 1917; the Soviet era and the collapse of the Soviet Union. (HU)

HIST 349. Revolutions in Modern European History (3-4)
Explores the origins, meanings, and impact of European revolutions from a theoretical and comparative perspective. Focuses on the English (1642-1660), the French (1789-1799), and the Russian Revolution (1917-1929), and how they reflected and shaped new ideologies and policies related to human rights, economic development, popular sovereignty, nationalism, class and gender politics, and State and society relations. (SS) Savage

HIST 350. (GCP 350) 19th Century Paris and the Invention of Modernity (3-4)
This course considers the dramatic destruction and rebuilding of the city of Paris in the decades after 1850 and how changes in the built environment shaped social relations, political authority and cultural expression. Topics include the politics of city planning and architectural design; the history of the engineering profession,
technology and the building trades; reactions to crime, disease and prostitution in the modern city; the 1848 Revolution, Paris Commune and political theory; the origins of photography, Impressionist painting and cinema; and the creation of mass consumer society. (HU) Savage

HIST 351. The Gangs of New York (4)
The course will use the Martin Scorsese film “The Gangs of New York” as a window to examine the social and economic transformations of New York City in the middle of the nineteenth century. Emphasis will be on immigration, slum conditions, nativism, working-class culture, gangs and street violence, politics, the Draft Riot of 1863, and the Tweed Ring. A recurrent theme will be to compare the historical record with the film’s depiction of those events. There will be a required evening showing the film. R. NOT AVAILABLE FOR PASS/FAIL. (HU) Simon

HIST 355. The Destruction and Reconstruction of Europe, 1870-1950 (3)
An analysis of the decline and disintegration of European civilization through two world wars and its regeneration as the European Union. Emphasis on the development of the European state system, international conflict, and political thought. (SS) Baylor

HIST 356. European Cultural History (3-4)
Transformation of European culture from the 18th century to the present. The Enlightenment, cultural impact of the French and industrial revolutions, romanticism and ideologies of the 19th century, contemporary European thought. (HU) Savage

HIST 357. Early Modern Germany, 1500-1850 (3-4)
The emphasis will be on one or more of the following topics: the Reformation, the Thirty Years’ War and its impact, absolutism, the rise of Prussia, the failure of German liberalism. (HU) Baylor

HIST 358. Modern Germany, 1850 to Present (3-4)
Focus on one or more of the following topics: nationalism and unification, the Second Empire, World War I, the Weimar republic, the Nazi movement, the Third Reich, and post-war Germany. (HU) Baylor

HIST 359. (AAS 359) History of South Africa (3-4)
South Africa’s history from its earliest human settlement to its emergence as a racist political order and transition to a non-racial democratic state. Includes comparisons with political thought and practices in the U.S. (SS) Scott

HIST 360. American Legal History (3-4)
The interrelationship between law and social development with emphasis on modern period. Founding of constitutional government and balance of power within the federal system, the problem of slavery, legal support and regulation of business, and the use of law in various reform and civil rights movements. (SS) Pettigrew

HIST 361. (ARCH 361) Evolution of Highrise Building Construction (3)
The new materials iron and concrete led to new ways of thinking about building. The Industrial Revolution initiated the development of our modern culture of building and our current urban society. (HU) Peters

HIST 363. (ARCH 363) Evolution of Long-SPAN Bridge Building (3)
New materials, forms of education and technology contributed to advance structural understanding. Specialization and the rise of technological thinking led to new bridge types and increasing span size. (HU) Peters

HIST 365. (ARCH 365) Evolution of the Modern Building Process (3)
The criteria of trade—time and money—entered the world of building in the 19th century. The unplanned interlude between the design and the inauguration of a building became a new professional field: the building process. (HU) Peters

HIST 368. Seminar in Latin American History (3-4)
Readings and individual investigation of selected topics. (SS) Saeger

HIST 370. (ANTH 370) Historical Archeology (3-4)
This course examines the unique nature of historical archaeology of post-contact America. Topics include reconstructing the past through the archaeological and historical record, exhibiting past culture, and capturing the real or imagined past. Course includes fieldwork and visits to famous archaeological sites. (SS) Small

HIST 371. Independent Study (1-4)
Directed readings in a topic or area of history not covered by current course offerings. For students of demonstrated ability and adequate preparation. Prerequisite: consent of department chair. May be repeated for credit with permission up to a maximum of six credits. (ND)

HIST 391. Honors Thesis in History (4)
Opportunity for undergraduate majors in history to pursue an extended project for senior honors. By invitation and department permission only. (ND)

HIST 392. Honors Thesis in History (2)
Continuation of History 391 available under exceptional circumstances where additional credit for honors project is warranted. Department permission only. (ND)

Graduate Work in History
Lehigh University has been granting advanced degrees in history for more than seventy years. Its graduates have become university and college professors, secondary school teachers and administrators, museum directors, and public servants. The graduate program focuses primarily on the areas in which the department is particularly strong in faculty and resources, notably Colonial America and the history of technology and science. The department works closely with the Lawrence Henry Gipson Institute for Eighteenth Century Studies which sponsors yearly symposia and provides research support for both faculty and students. The history of technology program is closely tied to Lehigh’s Science, Technology, and Society program.

Lehigh’s libraries are especially rich in materials for graduate research in history, particularly in the fields listed above. They have an extensive collection of scholarly periodicals and monographs. Graduate programs provide intensive and specialized study, and the policy of limited enrollment permits close relations between faculty and students.
Admission to graduate study in history is competitive and dependent upon the applicant's undergraduate preparation and record, recommendations, and Graduate Record Examination scores. Besides general requirements for College of Arts and Sciences graduate programs, the following special requirements apply to graduate study in history.

**Master of Arts**

There are two masters programs. Under Plan I, a candidate may earn the degree by successfully completing 27 hours of approved course work and submitting a thesis of the length and quality that would make it suitable for publication as a scholarly article. The paper may build on work presented in a graduate research seminar in the program. Candidates continuing toward a doctorate should select Plan I. Candidates declaring Plan II take 30 hours of approved course work and pass examinations in two fields chosen from American, British, European, and Latin American history, and History of Technology. Candidates in either plan are required to maintain a 3.0 average in all graduate work and to take History 401 and History 404 or 405.

**M.A. in History with Concentration in Public History**

Students may earn through either Plan I or Plan II (see above), an M.A. in History with a concentration in Public History by completing a total of 36 hours of approved course work, including a minimum of 10 credits and maximum of 12 credits in approved Public History courses.

**Doctor of Philosophy**

Students in the Ph.D. program in history must maintain a 3.50 average after two semesters of study. During the second semester, doctoral students select one major and three minor fields in which to take comprehensive written and oral examinations. The dissertation will be in the major field. The dissertation advisor will chair a special committee that will oversee the student's graduate program. The other members of the special committee will be those faculty who are examiners in the selected fields and one professor from another department relevant to the candidate's major field. No professor may direct more than one field, but the direction of a field may involve two professors. An original dissertation is required and it must be successfully defended to the examining committee.

All Ph.D. students must spend at least one year in residence as a full-time student at Lehigh. They must take Historical Research (401) or, if they completed HIST 401 or its equivalent at the M.A. level, a 450-series research seminar. Students who enter the Ph.D. program with an M.A. from another university must also take either Readings in the History of the Atlantic World (404) or Readings in the History of Industrial America (405). Students are encouraged to take both seminars if appropriate to their course of study. All Ph.D. students must take at least 18 hours of directed readings courses (440 series or equivalent) beyond the M.A., and HIST 481, Teaching History.

**Major Fields.** Major fields are Technology, Modern Britain, Colonial America, Nineteenth Century United States, Twentieth Century United States. (The Nineteenth and Twentieth century fields may be divided topically rather than chronologically; for example, a student may be examined in labor/social history 1800-present, and in political history 1800-present.)

**Minor Fields.** Any of the major fields listed above may also be minor fields. Examples of other minor fields are American Studies; Ancient History; Early Modern Europe; Modern Europe; Latin America; Environmental History; Japan; Public History; Science, Technology and Society studies.

**Language Requirements.** The student's special committee determines whether proficiency in a foreign language or proficiency in statistical methods will be required for the doctoral degree.

More detailed regulations are given in the Handbook for Graduate Work in History, available in the history department office.

**Graduate Courses in History**

**HIST 401. Historical Research (3)**

Techniques of research in history: training in the critical handling of documentary materials, in measuring the value of evidence, and in formal presentation of the results of research. Students will write an original research paper using primary materials. Required of all graduate students in history.

**HIST 404. Readings in the History of the Atlantic World, 1500-1900 (3)**

Core readings offering a comparative and integrative approach to studying the development of nations, economic systems and trade, colonization, and cultural encounters among the people of Europe, Africa, and the Americas.

**HIST 405. Readings in the History of Industrial America (3)**

Core readings in the history of technology and the larger framework of intellectual, social, economic, and political history. Includes comparative studies in the history of industrializing Europe and Japan.

**HIST 407. Seminar in the History of American Industrial Technology (3)**

Origin and evolution of American technology and industry from the 19th century to the present. Investigates dynamics of major industries in national and international context. Not open to students who have taken HIST 307. Smith

**HIST 438. Techniques in Public History (2 or 3)**

Designed to introduce students to a variety of public history techniques. Instructor will focus on one of the following topics each term: archives, documentary film, exhibit design, historical editing, material culture, oral history. May be repeated to a maximum of 8 credits.
HIST 440. Readings in Colonial American History (3)
Study in small groups under the guidance of a faculty member of the literature of the 17th and 18th centuries. May be repeated for credit with permission of the faculty advisor.

HIST 441. Readings in Nineteenth Century American History (3)
Study in small groups under the guidance of a faculty member of the literature of the 19th century. May be repeated for credit with permission of the faculty advisor.

HIST 442. Readings in Twentieth Century American History (3)
Study in small groups under the guidance of a faculty member of the literature of the 20th century. May be repeated for credit with permission of the faculty advisor.

HIST 443. Readings in English History (3)
Study in small groups, under the guidance of a faculty member of the literature of a particular period, problem, or area of English history. May be repeated for credit with permission of the faculty advisor.

HIST 444. Readings in Latin American History (3)
Study in small groups, under the guidance of a faculty member of the literature of a particular period, problem, or area of Latin American history. May be repeated for credit with permission of the faculty advisor.

HIST 445. Readings in the History of Science (3)
Study in small groups under the guidance of a faculty member on the history of science. May be repeated for credit with permission of the faculty advisor.

HIST 446. Readings in the History of Technology (3)
Study in small groups under the guidance of a faculty member of the history of technology. May be repeated for credit with the permission of the faculty advisor.

HIST 447. Readings in European History (3)
An intensive research seminar on a phase of American history. May be repeated for credit with permission of the department chair.

HIST 453. Research in English History (3)
An intensive research seminar on a phase or aspect of the history of science and technology. May be repeated for credit with permission of the department chair.

HIST 454. Research in Latin American History (3)
An intensive research seminar on a phase of Latin American history. May be repeated for credit with permission of the department chair.

HIST 455. Research in History of Science and Technology (3)
An intensive research seminar on a phase or aspect of the history of science and technology. May be repeated for credit with permission of the department chair.

HIST 456. Research in the History of Science (3)
An intensive research seminar on a phase of science and technology. May be repeated for credit with permission of the department chair.

HIST 457. Research in European History (3)
An intensive research seminar on a phase of European history. May be repeated for credit with permission of the department chair.

HIST 471. Special Topics in History (1-3)
Individual study under the direction of a faculty member of a topic in history. May be repeated for credit.

HIST 472. Special Topics in History (1-3)
Individual study under the direction of a faculty member of a topic in history. May be repeated for credit.

HIST 473. Special Topics in History (1-3)
Individual study under the direction of a faculty member of a topic in history. May be repeated for credit.

HIST 474. Teaching History (1)
Focuses on the practical aspects of college teaching, including teaching methods, preparation of syllabi and exams, grading papers and exams, and dealing with problems such as plagiarism. Required for teaching assistants, teaching fellows, and Ph.D. students in the Department of History.

Humanities

Eccentral Committee:
Gordon C. F. Bearn, Ph.D. (Yale), Philosophy and Director Humanities Center; Beth Dolan, Ph.D. (North Carolina), English; Amy Forsyth, M.Arch. (Princeton), Art and Architecture; Kashi Johnson, M.F.A. (Pittsburgh), Theater; John Pettegrew, Ph.D. (Wisconsin at Madison), History and American Studies, Director; John Savage, Ph.D. (NYU), History; Bob Watts, Ph.D. (Missouri-Columbia), English.

The Humanities Program is devoted to freeing faculty and students from the discipline of the disciplines, to finding a way to the space between the disciplines, the space where the sparks of intellectual excitement fly, sparks that ignite the pleasures and passions that characterize the best of university life.

The humanities are construed so broadly that they will include any aspect of intellectual investigation which is relevant to understanding whatever humans are or have been, whatever humans have produced or are producing. It remains an open question whether any discipline at all is irrelevant to the understanding of human life and work. Even such apparently far-flung investigations as the thermodynamics of far from equilibrium systems are already being used to understand the evolution of forms of human society, and both Goedel’s work on the foundations of mathematical logic and Bohm’s ontological interpretation of quantum mechanics have already been used at some distance from their original homes. Although “humanities” is the name of this program, “inclusion” is its watchword.

Intellectual work always faces a trade-off between the intensities of connection and the intensities of concentration: between the power of an analysis which excludes every concern and every method of investigation save one and the power of an analysis which reveals the amazing ways an inert site of investigation can be aroused by bringing out the myriad connections that reach out from that site in all directions at once. Divided by department and by college, by discipline and sub-discipline, universities are disposed to accentuate the centrifugal powers of
concentration at the expense of the centrifugal powers of connection. It is important, therefore, that there be elements within the university that draw people and disciplines out of the center of their fields. This is the eccentral mission of the Humanities Program.

**Humanities Minor Programs**

The Humanities Minor Programs provide homes for the homeless interdisciplines, interdisciplinary areas of concentration that do not have official departmental or interdepartmental homes. There are currently three minors in the humanities, and there may be more in the future.

**a) Medieval Studies Minor in Humanities**

Advisor, Michael Mendelson, Associate Professor of Philosophy

The Medieval Studies Minor requires that a student take 4 courses (16 credits) from the following list. At the discretion of the Advisor for the Medieval Studies Minor, a student may count any other course (not on this list) towards the minor.

- ART 1 Art History: Ancient and Medieval
- ART 206/ARCH 206 Medieval Art and Architecture
- CLSS 52 Classical Epic
- LAT 113 Virgil
- LAT 115 Ovid
- ENGL 327 Chaucer
- ENGL 360 Middle English Literature
- HIST 15 English History to 1688
- HIST 150 Medieval Civilization
- FREN 302 Medieval French Stories
- FREN 303 Arthurian Romances
- MUS 233 Medieval and Renaissance Music
- PHIL 133 Medieval Philosophy
- PHIL 233 Figures and Themes in Medieval Philosophy

**b) Ethics Minor in Humanities**

Advisors. Lloyd H. Steffen, Professor of Religion Studies and Gordon C.F. Bearn, Professor of Philosophy.

The Ethics Minor construes ethics more broadly than as the subject of philosophical treatises. The Ethics Minor is especially concerned with the way ethical challenges arise outside the semi-technical philosophical field of ethics itself, that is, in the pursuit of the various professions and in the conduct of life, generally.

The Ethics Minor consists of 4 courses (16 credits) from the following list. At least one course must come from the first five italicized members of the list. At the discretion of an Advisor for the Ethics Minor, a student may count any other course (not on this list) towards the minor.

- PHIL 105 Ethics
- PHIL 116 Bioethics
- PHIL 117 Race and Philosophy
- PHIL 122 Philosophy of LAW
- PHIL 124 (REL 124) Reason and Religious Experience
- PHIL 140 (AS 140) Eastern Philosophy
- PHIL 205 Contemporary Ethics
- PHIL 217 Figures/Themes in Race and Philosophy
- PHIL 240 (AS 240) Figures and Themes in Eastern Philosophy
- POLS 111 The Politics of the Environment
- POLS 179 (WS 179) Politics of Women
- POLS 329 Propaganda, Media, and American Politics
- POLS 330 Movements and Legacies of the 1960’s
- PSYC 314 (SSP) Social Cognition and Social Action
- REL 6 Religion and the Ecological Crisis
- REL 68 Practical Justice: From Social Systems to Responsible Community
- REL 158 (WS 158) Sex and Gender in Judaism: The Feminist Critique
- REL 167 Engaged Buddhism
- REL 184 (WS184) Religion, Gender, and Power
- REL. 225 Topics in Religion and Ethics
- STS 11 Technology and Human Values

**c) Peace Studies Minor in Humanities.**

Advisors. Addison Bross (English) and Chaim Kaufmann (International Relations).

In a series of courses in the humanities and social-sciences, the Peace Studies Minor will focus, for one of its two main components, on the history, theory, and practice of nonviolent direct action in its various forms, as
employed by such leaders as Gandhi and King. In its sec-
on component students will gain an understanding of
of armed international conflict and the policy
processes that influence the escalation and de-escalation of hostilities. A central course (Hum 180) will introduce
key concepts by which practitioners, using both these
approaches, seek to create peace in a violent world.
Courses dealing with the second component will be
offered by the Program’s Co-Advisor (Chaim
Kaufmann, International Relations) as well as by other
faculty who are willing to contribute on a volunteer
basis.

Requirements for Completion of the Minor
Four 4-credit courses, including
2. 1 course from the non-violence/peace advocacy list
below;
3. 1 course from the conflict/policy process list below;
4. 1 course from either list.
Non-violence/peace advocacy/practice of advocacy
Hum 181. LEOPOCO Internship.
IR 346. Ethics in International Relations.
IR 391. U.N. or other IGO/NGO internship approved
by program advisor.*
MLL 124. Negotiating Across Cultures.
Religion 3 (Philosophy 3). Religion, Ethics and Society.
Religion 68. Practical Justice: From Social Systems to
Responsible Community.
Religion 167. Engaged Buddhism.
POLS 230. Movements and Legacies of the 1960s.
POLS 326. Democracy Workshop.
POLS 370. The Citizen Versus the Administrative State.
*No more than one internship can be counted toward the
minor.
Conflict/policy process/foreign policy
History 110. American Military History.
History 349. Revolutions in Modern European History.
IR 34. Society, Technology and War.
IR 36. International Terrorism.
IR 74. American Foreign Policy.
IR 120. Globalization.
IR 132. Nationalism and Ethnic Conflict.
IR 142. International Law.
POLS 329. Propaganda, Media, and American Politics.
SPP 105. Social Origins of Terrorism.

Honors in Humanities
The honors program in Humanities is designed to facili-
tate research beyond the disciplinary frame of a student’s
major. In order to earn Honors in Humanities students
must (1) have a GPA of at least 3.5 and (2) apply to the
director of the Humanities Center detailing how they
intend to complete the rest of these requirements, name-
ly, (3) completing 3 courses (9-12 credits) from at least 2
different departments that have been selected with the
help of the director so as to prepare the student to (4)
complete a year-long thesis under the guidance of two
faculty members representing two different departments.
Successful completion of the honors thesis in humanities
will be decided by two faculty advisors for the thesis.
The thesis will count for honors in the two home
departments of the advisors only if the home depart-
ments also certify that the thesis has been satisfactorily
completed.
Applications to the director should be completed by the
beginning of the second semester of the student’s Junior
year. The application should describe the anticipated
project and show how the three preparatory courses con-
stitute appropriate preparation for the thesis. If the final
thesis does not meet with the approval of the two advi-
dors then the student will not receive honors in
humanities but he or she will receive grades and credit
for the courses taken and the thesis written.

Course Offerings
HUM 126. (PHIL 126, REL 126) Professional
Ethics (4)
An examination of the moral rules and action guides that
govern various professions. Professions to be examined
will include health (physician and nursing); legal; counsel-
ing and psychiatry; engineering; military; clergy; teaching.
Attention will be given to modes of ethical reasoning and
how those modes are practically applied in professional life
and activity. Among issues to be discussed will be the lim-
its of confidentiality; employer authority; power
relationships; obligations to the public; professional rights;
sexual boundaries; whistle-blowing; safety and risk; com-
puter ethics; weapons development; discrimination;
professional review of ethical infractions. Course will
include guest lectures and case studies. Steffen (HU)
HUM 137. (PHIL 137, REL 137) Ethics in
Practice (1-4)
A variable content course focusing on ethical issues aris-
ing in a particular profession, such as law, health,
business, engineering, military. Variable credit. May be
taken more than once. Steffen (HU)
HUM 150. Humanities Seminar (4)
Variable Content. An opportunity for humanities faculty
to involve students in the exciting and accessible aspects
of their research. May be taken more than once for cred-
it. Staff (HU)
HUM 180. Introduction to Peace Studies (4)
Offers an overview of the field from the perspective of
various disciplines in the humanities and social sciences.
Among issues to be explored are the contested concepts
of “peace,” “war,” and “violence” (overt and systemic);
methods for establishing “negative” and “positive” peace;
the theory and evolution of “direct action” as a means to
nonviolent social change as practiced by Gandhi, King,
and others; the causes of international conflict; methods
for reducing, through diplomacy, the tensions that lead
to war, for de-escalating hostilities and restoring peace;
the validity of Just War theory and challenges to it. Since
any attempt to establish peace must take into account
the political and social environment in which advocates
must operate, several guest lectures by faculty from
International Relations and other departments will be
included. Bross (HU)
HUM 181. Internship with Lehigh-Pocono
Committee of Concern (LEPOCO) (4)
Supervised practical work with this volunteer peace-and-
justice organization located in Bethlehem, PA, combined
with a sequence of supervised readings in the history and
theory of nonviolent methods of resolving conflict.
Requirements include journal-keeping, periodical con-
sultations with the advisor, and a final essay on the
student’s response to the readings and assessment of his or her practical work. Bross. (HU)

HUM 224. Lehigh Review (1-4)
Students will produce the annual edition of the Lehigh Review, the journal of undergraduate academic (non-fiction) writing. The production tasks are divided into one 4 credit editorial board and three 1 credit pass-fail modules (reviewing, distribution, images). Students may enroll in either the 4 credit editorial board or in one or more of the 1 credit modules. Admission is by application at the Humanities Center. (HU)

HUM 250. Intermediate Humanities Seminar. (4)
Interdisciplinary Seminar. Normally a team taught seminar bringing various disciplines to bear on a specific topic which will change from semester to semester. May be taken more than once for credit. Staff. (HU)

HUM 271. Humanities Independent Study (1-4)
Individual investigation of an author, book or topic designed in collaboration with a faculty sponsor. Tutorial meetings; substantial written work. May be repeated more than once for credit. Consent of faculty sponsor required. (HU)

HUM 350. Advanced Humanities Seminar. (4)
Interdisciplinary Seminar. Normally a team taught seminar bringing various disciplines to bear on a specific topic which will change from semester to semester. May be taken more than once for credit. Staff (HU)

HUM 371. Humanities Advanced Independent Study (1-4)
Advanced individual investigation of an author, book, or topic designed in collaboration with a faculty sponsor. Tutorial meetings; substantial written work. May be repeated more than once for credit. Consent of faculty sponsor required. (HU)

HUM 373. (PHIL 373, REL 373) Independent Ethics Project (4)
Supervised ethics research into a topic approved by the advisor for the Humanities Minor in Ethics. An option for completing the ethics minor. For ethics minors only. (HU)

HUM 390. Humanities Honors Thesis, first semester (4)
An opportunity for students admitted to the humanities honors program to pursue independent research under the guidance of two faculty members representing two different departments. If the student’s work does not satisfy the two advisors, the student will receive a grade for the course but will not receive honors. (HU)

HUM 391. Humanities Honors Thesis, second semester (4)
Continuation of HUM 390. If the student’s work does not satisfy the two advisors, the student will receive a grade for the course but will not receive honors. (HU)

HUM 450. Theory Seminar (1-3)
Sustained investigation of a single theorist or theoretical problem relevant to research in the humanities. Theorists studied could come from this list or beyond: Butler, Harraway, Irigaray, Derrida, Foucault, Freud, Deleuze, Bhambra, Baudrillard, Kristeva, Elade, Freud, Marx, Lacan, Barthes, Gramsci, Guattari, West, Cixous, Wittig, Hall, Gilroy, Bataille, Blanchot, Rorty, Fish, and so on. Problems studied could come from this list or beyond: Power, Identity, Race, Sexuality, Writing as a Woman, Essentialism, Gender. Jouissance, Nomadism, Social Constructivism, Popular Culture, and so on. May be taken more than once for credit. (HU)

Industrial and Systems Engineering

Professors. Keith M. Gardiner, Ph.D. (Manchester); Mikell P. Groover, Ph.D. (Lehigh); Nicholas G. Odrey, Ph.D. (Penn State); Robert H. Storer, Ph.D. (Georgia Tech); S. David Wu, Ph.D. (Penn State); Emory W. Zimmers, Jr., Ph.D. (Lehigh).

Associate Professors. Joseph C. Hartman, Ph.D. (Georgia Tech) chair; Louis J. Plebani, Ph.D. (Lehigh); Theodore K. Ralphs, Ph.D. (Cornell); Gregory L. Tonkay, Ph.D. (Penn State) associate chair; George R. Wilson, Ph.D. (Penn State).

Assistant Professors. Rosemary T. Berger, Ph.D. (Northwestern); Jeffrey T. Lindereth, Ph.D. (Georgia Tech); Eugene Perevalov, Ph.D. (Texas-Austin); Lawrence V. Snyder (Northwestern).


Mission Statement
To pursue excellence and national prominence in the areas of manufacturing, operations research, information technology and related fields of industrial engineering through innovative teaching, distinguished research and scholarship, and active professional leadership. Building on its unique strength and national reputation in undergraduate education and industrial research, the department strives for leadership in educational innovation, multidisciplinary research, and industrial partnership. Our ultimate mission is to produce leaders who have learned to think critically and analytically, have the skills and techniques to comprehend and create new knowledge, and are willing to serve and inspire others.

Physical Facilities
The industrial and systems engineering department is located in the Harold S. Mohler Laboratory at 200 West Packer Avenue at the northwest corner of the Lehigh University Asa Packer campus. The Mohler Lab building contains the classrooms, laboratories, and faculty offices of the department. Labs in the Mohler Laboratory include:

- Computational Optimization Research @ Lehigh (COR@L) Lab. The COR@L lab consists of high-performance computer workstations, each equipped with state-of-the-art commercial and non-commercial software for large-scale numerical optimization. COR@L is used for both research and instruction.
- Enterprise Systems Center Laboratories. The ESC Laboratories contain a variety of computer systems and software in support of agility in Computer Integrated Manufacturing (CIM) and in engineering logistics and distribution problem solving, including: Computer Aided Design (CAD) and Engineering (CAE), discrete event simulation, linear and non-linear optimization, Finite Element Analysis (FEA), facilities design, process design, and process control.
1. have a broad knowledge of mathematics, science and general engineering. Furthermore, this knowledge can be applied to Industrial Engineering related problems

2. have a fundamental grounding in the fields of statistics, manufacturing, operations research, information technology, production analysis and control, and operations management that reflect current needs and trends

3. have the detailed and relevant knowledge and ability to perform design and solve problems related to integrated systems that include people, materials, information, equipment, and energy

4. have the ability to design, conduct, and analyze experiments in laboratories, companies, and on systems models

5. have the ability to form, lead, and participate on multi-disciplinary teams that solve problems in engineering and business

6. have an awareness of global, societal, and discipline specific issues necessary to identify, formulate and solve problems

7. be aware of the NSPE professional code of ethics and have an appreciation of social and legal concerns

8. have the ability to seek out, understand and apply new information and procedures to their professional development, thus giving them an appreciation for life-long learning

9. communicate effectively through oral and written presentations using appropriate technologies

IE Curriculum

The IE curriculum is designed to provide graduates with the skills and knowledge that employers expect of young industrial engineers beginning their professional careers, and to instill the ability for life-time learning. It includes the basic mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design that are specific to industrial engineering. These principles and methods include probability and statistics, engineering economy, cost accounting, operations research, computer simulation, work methods and measurement, manufacturing processes, production and inventory control, and information technology.

Specialized industrial engineering electives in the senior year include: advanced operations research, operations management, organization planning and control, statistical quality control, database design, web technologies, and data communications technologies. Electives related to manufacturing systems engineering include: computer integrated manufacturing, industrial robotics, facilities planning and material handling, production engineering, and metal machining analysis. The IE degree requires a minimum of 132 credit hours.

Specialty Areas in Industrial Engineering

The industrial engineering curriculum emphasizes four specialty areas: (1) manufacturing systems and processes, (2) operations research, (3) information and systems engineering, and (4) production and operations management. The IE curriculum includes 18 credit hours of advanced (300 IE level) courses plus 3 credit hours of engineering elective and 6 credit hours of free elective. Students can emphasize one of these areas if they choose, or select courses from several areas to design their own individual programs. Listed below are the advanced courses associated with the four specialty areas (including courses in other departments).

Program Educational Objectives

IE graduates should:

1. have a broad knowledge of mathematics, science and general engineering.
2. have a fundamental grounding in the fields of statistics, manufacturing, operations research, information technology, production analysis and control, and operations management that reflect current needs and trends
3. have the detailed and relevant knowledge and ability to perform design and solve problems related to integrated systems that include people, materials, information, equipment, and energy
4. have the ability to design, conduct, and analyze experiments in laboratories, companies, and on systems models
5. have the ability to form, lead, and participate on multi-disciplinary teams that solve problems in engineering and business
6. have an awareness of global, societal, and discipline specific issues necessary to identify, formulate and solve problems
7. be aware of the NSPE professional code of ethics and have an appreciation of social and legal concerns
8. have the ability to seek out, understand and apply new information and procedures to their professional development, thus giving them an appreciation for life-long learning
9. communicate effectively through oral and written presentations using appropriate technologies

IE Curriculum

The IE curriculum is designed to provide graduates with the skills and knowledge that employers expect of young industrial engineers beginning their professional careers, and to instill the ability for life-time learning. It includes the basic mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design that are specific to industrial engineering. These principles and methods include probability and statistics, engineering economy, cost accounting, operations research, computer simulation, work methods and measurement, manufacturing processes, production and inventory control, and information technology.

Specialized industrial engineering electives in the senior year include: advanced operations research, operations management, organization planning and control, statistical quality control, database design, web technologies, and data communications technologies. Electives related to manufacturing systems engineering include: computer integrated manufacturing, industrial robotics, facilities planning and material handling, production engineering, and metal machining analysis. The IE degree requires a minimum of 132 credit hours.

Specialty Areas in Industrial Engineering

The industrial engineering curriculum emphasizes four specialty areas: (1) manufacturing systems and processes, (2) operations research, (3) information and systems engineering, and (4) production and operations management. The IE curriculum includes 18 credit hours of advanced (300 IE level) courses plus 3 credit hours of engineering elective and 6 credit hours of free elective. Students can emphasize one of these areas if they choose, or select courses from several areas to design their own individual programs. Listed below are the advanced courses associated with the four specialty areas (including courses in other departments).

Program Educational Objectives

IE graduates should:

1. have a broad knowledge of mathematics, science and general engineering.
2. have a fundamental grounding in the fields of statistics, manufacturing, operations research, information technology, production analysis and control, and operations management that reflect current needs and trends
3. have the detailed and relevant knowledge and ability to perform design and solve problems related to integrated systems that include people, materials, information, equipment, and energy
4. have the ability to design, conduct, and analyze experiments in laboratories, companies, and on systems models
5. have the ability to form, lead, and participate on multi-disciplinary teams that solve problems in engineering and business
6. have an awareness of global, societal, and discipline specific issues necessary to identify, formulate and solve problems
7. be aware of the NSPE professional code of ethics and have an appreciation of social and legal concerns
8. have the ability to seek out, understand and apply new information and procedures to their professional development, thus giving them an appreciation for life-long learning
9. communicate effectively through oral and written presentations using appropriate technologies

IE Curriculum

The IE curriculum is designed to provide graduates with the skills and knowledge that employers expect of young industrial engineers beginning their professional careers, and to instill the ability for life-time learning. It includes the basic mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design that are specific to industrial engineering. These principles and methods include probability and statistics, engineering economy, cost accounting, operations research, computer simulation, work methods and measurement, manufacturing processes, production and inventory control, and information technology.

Specialized industrial engineering electives in the senior year include: advanced operations research, operations management, organization planning and control, statistical quality control, database design, web technologies, and data communications technologies. Electives related to manufacturing systems engineering include: computer integrated manufacturing, industrial robotics, facilities planning and material handling, production engineering, and metal machining analysis. The IE degree requires a minimum of 132 credit hours.

Specialty Areas in Industrial Engineering

The industrial engineering curriculum emphasizes four specialty areas: (1) manufacturing systems and processes, (2) operations research, (3) information and systems engineering, and (4) production and operations management. The IE curriculum includes 18 credit hours of advanced (300 IE level) courses plus 3 credit hours of engineering elective and 6 credit hours of free elective. Students can emphasize one of these areas if they choose, or select courses from several areas to design their own individual programs. Listed below are the advanced courses associated with the four specialty areas (including courses in other departments).

Program Educational Objectives

IE graduates should:

1. have a broad knowledge of mathematics, science and general engineering. Furthermore, this knowledge can be applied to Industrial Engineering related problems

2. have a fundamental grounding in the fields of statistics, manufacturing, operations research, information technology, production analysis and control, and operations management that reflect current needs and trends

3. have the detailed and relevant knowledge and ability to perform design and solve problems related to integrated systems that include people, materials, information, equipment, and energy

4. have the ability to design, conduct, and analyze experiments in laboratories, companies, and on systems models

5. have the ability to form, lead, and participate on multi-disciplinary teams that solve problems in engineering and business

6. have an awareness of global, societal, and discipline specific issues necessary to identify, formulate and solve problems

7. be aware of the NSPE professional code of ethics and have an appreciation of social and legal concerns

8. have the ability to seek out, understand and apply new information and procedures to their professional development, thus giving them an appreciation for life-long learning

9. communicate effectively through oral and written presentations using appropriate technologies

IE Curriculum

The IE curriculum is designed to provide graduates with the skills and knowledge that employers expect of young industrial engineers beginning their professional careers, and to instill the ability for life-time learning. It includes the basic mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design that are specific to industrial engineering. These principles and methods include probability and statistics, engineering economy, cost accounting, operations research, computer simulation, work methods and measurement, manufacturing processes, production and inventory control, and information technology.

Specialized industrial engineering electives in the senior year include: advanced operations research, operations management, organization planning and control, statistical quality control, database design, web technologies, and data communications technologies. Electives related to manufacturing systems engineering include: computer integrated manufacturing, industrial robotics, facilities planning and material handling, production engineering, and metal machining analysis. The IE degree requires a minimum of 132 credit hours.

Specialty Areas in Industrial Engineering

The industrial engineering curriculum emphasizes four specialty areas: (1) manufacturing systems and processes, (2) operations research, (3) information and systems engineering, and (4) production and operations management. The IE curriculum includes 18 credit hours of advanced (300 IE level) courses plus 3 credit hours of engineering elective and 6 credit hours of free elective. Students can emphasize one of these areas if they choose, or select courses from several areas to design their own individual programs. Listed below are the advanced courses associated with the four specialty areas (including courses in other departments).

Program Educational Objectives

IE graduates should:

1. have a broad knowledge of mathematics, science and general engineering. Furthermore, this knowledge can be applied to Industrial Engineering related problems

2. have a fundamental grounding in the fields of statistics, manufacturing, operations research, information technology, production analysis and control, and operations management that reflect current needs and trends

3. have the detailed and relevant knowledge and ability to perform design and solve problems related to integrated systems that include people, materials, information, equipment, and energy

4. have the ability to design, conduct, and analyze experiments in laboratories, companies, and on systems models

5. have the ability to form, lead, and participate on multi-disciplinary teams that solve problems in engineering and business

6. have an awareness of global, societal, and discipline specific issues necessary to identify, formulate and solve problems

7. be aware of the NSPE professional code of ethics and have an appreciation of social and legal concerns

8. have the ability to seek out, understand and apply new information and procedures to their professional development, thus giving them an appreciation for life-long learning

9. communicate effectively through oral and written presentations using appropriate technologies

IE Curriculum

The IE curriculum is designed to provide graduates with the skills and knowledge that employers expect of young industrial engineers beginning their professional careers, and to instill the ability for life-time learning. It includes the basic mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design that are specific to industrial engineering. These principles and methods include probability and statistics, engineering economy, cost accounting, operations research, computer simulation, work methods and measurement, manufacturing processes, production and inventory control, and information technology.

Specialized industrial engineering electives in the senior year include: advanced operations research, operations management, organization planning and control, statistical quality control, database design, web technologies, and data communications technologies. Electives related to manufacturing systems engineering include: computer integrated manufacturing, industrial robotics, facilities planning and material handling, production engineering, and metal machining analysis. The IE degree requires a minimum of 132 credit hours.

Specialty Areas in Industrial Engineering

The industrial engineering curriculum emphasizes four specialty areas: (1) manufacturing systems and processes, (2) operations research, (3) information and systems engineering, and (4) production and operations management. The IE curriculum includes 18 credit hours of advanced (300 IE level) courses plus 3 credit hours of engineering elective and 6 credit hours of free elective. Students can emphasize one of these areas if they choose, or select courses from several areas to design their own individual programs. Listed below are the advanced courses associated with the four specialty areas (including courses in other departments).

Program Educational Objectives
Manufacturing Systems and Processes. Students interested in this area should select courses from the following list:

IE 300-level electives: IE 319, IE 324, IE 332, IE 340, IE 342, IE 344 (cross-listed with Mat 344), IE 345, IE 347

ENGR or free electives: Mat 309, Mat 314, Mat 335, Mat 342, Mat 367

Operations Research. Students interested in this area should select courses from the following list:

IE 300-level electives: IE 316, IE 332, IE 339, IE 372

ENGR or free electives: IE 170, CSE 327, CSE 340, ME 340

Free electives: ECO 358, MATH 312, MATH 338, MATH 341

Information and Systems Engineering. Students interested in this area should select courses from the following list:

IE 300-level electives: IE 307, IE 309, IE 310, IE 316, IE 339, IE 341, IE 342, IE 345, IE 372

ENGR or free electives: IE 170, IE 275, CSE 327, CSE 340, CSE 368, ECE 319, ECE 320, ECE 345

Production and Operations Management. Students interested in this area should select courses from the following list:

IE 300-level electives: IE 319, IE 324, IE 332, IE 334, IE 340, IE 342

Free electives: MGT 309, MGT 331, MGT 333

IE Major Requirements

See freshman year requirements, section III.

sophomore year, first semester (16 credit hours)

IE 111 Engineering Probability and Statistics (3)
IE 112 Computer Graphics (1)
MATH 23 Calculus III (4)
PHY 21, 22 Introductory Physics II and Laboratory (5)
MAT 33 Engineering Materials and Processes (3)

sophomore year, second semester (17-18 credit hours)

IE 121 Applied Engineering Statistics (3)
IE 131 Work Systems and Facilities Planning (3)
IE 132 Work Systems Laboratory (1)
ME 104 Thermodynamics I (3)
MATH 205 Linear Methods (3)
HSS Humanities/Social Sciences elective (3-4)*

junior year, first semester (17-18 credit hours)

IE 215 Fundamentals of Modern Manufacturing (3)
IE 216 Manufacturing Laboratory (1)
HSS Humanities/Social Sciences Elective (3-4)*
ACCT 108 Fundamentals of Accounting (3)
MECH 2 Elementary Engineering Mechanics (3)
ECO 1 Principles of Economics (4)

junior year, second semester (16 credit hours)

IE 122 Software Tools (1)
IE 226 Engineering Economy (3)
IE 220 Introduction to Operations Research (3)
IE 224 Information Systems Analysis and Design (3)
ECE 81 Principles of Electrical Engineering (4)
IE elective (3)**

summer

IE 100 Industrial Employment (0)

senior year, first semester (18-19 credit hours)

IE 251 Production and Inventory Control (3)
IEOR elective (IE 316 or IE 339) (3)**
IE elective (3)**
HSS Humanities/Social Sciences elective (6-7)*
FE free elective (3)

senior year, second semester (18 credit hours)

IE 154 Senior Project (3)
IE 305 Simulation (3)
IE elective (3)**
FE free elective (6)

Notes:

*HSS elective credit totals must satisfy the college HSS program
**IE elective courses are chosen from the current offering of 300-level IE courses
***IEOR elective is either IE 316 or IE 339 (could be fall or spring).

Special Opportunities for IE students

The following special opportunities are available to majors in industrial engineering and information & systems engineering:

Nontechnical Minor. Students may choose to pursue a nontechnical minor in an area of the humanities, social sciences, business, or entrepreneurship. Students in the business minor can satisfy the ACCT 108 requirement by completing BUS 127, and social sciences. The minors program section of this catalog should be consulted for details.

Technical Minor. Technical minors such as materials science, environmental engineering, and computer science are available through other departments in the P. C. Rossin College of Engineering and Applied Science. Consult the specific department for more details.

Graduate Courses. Seniors in industrial and systems engineering can petition to take up to two graduate IE courses (400-level) to satisfy two of their five 300-level elective IE course requirements. The petitioning senior must have a good scholastic record (generally above a 3.0 GPA).

Senior Thesis Option. Students interested in continuing on to graduate school or performing research are encouraged to take the senior thesis option. In this option a student takes IE 155 as an engineering or free elective. After IE 155, IE 156 is taken as the thesis is written. The sequence of these 2 courses can replace IE 154.

Technical Minor in Manufacturing Systems Engineering

The minor in manufacturing systems engineering provides a concentration of courses in the manufacturing and production areas. This minor is not available to students majoring in industrial engineering. It requires 16 credits.

5th Year Master of Management Science Option

Students enrolled in the IE or ISE curricula can pursue a fifth-year Master of Management Science program.
Students enrolled in the IE or ISE curricula can pursue a fifth year Master of Information and Systems Engineering program. Students in the Master of I&SE program take a mixture of engineering, computer science, and business courses. Admission is not guaranteed. For details see the M.S. and M.Eng. of Information and Systems Engineering section of the catalog or contact the ISE department.

Undergraduate Courses

IE 100. Industrial Employment (0)
Usually following the junior year, students in the industrial engineering curriculum are required to do a minimum of eight weeks of practical work, preferably in the field they plan to follow after graduation. A report is required. Prerequisite: Sophomore standing.

IE 111. Engineering Probability and Statistics (3)
Random variables, probability models and functions, and expected values. Statistical inference, estimation, hypothesis testing, and goodness of fit. Prerequisite: MATH 22.

IE 112. Computer Graphics (1) fall
Introduction to interactive graphics and construction of multi-view representations in two- and three-dimensional space. Applications in industrial engineering. Prerequisites: Sophomore standing in industrial engineering, ENGR 1.

IE 121. Applied Engineering Statistics (3) spring
The application of statistical techniques to solve industrial problems. Regression and correlation, analysis of variance, quality control, and reliability. Prerequisite: IE 111 or MATH 231.

IE 122. Software Tools (1) spring
Introduction to application software tools used to solve stochastic and deterministic problems. Problem design and solution will be drawn from IE 220. Co-requisite: IE 220.

IE 131 Work Systems and Facilities Planning (3)
Introduction to deterministic and stochastic methods in operations research. Problems are sufficiently broad to require the design of a system. Human factors in system design. Laboratory. Prerequisite: Senior standing in industrial engineering.

IE 155. Senior Thesis I (3)
In depth study of a research topic in industrial engineering supervised by an ISE department faculty member. Requires completion of a formal research proposal and a public presentation of the proposal at the end of the semester. Prerequisite: Senior standing.

IE 156. Senior Thesis II (3)
Continued in depth study of a research topic in industrial engineering supervised by an ISE department faculty member. Requires a formal thesis and public presentation of the results. IE 156 can be substituted for IE 154 in the IE curriculum when taken in sequence after IE 155. Prerequisite: IE 155.

IE 168. Production Analysis (3) spring
A course for students not majoring in industrial engineering. Engineering economy; application of quantitative methods to facilities analysis and planning, operations planning and control, work measurement, and scheduling. Prerequisites: MATH 21 or 51.

IE 170. Algorithms in Systems Engineering (3)
Introduction to the use of computers to solve problems arising in systems engineering. Focus on the design and implementation of algorithms for systems modeling, systems design, systems analysis, and systems optimization. Fundamentals of computer systems, basic data structures, the design and implementation of efficient algorithms, and application of algorithms to the design and optimization of complex systems such as those arising in transportation, telecommunications, and manufacturing. Prerequisites: ENGR 1, CSE 17.

IE 171. Algorithms in Systems Engineering Laboratory (1)
Laboratory exercises and projects in the design and implementation of algorithms for systems modeling, systems design, systems analysis, and systems optimization. Co-requisite: IE 170.

IE 185. ISELP Honors Seminar (1)
Study of problem solving, principles of enterprise systems, and creative use of information technology in controlled environments. Emphasis on teamwork, self-knowledge, and communication skills. Department permission required. May be repeated for credit.

For Advanced Undergraduates and Graduate Students

IE 215. Fundamentals of Modern Manufacturing (3) fall
Study of modern production methods. Machining, bulk and sheet metal working processes, and electronics manufacturing. Introduction to automation, numerical control, and industrial robots. Prerequisite: MATH 33.

IE 216. Manufacturing Laboratory (1) fall
Laboratory exercises and experiments in manufacturing processes and systems. Prerequisite or concurrent: IE 215.

IE 220. Introduction to Operations Research (3) spring
Introduction to deterministic and stochastic methods in operations research. Mathematical programming, queu-
IE 224. Information Systems Analysis and Design (3) spring
An introduction to the technological as well as methodological aspects of computer information systems. Content of the course stresses basic knowledge in database systems. Database design and evaluation, query languages and software implementation. Students that take CSE 241 cannot receive credit for this course.

IE 226. Engineering Economy and Decision Analysis (3) spring
Economic analysis of engineering projects; interest rate factors, methods of evaluation, depreciation, replacement, break-even analysis, after-tax analysis. Decision-making under certainty and risk. Prerequisite: IE 111 or MATH 231, either previously or concurrently.

IE 251. Production and Inventory Control (3) fall
Techniques used in the planning and control of production and inventory systems. Forecasting, inventory models, operations planning, and scheduling. Prerequisites: IE 121 and IE 220.

IE 275. Fundamentals of Web Applications (3) 
Introduction to web technologies required to support the development of client side and server side components of Internet based applications. Students will be exposed to the problems of design, implementation, and management by way of assigned readings, class discussion, and project implementation. Term project. Prerequisites: either IE 224 or CSE 241 previously or concurrently.

IE 305. Simulation (3)
Applications of discrete and continuous simulation techniques in modeling industrial systems. Simulation using a high-level simulation language. Design of simulation experiments. Prerequisites: IE 121 and IE 220.

IE 307. Advanced Systems Analysis and Design (3) spring
Study of advanced techniques and their application in the analysis and design of information systems. Emphasis is placed on tools and techniques used for structured analysis and design, and on prototyping of systems. Prerequisite: IE 224 or equivalent.

IE 309. Introduction to Information Systems (3) fall
Study of information systems analysis and design with emphasis on management interfaces. Issues between information systems and databases and data communications are examined. Effects of information systems on organizational relationships are considered. Example information system will be designed and implemented. Prerequisite: IE 224 or equivalent.

IE 310. Database Analysis and Design (3) spring
Conceptual analysis of data is considered through data structures and models. Logical design of databases is studied in the context of the relational model of data. Prerequisite: IE 224 or equivalent.

IE 316. Optimization Models and Applications (3)
Modeling and analysis of operations research problems using techniques from mathematical programming. Linear programming, integer programming, multi-criteria optimization, stochastic programming, and nonlinear programming using an algebraic modeling language. Prerequisite: IE 220 or equivalent.

IE 319. Facilities Planning and Material Handling (3)
Facilities planning including plant layout design and facility location. Material handling analysis including transport systems, storage systems, utilizing equipment, and automatic identification and data capture. Prerequisite: IE 131 or consent of department chair.

IE 321. Experimental Industrial Engineering (1-3)
Experimental projects in selected fields of industrial engineering, approved by the instructor. A written report is required. May be repeated for academic credit.

IE 324. Industrial Automation and Robotics (3)
Introduction to robotics technology and applications. Robot anatomy, controls, sensors, programming, work cell design, part handling, welding, and assembly. Laboratory exercises. Prerequisites: MECH 2, MATH 205.

IE 328. Engineering Statistics (3)
Random variables, probability functions, expected values, statistical inference, hypothesis testing, regression and correlation, analysis of variance, introduction to design of experiments, and fundamentals of quality control. Prerequisite: MATH 23 or equivalent. This course cannot be taken by IE undergraduates.

IE 332. Product Quality (3)
Introduction to engineering methods for monitoring, control, and improvement of quality. Statistical models of quality measurements, statistical process control, acceptance sampling, and quality management principles. Some laboratory exercises. Prerequisite: IE 121.

IE 334. Organizational Planning and Control (3) fall
Design of organization and procedures for managing functions of industrial engineering. Analysis and design of resources planning and control, including introduction of change in man-machine systems; manpower management and wage administration. Prerequisite: Junior Standing.

IE 339. Stochastic Models and Applications (3)
Introduction to stochastic process modeling and analysis techniques and applications. Generalizations of the Poisson process; renewal theory and applications to inventory theory, queuing, and reliability; Brownian motion and stationary processes. Prerequisite: IE 220 or equivalent.

IE 340. Production Engineering (3) fall

IE 341. Data Communication Systems Analysis and Design (3)
An introduction to the hardware as well as performance evaluation of data communication networks. Emphasis on data transmission, encoding, data link control, communication networking techniques, and queuing/simulation analysis of network performance. Prerequisite: IE 224 and IE 220 or equivalent.
IE 342. Computer Integrated Manufacturing (3) spring
Analysis and design of manufacturing systems. Principal topics: computer-based techniques, decision support systems, applications of information technology to enterprise systems, value stream mapping. Introduction to: high performance work systems, manufacturing management measurement techniques, optimization strategies for discrete parts manufacturing, lean and agile manufacturing methods. Term project. Prerequisite: IE 224, IE 215 or equivalent.

IE 344. (MAT 344/ME 344) Metal Machining Analysis (3) spring
Intensive study of metal cutting emphasizing forces, energy, temperature, tool materials, tool life, and surface integrity. Abrasive processes. Laboratory and project work. Prerequisite: IE 215 or ME 240 or Mat 206.

IE 345. Manufacturing Information Systems (3)
A study of contemporary Information Technology solutions used to support the manufacturing function from product concept and design through production planning, manufacture, and delivery. Emphasis will be placed on information exchange protocol standards used to improve the overall integration of manufacturing systems. Prerequisites: IE275.

IE 347. Electronics Manufacturing (3)
Manufacturing processes required in electronics assembly, through-hole printed circuit cards, surface-mount printed circuit boards, and thick film hybrids. Testing and inspection procedures. Includes laboratory. Prerequisite: senior standing in engineering.

IE 358. (ECO 358) Game Theory (3)
A mathematical analysis of how people interact in strategic situations. Applications include strategic pricing, negotiations, voting, contracts and economic incentives, and environmental issues. Prerequisites: ECO 105 or 115 and MATH 21, 31 or 51.

IE 362. (MSE 362) Logistics and Supply Chain Management (3)
Modeling and analysis of supply chain design, operations, and management. Analytical framework for logistics and supply chains, demand and supply planning, inventory control and warehouse management, transportation, logistics network design, supply chain coordination, and financial factors. Students complete case studies and a comprehensive final project. Prerequisite: IE 220 and IE 251 or equivalents, or instructor approval.

IE 372. Systems Engineering Design (3)
Analysis, design, and implementation of solutions to problems in manufacturing and service sectors using information technology. Emphasis on problem identification and the evaluation of proposed solutions and implementations. Term Project. Prerequisites: IE 220, 275.

IE 385. ISELP Honors Project Seminar (1)
Application of problem solving to real enterprise systems projects. Emphasis on leadership, teamwork, design, and communication skills. Requires a written honors project report. Department permission required. Senior standing. May be repeated for credit.

Graduate Programs
Several programs leading to master’s and doctoral degrees are offered by the Department of Industrial and Systems Engineering. All graduate students in the M.S. IE, M.Eng. IE and Ph.D. IE programs are required to satisfy core requirements in manufacturing and operations research. To satisfy the core requirement in manufacturing, the student must complete either IE 340 or IE 342.

To satisfy the core requirement in operations research, the student must complete either IE 404 or IE 426. Core requirements may also be satisfied by previous coursework. In this case, the student must petition the ISE graduate committee to wave the core requirement in the relevant area. All core course prerequisites must also be satisfied. Prerequisites may be satisfied by (1) previous course work, (2) completing the prerequisite course without graduate credit, or (3) passing the final examination of the prerequisite course with a grade of B or better.

A Ph.D. student is required to complete core requirements with grades of B or better before being formally admitted to Ph.D. candidacy.

Further information about graduate programs is contained in an ISE graduate brochure available from the department. In addition, several documents are available from the department that describe the requirements for each of our graduate programs.

M.S. in Industrial Engineering
The minimum program for the master of science degree in IE consists of 24 credit hours of approved coursework and completion of a satisfactory thesis. Courses in other departments for which the student has the prerequisites may be integrated into the MSIE program. Subject to advisor approval, up to nine credit hours of 300 and 400-level courses from other departments may be included in the IE masters program. The other department courses usually include other engineering disciplines, mathematics, computer science, and business and economics.

M.Eng. in Industrial Engineering
This program of study is for those students whose interests are toward engineering design rather than research. The program provides opportunity to gain breadth of field by required coursework in all areas of study within the department. In addition, an engineering project must be completed under the supervision of the faculty.

M.S. in Information and Systems Engineering
The master of science program in I&SE requires a minimum of 24 credit hours of approved coursework and completion of a satisfactory thesis or 27 credit hours of approved coursework and completion of a 3 credit hour project. See separate catalog listing under Information and Systems Engineering.

M.Eng. in Information and Systems Engineering
The master of engineering program in I&SE requires a minimum of 30 credit hours of approved coursework. See separate catalog listing under Information and Systems Engineering.

M.S. in Management Science
This program requires a minimum of 30 credit hours of approved coursework. The program leads to the master of science degree in management science. See separate catalog listing under Management Science.
M.S. in Manufacturing Systems Engineering
This is an interdisciplinary graduate program leading to the master of science degree in manufacturing systems engineering. See separate catalog listing under Manufacturing Systems Engineering.

M.S. in Quality Engineering
This is a specialized graduate program offered by the Department of Industrial and Systems Engineering. See separate catalog listing under Quality Engineering.

Ph.D. in Industrial Engineering
The graduate program leading to the doctor of philosophy (Ph.D.) degree is organized to meet the individual goals and interests of graduate students whose professional plans include teaching, consulting, or research in an educational, governmental, or industrial environment. Each doctoral candidate is required to demonstrate: (1) a high level of proficiency in one or more fields of industrial and systems engineering, and (2) a capacity for independent research through the preparation of a dissertation related to his/her field of specialization.

This is to be facilitated as follows. A student must declare a primary and secondary field of study within ISE. The fields of study are:
1. Financial Engineering
2. Information Systems
3. Manufacturing, Production and Logistics
4. Optimization
5. Stochastic Processes and Applied Statistics

Each field is defined by a set of core courses maintained by the department. A student must take at least four courses in his/her declared primary field, and at least two in his/her declared secondary field.

Additionally, a student must declare a minor field of study outside the ISE department. Minor fields of study are subject to approval and may include Computer Science, Electrical Engineering, Economics, Finance, Marketing, Materials Science, Mathematics, and Mechanical Engineering. At least two 400-level courses in the minor department are required to satisfy the minor requirement (these may be included in primary/secondary fields of study declared above).

All Ph.D. students must complete the following core courses, taken in the first year of study: IE 406, IE 429, Math 301, and Math 338 or ECO 416. They must also successfully pass a first year review, consisting of faculty evaluation, classroom performance, and a qualifier exam.

IE 404. Simulation (3)
Applications of discrete and continuous simulation techniques in modeling industrial systems. Simulation using a high-level simulation language. Design of simulation experiments. This course is a version of IE 305 for graduate students, with research projects and advanced assignments. Prerequisites: IE 121 or IE 328 and IE 220 or equivalent.

IE 405. Special Topics in Industrial Engineering (3)
An intensive study of some field of industrial engineering.

IE 406. Introduction to Mathematical Programming (3)
Techniques for the solution and analysis of deterministic linear models used in operations research. Linear programming, network flow, and integer linear programming. Emphasis on modeling techniques, algebraic modeling languages and commercial solvers.

IE 408. Management of Information Systems (3)
Philosophies and methods for systematic planning, development, and implementation of management information systems. Concepts of information resource management, and strategic and long-range planning of information systems and services. Prerequisite: IE 224 or ACCT 311 or equivalent.

IE 409. Time Series Analysis (3)
Theory and applications of an approach to process modeling, analysis, prediction, and control based on an ordered sequence of observed data. Single or multiple time series are used to obtain scalar or vector difference/differential equations describing a variety of physical and economic systems. Prerequisite: IE 121 or equivalent.

IE 410. Design of Experiments (3)
Experimental procedures for sorting out important causal variables, finding optimum conditions, continuously improving processes, and trouble shooting. Applications to laboratory, pilot plant and factory. Prerequisite: Some statistical background and experimentation in prospect, IE 121 or equivalent.

IE 411. Networks and Graphs (3)
This course examines the theory and applications of networks and graphs. Content of the course stresses on the modeling, analysis and computational issues of network and graph algorithms. Complexity theory, trees and arborescences, path algorithms, network flows, matching and assignment, primal-dual algorithms, Eulerian and Hamiltonian walks and various applications of network models. Prerequisite: IE 406 or equivalent.

IE 412. Quantitative Models of Supply Chain Management (3)
Analytical models for logistics and supply chain coordination. Modeling, analysis, and computational issues of production, transportation, and other planning and decision models. Logistics network configuration, risk pooling, stochastic decision-making, information propagation, supply chain contracting, and electronic commerce implication. Prerequisite: IE 316 and IE 339 or equivalent.

IE 413. Advanced Engineering Economy and Replacement Analysis (3)
Measuring economic worth, economic optimization under constraints, analysis of economic risk and uncertainty. Emphasis on analytical methods to evaluate the economic desirability of replacement and retirement options in capital investment. Prerequisites: IE 220 and IE 226 or equivalents.

IE 414. Heuristic Methods in Combinatorial Optimization (3)
Heuristic methods for solving combinatorial and discrete optimization problems such as routing, scheduling, partitioning and layout. Introduction to NP-completeness theory, exact and inexact methods, performance analysis, fast and greedy heuristics, Lagrangean heuristics, and various search techniques including simulated annealing, genetic algorithms, Tabu search and iterative constructive heuristics.

IE 416. Dynamic Programming (3)
The principle of optimality and recursive solution struc-
Introduction to stochastic process modeling and analysis
IE 429. Stochastic Models and Applications (3)
Advanced study of stochastic process modeling and analysis of non-linear optimization problems. Poisson process; renewal theory, queueing, and reliability; Brownian motion and stationary processes. This course is a version of IE 39 for graduate students, with research projects and advanced assignments. Closed to students who have taken IE 339. Prerequisite: IE 220 or equivalent background.

IE 430. Management Science Project (3)
Analysis of a management problem and design of its solution incorporating management science techniques. An individual written report is required. Recommended to be taken in the last semester of the program.

IE 431. Operations Research Seminar (3)
Extensive study of selected topics in techniques and models of operations research.

IE 432. Manufacturing Engineering Seminar (3)
Extensive study of selected topics in the research and development of manufacturing engineering techniques.

IE 433. Advanced Database Analysis and Design (3)
Study of advanced topics in database technology, including information modeling and logical design of databases. Emphasis on applications to the manufacturing environment. Prerequisite: IE 310 or equivalent.

IE 434. Advanced Data Communication Systems Analysis and Design (3)
Study of technological development, operational algorithms and performance analysis in data networks. Emphasis on recent developments in communication technologies, modeling and simulation of large-scale networks, routing models and algorithms, and flow control issues. Prerequisite: IE 341 and IE 316, or equivalents.

IE 435. Advanced Database Analysis and Design (3)
Queueing theory and analysis of manufacturing, distribution, telecommunications, and other systems subject to congestion. Design and analysis of queueing networks; approximation methods such as mean value analysis, uniformization, fluid and diffusion interpretations; numerical solution approaches. Prerequisite: IE 339 or instructor permission.

IE 436. Advanced Financial Engineering Projects (3)
Analysis, design and implementation of solutions to problems in financial services using information technology, mathematical modeling, and other financial engineering techniques. Emphasis on real-world problem solving, problem definition, implementation and solution evaluation.

IE 437. Advanced Manufacturing Management (3)
Study of factors affecting the development of a manufacturing philosophy; decision-making process in areas of organization, planning, and control of manufacturing. The principles and techniques of TQM, Deming and others; metrics, costs, benchmarking, quality circles, and continuous improvement. Influence of the social, technical, and economic environment upon manufacturing management decisions. Case studies.

IE 438. Advanced Manufacturing Systems (3)
Principles and analysis of manual and automated production systems for discrete parts and products. Cellular manufacturing, flexible manufacturing systems, transfer lines, manual and automated assembly systems, and quality control systems. Prerequisite: IE 215 or equivalent.
IE 445. Assembly Processes and Systems (3)
Joining processes including welding, brazing, soldering, and adhesive bonding. Mechanical assembly methods, manual assembly lines and line balancing, automated assembly, product design considerations including design for assembly. Prerequisite: IE 215 or equivalent.

IE 446. Discrete Event Dynamic Systems (3)
Modeling of Discrete Event Dynamic systems (DEDS) particularly as applied to industrial systems. Modeling procedures with focus on Petri Nets, Hierarchical Petri Net modeling, performance analysis, behavioral and structural properties, and various synthesis and analytical techniques. Relationships to state space concepts, simulation, and finite state automata are introduced. Emphasis on use of such nets for the control of industrial systems. Prerequisites: Permission of instructor.

IE 447. Stochastic Programming and Financial Analysis (3)
Finding optimal decisions in problems such as portfolio management and financial planning. Emphasis on implementation and tools for solving difficult stochastic programming instances and application of stochastic programming to financial portfolio analysis. Requires basic knowledge of linear programming, elementary analysis, and probability. Prerequisites: IE 426 or equivalent.

IE 448. Industrial Control Systems for Manufacturing (3)
Techniques used to control manufacturing systems: numerical control, digital control, programmable logic controllers, and sensors.

IE 449. Advanced Computer-Aided Manufacturing (3)
Numerical control in manufacturing; CAD/CAM systems; computer monitoring and control of manufacturing operations; adaptive control of manufacturing operations. Manufacturing resource planning, computer-aided process planning, and shop floor control. Prerequisite: IE 342 or consent of the department chair.

IE 451. Intelligent Manufacturing Systems (3)
Informational and control structures, architectures, and analysis techniques for autonomous and semi-autonomous manufacturing systems. System architectures and techniques, knowledge based systems in production, and techniques based on fuzzy systems and neural networks. Applications in manufacturing systems. Control, process planning, and design and management problems in newly developing manufacturing and production systems. Prerequisite: Permission of instructor.

IE 458 (ECO 463). Topics in Game Theory (3)
A mathematical analysis of how people interact in strategic situations. Topics include normal-form and extensive-form representations of games, various types of equilibrium requirements, the existence and characterization of equilibria, and mechanism design. The analysis is applied to microeconomic problems including industrial organization, international trade, and finance. Prerequisites: Two semesters of calculus, ECO 412 and ECO 414, or permission of the instructor.

IE 460. Engineering Project (1-3)
Intensive study of an area of industrial engineering with emphasis upon design and application. A written report is required.

IE 461. Readings (1-3)
Intensive study of some area of industrial engineering that is not covered in general courses.

IE 490. Thesis (1-6)

IE 499. Dissertation (1-15)

Information and Systems Engineering

B.S. in Information and Systems Engineering

Information and systems engineering (I&SE) is a bachelor of science degree program that produces graduates who understand the complex facets of modern information systems, and the integration of these systems in industrial, service and financial organization. The degree program, offered through the Department of Industrial and Systems Engineering, constitutes a broad based curriculum focusing on three core areas: (1) Information Economics, (2) Quantitative Systems Analysis, and (3) Information Technology. The core areas are coupled with general engineering and business background courses. Information economics studies the formulation, structure, and operational dynamics of information-centric systems in the context of industrial organizations, service sector economics, and financial institutions. Topic areas range from fundamental theory and methodologies in systems science and engineering, to issues in complex supply networks, e-Business, electronic marketplaces, and financial engineering. Quantitative systems analysis studies operations research and computational tools for analyzing complex systems and their information components. Topic areas include mathematical programming, optimization, decision analysis, large-scale modeling and simulation, decentralized decision processes, stochastic processes, sequencing and scheduling, parallel and distributed algorithms, and algorithm design. Information technology and applications studies computer and communication technologies needed to design and implement information system applications. Topic areas include the applications of information technology in manufacturing and business environments, including electronic commerce, supply chain and enterprise information systems, manufacturing information systems, and intelligent manufacturing control. The I&SE degree requires 131 credit hours.

I&SE Major Requirements
See freshman year requirements, section III.

sophomore year, first semester (16 credit hours)
IE 111 Engineering Probability and Statistics (3)
MATH 23 Calculus III (4)
PHY 21, 22 Introductory Physics II and Laboratory (5)
CSE 17 Structured Programming and Data Structures (4)

sophomore year, second semester (17 credit hours)
IE 121 Applied Engineering Statistics (3)
IE 170 Algorithms in Systems Engineering (3)
IE 171 Algorithms in Systems Engineering Laboratory (1)
MATH 205 Linear Methods (3)
ACCT 108 Fundamentals of Accounting (3)
ECE 81 Principles of Electrical Engineering (4)
Proven ability to design, build and implement high value-added systems.

Highly valued leadership skills and competencies:

- Ability to identify and solve unstructured problems;
- Proven ability to design, build and implement high value-added systems.

Participants in this program will graduate with these abilities.

Students are offered admission to the program during the matriculation process. In addition, students that select the I&SE degree and maintain a high cumulative GPA at the end of the freshman year will be eligible to join the program.

Students in the ISELP must satisfy all degree requirements for the I&SE degree. In addition, both semester of the sophomore and junior years and the first semester of the senior year the student registers for IE 185 ISELP Honors Seminar. In the last semester of the senior year the student registers for IE 385 ISELP Honors Project Seminar. IE 385 requires a written honors project report. The additional 6 credits of seminar are above the degree requirements for the I&SE degree and may not be used as Free Elective credits in that program.

Special Opportunities for I&SE students

The following special opportunities are available to majors in information systems and engineering:

**Technical Minor.** Students may choose to pursue a nontechnical minor in an area of the humanities, social sciences, business, or entrepreneurship. Students in the business minor can satisfy the ACCT 108 requirement by completing BUS 127. The minors program section of this catalog should be consulted for details.

**Technical Minor.** Technical minors such as materials science, environmental engineering, and computer science are available through other departments in the P.C. Rossin College of Engineering and Applied Science. Consult the specific department for more details.

Graduate Courses. Students in the Department of Industrial and Systems Engineering can petition to take up to two graduate IE courses (400-level) to satisfy two of their five 300-level elective IE course requirements. The petitioning senior must have a good scholastic record (generally above a 3.0 GPA).

**Senior Thesis Option.** Students interested in continuing on to graduate school or performing research are encouraged to take the senior thesis option. In this option a student takes IE 155 as an engineering or free elective. After IE 155, IE 156 is taken as the thesis is written. The sequence of these 2 courses can replace IE 154.

**5th Year Master of Management Science Option**

Students enrolled in the ISE curricula can pursue a fifth-year Master of Management Science program. Students in the management science program take a mixture of engineering and business courses. Admission is not guaranteed. For details see the management science section of the catalog or contact the ISE department.

**5th Year Master of Information and Systems Engineering Option**

Students enrolled in the ISE curricula can pursue a fifth year Master of Information and Systems Engineering program. Students in the Master of I&SE program take a mixture of engineering, computer science, and business courses. Admission is not guaranteed. For details see the M.S. and M.Eng. of Information and Systems Engineering section of the catalog or contact the ISE department.
Master's Programs in Information and Systems Engineering

The goal of the M.S. in Information and Systems Engineering (I&SE) program is to provide advanced educational and research opportunities related to operations research, quantitative and computational analysis, large scale optimization, system simulation, information-centric systems, and the integration of information systems in industrial, service and financial organizations. Graduates of the program will be operations research analysts, systems engineers and information technology specialists who are employed by virtually all organizations, especially in consulting, multi-national operations, transportation, logistics, financial institutions, and telecommunications.

New communications technologies, the web, and recent advances in computing are profoundly changing the operations of business and industry. The increasingly complex intertwining of organizations coupled with continued automation of business processes creates new and complex large-scale systems of enterprises, people, capital equipment, and information. With these changes comes the need for engineers capable of understanding and integrating these emerging systems. The needs extend far beyond the micro level details of computer hardware and software, instead requiring systems integration, large-scale optimization and control, and knowledge of the operations of industry. It is the combination of the systems perspective, the analytical focus, and development of computing skills that sets the I&SE education apart.

The program is comprised of three core areas:

Information Economics: The formulation, structure, and operational dynamics of information-centric systems in the context of industrial organizations, service sector economics, and financial institutions. Topic areas range from fundamental theory and methodologies in systems science and engineering, to issues in complex supply networks, e-Business, electronic marketplaces, and financial engineering. This area of concentration is based on the solid foundations of science and economics through which we envision the long-term development of modern information systems.

Quantitative Systems Analysis: Operations research and computational tools for analyzing complex systems and their information components. Topic areas include mathematical programming, optimization, decision analysis, large-scale modeling and simulation, decentralized decision processes, stochastic processes, sequencing and scheduling, parallel and distributed algorithms, and algorithm design. This area of concentration forms the methodological base for the design, integration, implementation, and management of information systems in large-scale organizations.

Information Technology and Applications: Computer and communication technologies needed to design and implement information system applications. Of specific focus will be the applications of information technology in manufacturing and business environments, including electronic commerce, supply chain and enterprise information systems, manufacturing information systems, and intelligent manufacturing control. This area concentrates on the technological aspects of modern information systems such as database systems, software development, and web-based systems.

Program Requirements

M.S. in Information and Systems Engineering

The master of science program in I&SE requires a minimum of 24 credit hours of approved coursework and completion of a satisfactory thesis or 27 credit hours of approved coursework and completion of a 3 credit hour project. Three core courses are required: IE 362, IE 404, and IE 426. In addition, 5 courses are chosen from a list of approved courses that covers the areas of information economics, quantitative systems analysis, and information technology and applications.

M.Eng. in Information and Systems Engineering

The master of engineering program in I&SE requires a minimum of 30 credit hours of approved coursework. No thesis or project is required. Three core courses are required: IE 362, IE 404, and IE 426. In addition, 5 courses are chosen from a list of approved courses that covers the areas of information economics, quantitative systems analysis, and information technology and applications.

Program Prerequisites:

1. Information Economics
   - IE 362 Logistics and Supply Chain Management (3)
   - IE 404 Simulation (3)
   - IE 426 Optimization Models and Applications (3)
   - ISE Electives (select at least five from the following courses, organized into three groups corresponding to the three information and systems engineering areas identified above):
     1. Information Economics
        - IE 311 Managing Information Systems Development (3)*
        - IE 331 Electronic Commerce and Security (3)*
        - ECO 412 Mathematical Economics (3)
        - ECO 413 Advanced Microeconomic Analysis (3)
        - ECO 415 Econometrics (3)
        - ECO 447 Econometric Analysis of Mark (3)
        - IE 334 Organizational Planning and Control (3)
        - IE 442 Manufacturing Management (3)
     2. Quantitative Systems Analysis
        - IE 328 Engineering Statistics (3)
        - IE 339 Stochastic Processes (3)
        - IE 406 Introduction to Mathematical Programming (3)
        - IE 409 Time Series Analysis (3)
        - IE 410 Design of Experiments (3)
        - IE 411 Networks and Graphs (3)
        - IE 413 Advanced Engineering Economy and Replacement Analysis (3)
        - IE 414 Heuristic Methods in Combinatorial Optimization (3)
        - IE 416 Dynamic Programming (3)
        - IE 417 Nonlinear Programming (3)
        - IE 418 Integer Programming (3)
Students are required to maintain a minimum GPA of accreditation standards of AACSB International. Business and Engineering. The program meets the admission limited to approximately 50 students. The University's Office of Admissions (610-758-3100) can explain the procedure for applying to the program.

The co-directors of the IBE Honors Program are Stephen G. Buell, Professor of Finance and Business Information Systems (sgb2@lehigh.edu) and Robert H. Storer, Professor of Industrial and Manufacturing Systems Engineering (rhs2@lehigh.edu). For additional information, see the IBE Honors Program entry in Section V of this catalog or visit the IBE web site at www.lehigh.edu/inibep/inibep.html. Integrated Real Estate @ Lehigh Program

Integrated real estate @ Lehigh (ire@l) is a three or four year course of study designed to complement a wide range of majors, from art and architecture to civil engineering to environmental science to finance to marketing to economics. The mission of the ire@l program is to prepare the next generation of real estate leaders. Students completing the ire@l program will earn a minor in real estate.

Required Courses comprising the minor include:
- IPRE 001 Introductory Seminar in Real Estate (3 credit hours)
- IPRE 002 Field Laboratory (2 credit hours)
- IPRE 301 Case Studies in Real Estate Value Creation (3 Credit Hours)
- IPRE 302 Summer IPRE Internship (0 - 1 credit hour)
- Bus 347 Practicum in Real Estate I (2 credit hours)
- Bus 348 Practicum in Real Estate II (2 credit hours)

Recommended Courses:
- IPRE 101 Real Estate Practicum Clerkship I (1 credit hour)
- IPRE 102 Real Estate Practicum Clerkship II (1 credit hour)

The director of the Goodman Center for Real Estate Studies and the ire@l program is Associate Professor Stephen Thode (ire@lehigh.edu).

ire@l Minor Courses:
IPRE 001 Introductory Seminar in Real Estate (3 credit hours)
Required of all entering IPRE students, this seminar explores a variety of issues related to real estate, entrepreneurship and leadership. Topics include: the relationship

3. Information Technology and Applications
CSE 313 Computer Graphics (3)*
CSE 330 Advanced Software Engineering Tools (3)*
CSE 340 Design and Analysis of Algorithms (3)*
CSE 366 Object-Oriented Programming (3)
CSE 403 Theory of Operating Systems (3)*
CSE 411 Advanced Programming Techniques (3)
CSE 412 Object-Oriented Programming (3)
CSE 414 Expert Systems (3)*
CSE 415 Database Topics (3)*
CSE 416 Advanced Issues in Knowledge-based Systems (3)*
CSE 432 Object-Oriented Software Engineering (3)
ECE 401 Advanced Computer Architecture (3)*
ECE 404 Computer Networks (3)
IE 307 Advanced Systems Analysis and Design (3)
IE 309 Introduction to Information Systems (3)
IE 310 Database Analysis and Design (3)
IE 324 Industrial Automation and Robotics (3)
IE 332 Quality Control (3)
IE 341 Data Communication Systems Analysis and Design (3)
IE 342 Computer Integrated Manufacturing (3)
IE 345 Manufacturing Information Technology (3)
IE 424 Robotic Systems and Applications (3)
IE 437 Advanced Database Analysis and Design (3)
IE 438 Advanced Data Communication Systems Analysis and Design (3)
IE 443 Automation and Production Systems (3)
IE 449 Advanced Computer-Aided Manufacturing (3)
IE 451 Intelligent Manufacturing Systems (3)*

*Prerequisites may pose difficulties.

Free Electives (for M.Eng. select any two graduate courses subject to approval of graduate coordinator).
of real estate to finance, architecture, environmental issues, government, engineering, urban planning and economic development; the role of the entrepreneur in real estate and real estate development; ethical considerations in real estate; and, models of leadership. The seminar will consist of lectures and presentations by a variety of Lehigh faculty, entrepreneurs, and real estate professionals. Prerequisites: Permission of the instructor.

**IPRE 002 Field Laboratory (2 credit hours)**

An introduction to the real estate development process. Using an actual, planned commercial real estate development, the class will engage in an extensive inquiry into the breadth and depth of the real estate development process. Topics include: the sequence of events in the development process; parallel and sequential activities; impediments to highest and best use; strategies for overcoming impediments; managing relationships with various constituents; sources of capital; and, market analysis. Each class member will submit a final report detailing his or her findings with respect to these topics. Prerequisite: IPRE 001 and permission of the instructor.

**IPRE 301 Case Studies in Real Estate Value Creation (3 Credit Hours)**

An investigation into ways in which the entrepreneur is able to create value through the development or redevelopment of real estate. Issues: establishing a real property's highest and best use; the entrepreneurial thought process; zoning, planning and land use regulations and their effects on real estate development; real and potential environmental impacts and their effects on real estate development; the role of government in stimulating (or destimulating) real estate development; overcoming barriers to real estate development; negotiation techniques; and, application of alternative strategies in the development process. The course is taught using the case method with the majority of the cases from previous Real Estate Practica. The course is a combination of lectures, presentations by entrepreneurs, and site visits to (re)developed properties as well as properties in the planning phase. Prerequisite: Permission of the instructor.

**IPRE 302 Summer IPRE Internship (0 - 1 credit hour)**

This course is available summers and open to students in the Integrated Program in Real Estate. The student will be evaluated on a directed writing assignment of no fewer than 9 pages and on a detailed evaluation provided by his or her work supervisor. A minimum of 150 hours of work must be completed in the internship, and verified by work supervisor. It should be noted that the work experience itself is not the basis for academic credit. Course registration and related arrangements must be made in advance of the work experience. This course cannot be used to satisfy any major requirements. Prerequisite: permission of the program director. In extraordinary circumstances and with the approval of the program director this requirement can be altered according to the director's stipulations.

**Bus 347 Practicum in Real Estate I (2 credit hours)**

Organized into teams, with each team assigned a different subject commercial real property, the class engages in the study of the physical and locational characteristics of commercial real estate as they relate to value including: property history; architecture; physical attributes that add to or detract from value; tenant mix; the immediate neighborhood environment; and, the specific market in which the real property competes for tenants.

Each team meets with the property owner and conducts a thorough review of the property's development process including, where applicable, previous attempts to develop the property, prior uses for the property, and significant phase points in the development process (for example, “deal killing” impediments that were overcome).

Each team submits a written report of their findings and produces a 10-minute video documentary on their subject property. Prerequisite: Permission of the instructor.

**Bus 348 Practicum in Real Estate II (2 credit hours)**

A continuation of the study of the creation of value in commercial real estate begun in the Practicum in Real Estate I. Each student team continues with the subject commercial real property assigned to them in Practicum I.

The class engages in the study of the market and financial characteristics of commercial real estate as they relate to value through: a financial analysis of the market in which their property is located to include market rents, market vacancy rates and market absorption rates; and, financial analysis of the subject property to include both historical results, and pro forma estimates of revenues, expenses, cash flow and residual value. Each team also studies the financial characteristics of comparable properties.

The grand finale of the Real Estate Practicum (and the IPRE curriculum) is the Collins Family Scholarship Competition. Held at the conclusion of the spring semester, this competition is the public vehicle for the Practicum teams to present the results of their property studies. Prerequisite: Permission of the instructor.

**IPRE 101 Real Estate Practicum Clerkship I (1 credit hour)**

Just as medical school and law school students serve clerkships as a key part of their academic preparation, IPRE students may serve clerkships in the Real Estate Practicum. Clerkship students will rotate among all of the groups engaged in the Real Estate Practicum - accompanying Practicum groups on site visits, observing those groups' interactions with various faculty and real estate professionals, and assisting those groups in the completion of numerous tasks.

During the fall semester, the focus of these rotations will be on the physical characteristics of the Practicum properties including design considerations, structural integrity, floor plans, building systems and tenant improvements. Students will also develop an understanding of the property's location, and how that location affects the use(s) of the property. Finally, students will gauge the area in which the property is located.

Concurrent with these rotations, these students will reference their Field Laboratory property that is in an earlier stage of development, drawing a contrast between a completed property and a property under development. Prerequisite: Permission of the instructor.

**IPRE 102 Real Estate Practicum Clerkship II (1 credit hour)**

A continuation of the fall semester, the spring semester rotations focus on the real estate markets in which the Practicum properties are located, and on the financial analysis (valuation) of the Practicum properties. As in
the fall, at the conclusion of each rotation, the clerkship
student will receive evaluations from faculty, practitioner-
ists and Practicum group members on their performance.
Likewise, clerkship students will reference their Field
Laboratory property to contrast the difference between
the demonstrated value created (in a completed property)
and the value that is expected to be created (in a property
under development). Prerequisite: IPERE 101 and permis-
sion of the instructor.

Interdisciplinary Technology
See listings under Science, Technology and Society.

International Relations
Professor and Chair. Henri J. Barkey, Ph.D.
(Pennsylvania), Bernard L. and Bertha F. Cohen
Professor
Professors. John Martin Gillroy, Ph.D. (Chicago); Rajan
Menon, Ph.D. (Illinois), Monroe J. Rathbone Professor;
Bruce E. Moon, Ph.D. (Ohio State); Raymond F. Wylie,
Associate professor. Chaim D. Kaufmann, Ph.D.
(Columbia).
Assistant professor. Janice Bially Mattern, Ph.D. (Yale).
Emeritus professors. Zdenek J. Slouka, Ph.D.
(Columbia), Oles M. Smolansky, Ph.D. (Columbia).
The Field of International Relations: The reality of an
interdependent world is brought home to us every day.
Fast-flying, highly accurate nuclear weapons have
breached the state's ability to protect its citizens as never
before. National economies are so sensitive to the trade
and monetary policies and instability of other countries
that governments are forced to recognize the limitations
of purely national economic policies in a highly interde-
pendent world. Resource depletion, pollution, refugee
relief, the indebtedness of developing countries, and
nuclear proliferation are truly global problems beyond
the ability of any one state, no matter how powerful, to
address alone.

The Department of International Relations seeks to pro-
vide students with a systematic understanding of world
politics. The questions that preoccupy scholars of inter-
national relations are too numerous to list here, but
students who major in international relations can expect
to acquire a detailed knowledge of topics such as: con-
tending theories of world politics; the foreign policies of
the major powers; the international relations of major
regions; international security and arms control; regional
conflicts; global problems such as terrorism, refugee
relief, and pollution; the politics of global economic rela-
tions; and the role of international organizations such as
the United Nations, the International Monetary Fund,
and the World Bank. As should be apparent from this
list, international relations is a multi-disciplinary field
and draws upon concepts and theories from political sci-
ence, history, economics, anthropology, sociology,
philosophy, religion studies, and psychology. Majors are
encouraged to take courses in these disciplines.

The Curriculum: Students considering course work in
international relations are strongly encouraged to visit
the International Relations web site
(http://www.lehigh.edu/ininr/ininr.html). Prospective
International Relations majors should enroll in IR 10
and ECO 1 as early as possible. IR majors should fulfill
the mathematics portion of their college distribution
requirements with MATH 12 (Basic Statistics).

Major in International Relations
The major consists of ten courses for a total of 39-40
credits. The courses required are:

Gateway courses (two courses)
IR 10 Introduction to World Politics (4)
ECO 1 Principles of Economics (4)

Functional core (three courses)
IR 56 European International Relations (4)
IR 125 International Political Economy (4)
IR 205 Theories of International Relations (4)

Area studies focus (two courses)
Two or more IR courses, totaling 8 credits, each of
which focuses on a region of the world other than North
America. Certain courses offered by other departments
may also qualify. See the Department of International
Relations for a complete list.

Advanced courses (two courses)
Two or more courses, totaling 8 credits, numbered IR
300-387 and 393. Some courses qualify for either the
area studies or for the advanced course requirement, but
the same course may not be counted toward both

Free elective.
Any IR course or courses, totaling 4 credits, other than
IR 1, 90, 388, or 391.

Departmental Honors
To graduate with Departmental honors, a major in inter-
national relations must:
(a) successfully complete a two semester honors thesis
(IR 388) in the senior year
(b) attain a GPA of at least 3.5 in the courses consti-
tuting the IR major program at the time of
graduation

Minor in International Relations
The minor consists of 16 credits: IR 10, one advanced
IR elective numbered 300-387 and 393, and 8 credits of
free IR electives other than IR 1, 90, or 391.

Minor in Peace Studies
This interdisciplinary minor is listed under Humanities.
IR majors are eligible.

Beyond the Curriculum: In close cooperation with the
international education office, the department assists stu-
dents interested in study abroad programs. In addition,
Lehigh has an array of summer programs, which involve
course work and/or internships in such countries as
China, the Czech Republic and the United Kingdom.
Every semester speakers with expertise on various aspects
of world affairs visit Lehigh. Some of the featured spea-
ers in the past were Dr. Shaahi Tharoor, the U.N.
Under-Secretary-General for Communications and
Public Information; Dr. Ernesto Zedillo, Former presi-
dent of Mexico and Director of the Yale Center for the
Study of Globalization; and Retired General Anthony
Zinni, 40 Year Marine Corps Veteran and U.S. Peace
Envoy to the Middle East.

The student-run World Affairs Club sponsors a number of
activities each year, including student-faculty socials,
guest speakers and related programs. It organizes the Model United Nations program to which Lehigh sends a delegation each year. From time to time, delegations are also sent to other student conferences, including West Point and the U.S. Naval Academy.

The department has an active program in conjunction with Career Services to help place students in internships. We strongly encourage students to obtain an internship. Most of these internships are likely to be in New York or Washington, D.C.

Upon Graduating: While a degree in international relations does not lead to a specific career in the way that, for example, accounting or engineering does, a major in international relations, by emphasizing clarity in speech and writing, analytical skills, and a detailed knowledge of world politics prepares students for careers in government, journalism, law, non-governmental organizations, international business, and teaching and research. Recent IR graduates currently work in all of these fields. Some have gone directly into careers upon graduating; others have enrolled in graduate school prior to employment.

Undergraduate Courses

IR 1. Current Issues in World Affairs (3)
This is a survey course designed primarily for non-IR majors or minors. The purpose is to acquaint students with some of the concepts and historical facts behind current global issues. The content of this course will, in part, be dictated by international events as they unfold. Wylie (SS)

IR 10. Introduction to World Politics (4)
Introduction to the major principles, concepts, and theories of international relations, along with a historical background focusing on the 19th and 20th centuries. Topics to be covered include the nature of power, balance of power theories, national interest, decision-making in foreign policy, theories of war and expansion, patterns of cooperation, and international political economy. Menon (SS)

IR 23. Alternative World Futures (4)
After a survey of the major political, military, economic, and social trends of the 20th century, the course will examine the challenges that are likely to confront the world in the 21st century. Topics to be explored include environmental and population problems, the changing nature of war, ethnic conflict and nationalism, and the emerging balance of global economic and military power. Menon (SS)

IR 34. Society, Technology and War (4)
This course explores the links between war and society in both directions: the impact of social, economic, and technological change on how wars are fought and the purposes for which they can be fought; as well as the impact of war mobilization needs and of war itself on how societies develop, including the rise of capitalism, democratization, economic planning and other modern institutions, and emancipation of disadvantaged groups in society, such as blacks and women in the United States. The American and French revolutions; the Civil War; World Wars I and II; Vietnam; Afghanistan and Iraq; the law of war; war propaganda; atrocities; the nuclear and information revolutions; the ongoing “revolution in military affairs”; and current trends in the status of military institutions in advanced societies. Kaufmann (SS)

IR 36. International Terrorism (4)
Have we seen the peak of global terrorism, or is the worst still to come? This course examines psychological, religious, and political explanations of terrorism; legal and moral statuses of terrorism; explanations for the increasing scale of terrorism and the more frequent targeting of Americans; major terrorist organizations, structures, and means of operation; suicide terrorism; threats and vulnerabilities facing the United States and Western countries today; means of coping with terrorism as an individual and through national policy; possible future developments. Kaufmann (SS)

IR 56. European International Relations (4)
Examines the evolution of the modern states system in Europe. Conceptual, theoretical and historical topics include the transition from feudalism to the Westphalian system, nationalism, imperialism, the causes of war and attempted peace settlements, the Cold War, the European Union, and the impact of the collapse of the USSR on the political and strategic structure of Europe. Bially Mater (SS)

IR 57. The European Union (2)
Introduction to the history, institutions and policies of the European Union. Focus on the individual member states and on the issues of enlargement and further integration. A half-semester course. Wylie (SS)

IR 61. (ASIA 61) Pacific Asian International Relations (4)
Introduction to Pacific Asian international relations, with emphasis on post-1945 period: historical background; Cold War conflicts; China’s rise to power; Japan’s growing role; Korea and the NICs; Southeast Asia; U.S. and Russian policies; current and future issues. Wylie (SS)

IR 72. The United States in the Global Economy (4)
Political problems and policy issues arising out of the economic relations between the U.S. and the rest of the world. U.S. foreign economic policy. Decision-making processes and political influences on policy. Economic diplomacy. Declining U.S. economic pre-eminence. Moon (SS)

IR 74. United States Foreign Policy (4)
Major themes and trends in U.S. foreign policy, with attention to both the historical evolution of contemporary policy and key current problems. Emphasis is on critical examination of the interests and values that underlie the goals of policy and the theories that shape perceptions of how they can be met. Sources of U.S. policy, including decision-making structures, policy processes, and the role of the public and media. Kaufmann, Moon (SS)

IR 82. Middle East in World Affairs
Since 1945 (4)
Rise of Turkish, Iranian, and Arab nationalism; creation of Israel; decline of British and French power; growth of U.S. and Soviet influence; Middle East as the world’s major oil producer. Staff (SS)

IR 118. Issues in International Relations (1–4)
Readings on selected themes in world politics, with theme to change each semester. Offered on an occasional basis only. Staff (SS)
IR 127. Research in International Relations (4)
Research skills in international relations. The role of theory, models and evidence in the explanation of international phenomena. Literature review: problem formulation; theory construction; research design, methods and measures; collection, analysis and interpretation of data; principles of hypothesis testing. Professional writing, either through individual research projects or an apprenticeship in ongoing faculty research projects. Prerequisite: Consent of the instructor. Moon (SS)

IR 132. Nationalism and Ethnic Conflict (4)
The ideal of nationalism exerts a powerful pull on almost all people everywhere. This course investigates the sources, spread, and possible future decline of nationalism and national identity, the manipulation of nationalist feelings for political purposes, and the sources of national and ethnic conflict. We will also consider proposals for managing ethnic conflicts and their records of success (or failure). We will study recent and current cases, such as the Israeli-Palestinian conflict, ethnic relations in Iraq and Afghanistan, the Balkans, or others as current events demand. Prospects for the future of nationalism, ethnic conflict, and ethnic conflict management. Simulations of decision-making of groups involved in ethnic conflicts. Kaufmann (SS)

IR 142. International Law (4)
This course deals with the nature and sources of international law and the major theoretical and historical developments that have created the legal system of states as it now stands. Topics include: armed conflict, international trade, human rights and international environmental law. Gillroy (SS)

IR 143. (ES 143). Comparative Environmental Law & Policy (4)
This course will analyze both comparative legal systems and comparative domestic schemes of environmental regulation exploring the range of alternatives for environmental law and policy as practiced in various parts of the world. Gillroy (SS)

IR 145. International Organization (4)
Examines how cooperation is achieved and sustained in world politics. Under what circumstances does cooperation take place? What role do formal international organizations (such as the UN) play? What roles do norms, values, and ethics play? Can cooperation last? Questions pursued theoretically and in practical terms across topical issues (e.g., human rights, poverty, the environment, international law). Prerequisite: IR 10. Bially Mattern (SS)

IR 161. (ASIA 161) China in World Affairs (4)
China in world affairs, emphasizing role in Pacific Rim: historical background; domestic politics; foreign and security policies; relations with regional and global powers; policies toward Asia and Third World; current and future issues. Wylie (SS)

IR 163. (ASIA 163) Japan in World Affairs (4)
Japan in world affairs, emphasizing role in Pacific Rim: historical background; domestic politics; foreign and security policies; relations with regional and global powers; policies toward Asia and Third World; current and future issues. Wylie (SS)

IR 164. (ASIA 164, REL 164) Japan's Response to the West (4)
A survey of Japanese history and culture from 1500 to the present, following the theme of Japan's contact with the West. What enabled Japan to modernize and Westernize so successfully? Topics covered include: the expulsion of Christianity, the first samurai mission to the U.S., the postwar American occupation, and contemporary issues. Readings include Japanese novels and short stories (in translation). Kraft (SS)

Topical and chronological survey of Soviet foreign relations; Soviet efforts to survive in a hostile capitalist environment; consolidation of gains made during World War II; origins of Cold War; frictions within the Communist Bloc (Eastern Europe, China); nuclear arms race; striving for detente; activity in the Third World; Gorbachev and collapse. Staff (SS)

IR 169. International Relations of Russia and Eastern Europe (4)
The Soviet collapse and the emergence of Russia. Russia's relations with the other newly-independent states that emerged following the disintegration of the Soviet Union. The international relations of Eastern Europe (including the Balkans). Menon (SS)

IR 177. International Relations of Latin America (4)
Survey of major international and domestic crises facing Central and South America. Examines factors affecting Latin American system of states such as international debt, involvement of foreign powers, and social and political instability. Burke (SS)

IR 205. Theories of International Relations (4)
The role of theory in historical explanation, prediction, and policy. Issues of theory design and testing. Important theoretical approaches to international relations, including Realism; the Democratic Peace; the domestic politics of foreign policy; history and myth-making; psychological explanations. Prerequisites: IR 10 and 56. Bially Mattern (SS)

IR 222. Political Economy of North-South Relations (4)
Political economy of relations between developed and less developed countries. Issues arising from trade, investment, and foreign aid. Consequences of North-South transactions. Controversies over system structure
and reform proposals for international institutions (e.g. World Bank, IMF, WTO). Prerequisite: IR 125 or permission of instructor. Moon (SS)

IR 246. (JOUR 246) International Communication (4)
Role of international news media in world affairs. Global theories of the press; process and influence of U.S. reporting of international affairs; survey of global media systems; global communication controversies. Lule (SS)

IR 302. Rise and Decline of Empires (4)
An overview of the expansion, over-extension, and collapse of empires. Focus on alternative theories of empires as well as historical cases. Prerequisites: IR 10 and 56. Menon (SS)

IR 321. Economic Relations of Advanced Industrial Societies (4)
Foreign economic policies of advanced industrial nations. Bilateral and multilateral economic relations; international economic regimes and institutions; interdependence and cooperation; managing conflict. Prerequisite: IR 125. Moon (SS)

IR 322. Poverty and Development (4)
Patterns and causes of poverty in poor countries. Diagnosis of development problems and evaluation of development planning. Explanations for choices of development policy, especially issues of trade, foreign aid, and foreign direct investment. Written and oral presentation of individual country research. Corequisite: IR 222. Moon (SS)

IR 323. Political Economy of Newly Industrializing Countries (4)
Issues of development, debt and adjustment in newly industrializing countries. Analysis of the differences between the development strategies adopted in Latin America and East Asia. Explanations for patterns of success and failure. Origins of underdevelopment; the politics of failed development strategies; the challenge of the increasingly competitive world economy and relations with the U.S. and other developed nations. Prerequisite: IR 125. Bially Mattern (SS)

IR 334. Prospects for Peace in the 21st Century (4)
Will the 21st century be more or less peaceful than the “terrible 20th”? This course examines: theories of war and international insecurity; nationalism; ethnic conflict; terrorism; the nuclear revolution; and the special situation of America as the world’s sole superpower in the early 21st century. We will also explore tools of war prevention and resolution, including deterrence, alliances, international institutions and norms, efforts against proliferation of weapons of mass destruction, and humanitarian intervention and peacekeeping. We will consider choices in U.S. policy between unilateral and multilateral approaches to preserving global and regional peace. Prerequisite: IR 10. Kaufmann (SS)

IR 344. International Politics of Oil (4)
Historical influence of oil in international politics and the role it plays today. Focus on differing views of producers, such as Middle Eastern and Latin American states, and consuming nations, largely the economically developed Western states. Instructor Permission required. Barkey (SS)

IR 346. Contemporary Ethical Dilemmas in World Politics (4)
This course is designed to explore, challenge, and re-conceptualize: the boundaries of moral community and ethical responsibility through such current dilemmas in world politics as famine, terrorism, torture, genocide, weapons of mass destruction, organized crime and more. Prerequisite: IR 10. Bially Mattern (SS)

IR 347. Non-State Actors in a Globalized World (4)
Role of non-state political groups (e.g. international advocacy organizations, multinational corporations, news media, terrorists, etc.) in world affairs. Thematic focus on globalization, the relationship between non-state and state actors, and the implications of non-state actors for the future of world order. Themes explored through past and current events (e.g., the WTO demonstrations, 9-11, the CNN effect, AIDS, anti-sweatshop campaigns.) Prerequisite: IR10. Bially Mattern (SS)

IR 354. International Relations of the Middle East (4)
Importance of the Middle East in contemporary world politics: strategic location and natural resources as factors affecting interests of the great powers. Interplay of international, regional and internal forces. Prerequisite: IR 81 or 82. Staff (SS)

IR 364. (ASIA 364) International Relations of Pacific Asia (4)
Research-oriented seminar on contemporary international relations of Pacific Asia. Special emphasis on China, Japan and regional and global powers. Substantial research paper on topic of student’s own choice is required. Prerequisite: IR 61 or 161 or 163 or 164. Wylie (SS)

IR 367. Seminar in the International Relations of Russia and other Post-Soviet states (4)
Analysis of foreign relations of Russia and the other fourteen states that emerged after the collapse of the USSR. Bially Mattern (SS)

IR 388. Honors Thesis in International Relations (4)
International relations majors with senior standing may undertake an intensive, two-semester project under the direct guidance of a faculty member in the student’s special area of interest. Students who successfully complete the thesis and whose GPA in the major at the time of graduation is 3.5 or higher receive Departmental Honors. Department permission required. May be repeated for credit. See the Department for additional information. Staff. (SS)

IR 390. Readings in International Relations (1-4)
Directed course of readings intended for students with special competence or interest in fields of international relations not fully covered by regular course offerings. May be repeated for credit. Departmental permission required. Staff (SS)

IR 391. Internship in International Relations (1-4)
Internship in public or private agency. May be repeated for credit. Departmental permission required. Staff (SS)

IR 392. Independent Study (1-4)
This course enables students to work with faculty on individual projects and material not covered by the current course offerings. Department permission required. Staff (SS)
IR 393. Seminar in International Relations (4)
Advanced seminar, comparable to other 300-level seminars, that focuses on discussion and research on specialized subjects in international relations. Variable subject matter. May be repeated for credit. Junior standing and departmental permission required. Staff. (SS)

IR 394. Special Topics in International Relations (1–4)
Intensive, research-oriented study for students with a special competence or interest in fields of international relations not fully covered by regular course offerings. May be repeated for credit. Departmental permission required. Staff (SS)

Japanese
See Listings under Modern Languages and Literature.

Jewish Studies
The Jewish studies minor, coordinated by the Philip and Muriel Berman Center for Jewish Studies, provides students with the opportunity to explore the history, literature, religion, and social institutions of the Jewish people from its inception to the present. The diverse selection of courses highlights the interaction of Judaism with other cultures and societies in Europe, the Middle East, and the United States. The program is designed to appeal to students with varied interests and fields of concentration. Students of psychology and sociology often discover that courses in Jewish studies enhance their understanding of such topics as individual and group identity, prejudice and anti-Semitism, assimilation, and religious-cultural pluralism. Students of history will find that the study of Jewish society and culture enhances their understanding of European and American culture. Through the study of Jewish religion and philosophy, students engage such issues as God, religious faith and doubt, spirituality, moral responsibility, evil, and human suffering. By studying Judaism comparatively with another religious tradition, students heighten their understanding of each tradition. Studying Jewish literature introduces students to a broad spectrum of literary forms and themes from diverse periods and cultural settings.

The Berman Center for Jewish Studies supplements formal course offerings through an extensive program of lectures, colloquia, films, field trips, and other cultural events. Lehigh professors conduct a “Lehigh in Israel” summer program, conditions permitting. Students seeking further information on programs in Israel and available financial awards may contact Shirley Ratushny at the Berman Center. Students should coordinate their minor program in Jewish studies with the director of the Center, Dr. Laurence J. Silberstein, Maginnes Hall.

Students pursuing a minor in Jewish studies must fulfill 16 credit hours from the following courses. (A maximum of eight credit hours of Hebrew may be counted.) Updated lists of courses are available from the Berman Center, Maginnes 324.

HEBB 1 Elementary Modern Hebrew I (4)
HEBB 2 Elementary Modern Hebrew II (4)
HEBB 11 Intermediate Modern Hebrew I (4)
HEBB 12 Intermediate Modern Hebrew II (4)

IR 82 Middle East in World Affairs Since 1945 (4)
PHL/REL 129 Jewish Philosophy (4)
PHIL 133 Medieval Philosophy (4)
REL 73 The Jewish Tradition (4)
REL 111 Jewish Scriptures/Old Testament (4)
REL 112 The Beginnings of Judaism and Jewish Origins: Jewish Diversity in the Greco-Roman World (4)
REL 121 Sources for the Life of Jesus: Jewish and Christian Context (4)
REL 132 Hasidic Tales (4)
REL/WS 138 Women in Jewish History (4)
REL/ANTH 139 Jewish Folklore (4)
REL 150 Judaism in the Modern World (4)
REL 152 American Judaism (4)
REL 153 The Spiritual Quest in Contemporary Jewish Life (4)
REL/HIST 154 The Holocaust: History and Meaning (4)
REL 155 Responses to the Holocaust (4)
REL 156 Israel, Zionism, and the Renewal of Judaism (4)
REL/WS 158 Sex and Gender in Judaism (4)
REL 174 Contemporary Theology (4)
REL 186 Judaism in Israel and the United States (4)
REL 230 The Mystical Tradition: Judaism (4)
REL 371 Directed Readings (1–4)
US 85 American Jews: Politics and Culture (3)

Journalism and Communication
Professor. Sharon M. Friedman, M.A. (Penn State), director of science and environmental writing program; Jack Lule, Ph.D. (Georgia)
Associate professor. Walter W. Trimble, M.A. (Ohio State) chair; Kathy Olson, Ph.D. (University of North Carolina)
Assistant professor. Kimberly Meltzer, Ph.D. (University of Pennsylvania)
Lecturer. Nancy S. Ross, M.A.T. (Cincinnati)
Adjunct professors. Kenneth Friedman, Ph.D. (Penn State); Glenn Kranzley, B.A. (Penn State); Robert Rosenwein, Ph.D. (Michigan); William White, M.A. (Ohio State).

The Department of Journalism and Communication offers major and minor programs in journalism and science and environmental writing, and an interdisciplinary communication minor.

Journalism is crucial to the public life of a democracy. At its best, journalism serves as a watchdog to government, offers a voice for the powerless at home and abroad, entertains and instructs the public, represents the views of varied constituencies, monitors and protects the environment and public resources, and provides a common memory for a people.

The purpose of the journalism program is to provide students with the knowledge and skills to fulfill such roles. The program emphasizes research, writing, editing, and critical thinking and analysis. Students integrate online technology with legal and ethical thinking and a global perspective that will prepare them for numerous opportunities in and out of journalism.
In the journalism major, students take courses in news and feature writing, editing and design, a professional internship, and varied courses in online journalism. Supported by the endowed Rodale Online Communication Program, the department has a national reputation in online journalism. All courses have online research and writing components.

A second major available to students is the science and environmental writing program. Students learn to write about pure and applied scientific research, technology, engineering, the environment and medicine and health for a variety of audiences ranging from the general public to scientists and engineers in industry and government. Students can also gain experience in the science and environmental writing field research program. A minor in science and environmental writing is available that may be valuable for students with majors in science or engineering. An interdisciplinary minor in communication is offered for students interested in developing oral communication skills and a better understanding of how people share meaning through persuasive use of rhetoric, logic and symbols in public, one-to-one and small group communication.

Career opportunities are numerous for graduates of the department. Students find work in traditional journalism organizations, such as newspapers, wire services, magazines, cable, television and radio stations, and other media outlets. Students find work too in new media, such as web sites and other digital production activities. Students also find work in public relations positions, with responsibilities in government, corporations, hospitals, health care organizations, universities, sports information, nonprofit agencies and other groups.

A background in journalism, with its emphasis on research and writing, also proves to be excellent preparation for many other fields and provides a fine basis for the study and practice of law, graduate study in a variety of disciplines, government service, teaching and business management.

Students in science and environmental writing can expect to pursue careers in science, health and environmental journalism in both the traditional and online media; public relations for scientific societies, environmental organizations, government agencies, universities or hospitals; technical writing for industry and government agencies, and other areas, such as management, administration and teaching. The program also prepares students for graduate study in science or environmental writing, journalism and other disciplines.

The interdisciplinary minor in communication will be useful to students interested in organizational and written communication, law, business, philosophy, government, marketing, teaching, telecommunication or other careers where successful communication is important.

Required Math Course. Understanding statistical information has become extremely important in modern society; MATH 12, Basic Statistics, is required for students taking a journalism or science and environmental writing major. Students should take MATH 12 to fulfill the college's distribution requirement. ECO 145, Statistical Methods, is an acceptable alternative. For science/science writing double majors, calculus will be considered as a substitute for statistics.

**Journalism Major**

**Core Courses**

- JOUR 1  Brown & White (1)
- JOUR 2  Brown & White (1)
- JOUR 3  Brown & White (1)
- JOUR 4  Brown & White (1)
- JOUR 11  News Writing (4)
- JOUR 13  Editing (2)
- JOUR 14  Publication Design (2)
- JOUR 122  Media Ethics & Law (4)

**Advanced Courses**

- JOUR 211  Reporting (4) *
- Or JOUR 212  Feature Writing (4)*
- Or JOUR 218  Freelance Writing (4)*
- JOUR 361  Internship (4)

Senior Seminar: Journalism or Communication course at 300 level (4)

* (JOUR 211, JOUR 212 and JOUR 218 fulfill junior writing intensive requirement)

**Required Electives**

Two additional Journalism or Communication courses; one of them at the 200 level or above (8)

**Total credits:** (36)

**Collateral Requirements**

Students must also complete an academic minor or another major with a minimum of 16 credits

**Journalism/Science and Environmental Writing Major**

**Core Courses**

- JOUR 1  Brown and White (1)
- JOUR 2  Brown and White (1) or JOUR 231  Science Writing Practicum (1)
- JOUR 123  Basic Science and Technical Writing (4) or JOUR 11  News Writing (4)
- JOUR 13  Editing (2)
- JOUR 14  Publication Design (2)
- JOUR 211  Reporting (4)

**Advanced Courses**

- JOUR/STS 124 Politics of Science (4)
- JOUR 125  Environment, the Public and the Mass Media (4)
- JOUR/STS 323 Controversies (4)
- JOUR 361  Internship (4)

**Required Electives**

One additional Journalism or Communication course. (4)

**Total credits:** (34)

**Collateral Requirements**

Students must also complete 16 credits in science for the journalism/science and environmental writing major.

**Required science courses.** A minimum of 16 credits in the physical, biological, environmental or social sciences or engineering is required. These hours can be concentrated in any one area or distributed among all five areas, although an area concentration is recommended. Dual majors in journalism/science and environmental writing and a science are encouraged. Science courses should be chosen in consultation with the major adviser.
Science and environmental writing field research program. Available to science, environmental and technical writing students at the junior or senior level, this program provides practical experience in scientific research and science writing for students who work on and write about research projects directed by university scientists and engineers. Another segment of the program allows students to attend major scientific meetings as fully accredited science reporters. Students observe professional science writers in action and write their own stories about the scientific sessions and press conferences held at the meetings.

**Journalism Minor**

Students who wish to declare a minor program in journalism must be majors in another discipline and take the following:

- JOUR 1-2 Brown and White (2)
- JOUR 11 News Writing (4)
- JOUR 13 Editing (2)
- JOUR 14 Publication Design (2)
- JOUR 211 Reporting (4)
- Or JOUR 212 Feature Writing (4)
- Or JOUR 218 Freelance Writing (4)

One other Journalism course at or above the 100 level (4)

**Total credits: (18)**

**Science and Environmental Writing Minor**

- JOUR 1 Brown and White (1) or JOUR 231 Science Writing Practicum (1)
- JOUR 11 News Writing (4) or JOUR 123 Basic Science and Technical Writing (4)
- JOUR 124 Politics of Science (4)
- JOUR 125 Environment, the Public and the Mass Media (4)
- JOUR 323 Controversies (4)

**Total credits: (17)**

**Communication Minor**

**Purpose:** This interdisciplinary minor guides students to a better understanding of how people share meaning through interpersonal, group and organizational communication as well as mass media and new media. Students take courses in public speaking, group process, interpersonal communication, persuasion, marketing, advertising, mass communication, and online communication.

The minor requires 15-16 credit hours, with a minimum of four courses. The required course is COMM 130, Public Speaking. A second course should be chosen from the Communication Core courses, section one. A third course should be taken from the Communication Choice courses, section two. The fourth course may come from either section. At least one course must be 200-level or above.

Courses may be taken in any order. That is, COMM 130 does not need to be taken first in the sequence. A student may count one course for both a major and a minor.

With the consent of a participating instructor and the director of the minor, a student may elect to take COMM 325, Special Topics in Communication, as one of the courses for the minor. This is not a regular course, but a project designed by the student, with the help of an instructor.

Courses in the minor may have prerequisites. Please check the catalog. To declare this minor, contact the Department of Journalism and Communication.

**Communication Core Courses Section 1**

- SSP 125 Small Groups (4)
- SSP 135 Human Communication (4)
- SSP 312 Communication in Groups (4)
- SSP/JOUR 327 Mass Communication and Society (4)
- COMM 130 Public Speaking (4) (required)
- COMM 143 Persuasion and Influence (4)
- COMM 252 Interpersonal Relationships: Private and Public (4)
- COMM 331 Business and Professional Speaking (4)
- JOUR/IR 246 International Communication (4)

**Communication Choice Courses Section 2**

- ARTS 250 Communication: Cultures, Behaviors, Attitudes (3)
- ART 77 Photography (3)
- ART 53 Graphic Communication I (3)
- COMM 325 Special Topics in Communication (1-4)
- ENGL 171 Writing for Audiences (4)
- JOUR 101 Media, Sports, and Society (4)
- JOUR 102 How to Watch TV (4)
- JOUR 122 Media Ethics and LAW (4)
- JOUR 123 Basic Science and Technical Writing (4)
- JOUR 125 Environment, the Public, and the Mass Media (4)
- JOUR 141 Photojournalism (4)
- JOUR 240 Writing for Broadcasting (4)
- JOUR 323 Controversies (4)
- JOUR 366 Online Journalism
- MKT 313 Integrated Marketing Communications (3)
- POLS 229 Propaganda, Media, and American Politics (4)
- PSYCH 301 Industrial Psychology (4)
- SSP 302 The Sociology of Cyberspace (4)

**Prerequisites for Journalism Courses**

*NOTE:* Journalism and Communication courses build on one another. Some courses thus require prerequisites before students can register for the class. Check the course schedule each semester.

**Media Internships**

All majors in journalism and journalism/science and environmental writing take professional internships during their senior year or the preceding summer. The internships provide real-world experience with newspapers, magazines, cable, television or radio stations, websites or in public relations settings. Science writing minors may take an internship instead of working on The Brown and White.

**Course Listings**

**JOUR 1. Brown and White (1) every semester**

This course is a student's first semester on the staff of the semi-weekly undergraduate newspaper. Students register for this course, attend a meeting on the first Wednesday of the semester, and are placed on the staff. Because this is an introductory training class, JOUR 1 is for students with freshman or sophomore standing: juniors only with consent of department chair. Lule/Trimble (ND)
JOUR 2-8. Brown and White (1) every semester
Enrollment constitutes continued membership on the staff of the semi-weekly undergraduate newspaper. These courses are taken consecutively after a student has completed JOUR 1. For a second semester on the newspaper, a student registers for JOUR 2. For a third semester, JOUR 3. For a fourth semester, JOUR 4. And so on. Prerequisite: JOUR 1. Lule/Trimble (ND)

JOUR 9. Brown and White photography (1) every semester
Enrollment constitutes membership on the photography staff of the semi-weekly undergraduate newspaper. Students should have basic camera skills and knowledge of digital photography. Classes will include review of these subjects and more advanced techniques in digital darkroom techniques. Members of the class work on a series of assignments for the newspaper. The student will have their own digital SLR camera equipment and will be expected to provide examples of their work for admission to the class. Repeatable up to 8 credits. Trimble (ND)

JOUR 10 Brown and White (1-2) every semester
Enrollment constitutes an editorial position on the staff of the semi-weekly undergraduate newspaper. Editors are chosen by the instructors and the newspaper's editorial board. May be repeated for a maximum of eight credits. Prerequisites: JOUR 1 and permission of the department chair. Lule/Trimble

JOUR 11. News Writing (4) every semester
Preparation and practice in gathering and writing news; definition and components of news; structure and style of the news story; introduction to interviewing and editing. Jour 11 is for students with freshman or sophomore standing; juniors and seniors only with consent of department chair. (ND)

JOUR 13. Editing (2) every semester
Study of and practice in editing and rewriting stories for newspapers and magazines; fact-checking; headline writing; ethics. Prerequisite: Jour 11 or Jour 123. Trimble, Olson (ND)

JOUR 14. Publication Design (2) every semester
Study of and practice in techniques of newspaper and magazine design, including typography, grids, and use of photographs and other artwork; microcomputer-based desktop publishing. Prerequisite: Jour 11 or Jour 123. Trimble, Olson (ND)

JOUR 101. Media, Sports and Society (4) summer
Analysis of social, political and economic implications of media sports coverage; emphasis placed on media coverage of events of international scope, such as the World Cup, World Series and the Olympics; special attention paid to the role of the sports press in coverage of issues such as AIDS, racism, sexism, drug use and terrorism. Lule (SS)

JOUR 102. How to Watch TV (4) summer
Analysis and discussion of television programming from the standpoint of its potential effects on audience perceptions, public opinion, social issues and values, individual learning, and behavior. Programming viewed both inside and outside the classroom includes news programs, news magazines, talk shows, sitcoms, dramas, cartoons, soap operas, commercials, and infomercials. To help focus discussions, students are assigned appropriate readings from the popular media and social science research. Staff (SS)

JOUR 111. Sportswriting (4) summer
Principles and practice of writing about sports for general print and specialized publications; emphasis placed on instruction in reporting, writing and editing; topics covered include the history of sports journalism; recent trends in the field; ethical considerations, and the exploitation of social and political issues through sportswriting. Lule (ND)

JOUR 112. Children and Television (4) summer
The course examines the many social science research issues surrounding television for children, including questions about cartoon and program violence, unethical advertising, the role of the FCC and stereotypes. The course will also examine television about children, such as media coverage of homelessness, health care, poverty, hunger, and starvation of children. Lule (SS)

JOUR 114. Technical Communication (4) summer
This online course covers basic tools needed to write about all kinds of science and technical information for academic papers, term papers, proposals, reports, theses and dissertations. Involves practice with feedback on definitions, descriptions, cause and effect relationships, process writing, concept maps, graphics, classification, comparison and more. K. Friedman (ND)

JOUR 115 (ES 115). Communicating About the Environment (4)
Introduction to the need for and ways to communicate about environmental issues to laypersons, government officials, journalists, members of the judiciary and technical experts. Explores case studies of good and bad communication about environmental issues. Internet communication, including the efficacy of placing government reports and databases on the Web for public consumption, will be evaluated. (SS)

JOUR 116 (ES 116). Risky Business (4) summer
This course explores the risks and effects of environmental contamination on human health and behavior as well as the role of the mass media in alerting citizens to potential environmental health risks. Environmental topics vary but usually include air and water pollution, endocrine disrupters and radioactive waste. S. Friedman (SS)

JOUR 122. Media Ethics and Law (4) fall
First Amendment theory and history; ethical and legal issues involving libel, privacy, obscenity, newsgathering, access, and fair trials; national and international concerns over censorship, prior restraint and manipulation and control of information. Lule, Olson (SS)

JOUR 123. Basic Science and Technical Writing (4) every semester
Study of and practice in writing about scientific and technical subjects for audiences ranging from the general public to scientists and engineers. Starts with basic science writing for lay audiences, emphasizing organization and clear writing techniques. As the course progresses, material becomes more technical, concentrating on how to write effective technical reports, descriptions, papers and memoranda. Also explores problems of conveying highly complex technical information to multiple audiences, factors that influence science communication to the public, and interactions between scientists and journalists. K. Friedman (SS)
JOUR 124. (STS 124) Politics of Science (4) fall
Analysis of the multi-dimensional interaction between the federal government and the scientific community. Explores historical growth of the science-government connection, the scientific establishment both past and present, and the role of scientific advice to the White House and Congress. Also examines scientific ethics, public attitudes toward science, science-society interactions and case studies of scientific controversies. S. Friedman (SS)

JOUR 125 (ES125). Environment, the Public and the Mass Media (4) fall
Extensive exploration of local, national and international environmental problems and their social, political and economic impacts. Analysis of mass media coverage of complex environmental issues and the media's effects on public opinion and government environmental policies. Examination of environmental journalism principles and practices in the United States and around the world. S. Friedman (SS)

JOUR 135. (SPSY 135) Human Communication (4)
Processes and functions of human communication in relationships and groups. Rosenwein (SS)

JOUR 141. Photojournalism (4)
Ethics and history of photojournalism; instruction and practice in basic camera techniques; scanning and digital manipulation of black and white and color photographs using Adobe Photoshop; cropping and sizing photographs and production of layouts using Quark Express. Trimble (ND)

JOUR 211 Reporting (4) every semester
Principles and practice of news reporting; techniques for gathering, organizing and writing news; emphasis placed on story conception, interviewing methods, library skills, Internet research, news style and clear, concise writing. Students will develop, report and write numerous stories. Students will also gain greater understanding of fundamental reporting concepts in relation to the use of sources, accuracy, fairness, privacy and other issues of professional responsibility. Prerequisites: JOUR 11 or JOUR 123 and JOUR 13. Lule (SS)

JOUR 212. Feature Writing (4) every semester
Conceiving and developing feature stories for newspapers and magazines; interviewing techniques; writing non-fiction using the techniques of the novelist; marketing fre-lance projects. Prerequisite: JOUR 11 or 123 and JOUR 13. Trimble (ND)

JOUR 214. Reporting of Public Affairs (4)
Reporting and writing news of government on the local, county, state and federal levels; civil and criminal courts; labor, environment, housing and community planning news. Prerequisites: JOUR 11 or 123 and POLS 177. Trimble (ND)

JOUR 215. Advanced Publication Design (3)
Advanced study of publication design: newspapers, magazines, pamphlets, annual reports; symbols, typography, grids, use of photographs and infographics; use of Macintosh computer in page production, and in creating and manipulating art for publication. Prerequisite: JOUR 13 or permission of the department chair. Trimble (ND)

JOUR 216. Writing for Broadcasting (4) spring
Basic writing style for radio and television news, and scripting newscasts in a variety of formats, including electronic news gathering and voiceovers. Scripting and storyboarding for commercials and public service announcements. A three-hour writing lab is included. A five-hour writing lab is included. May be repeated for a maximum of eight credits. Prerequisites: JOUR 11 or JOUR 123 or JOUR 311, junior standing, and consent of the department chair. S. Friedman (ND)

JOUR 217. Freelance Writing (4)
Study of and practice in reporting and writing for magazines, newspapers and other literary and technical publications. Learning to find the right approach for a particular publication and to write in that publication's style. Practice in analyzing publication content and audiences, and in writing queries that will catch an editor's attention. Learn research and interviewing skills and read works by well-known writers. Prerequisite: JOUR 11 or JOUR 123, and JOUR 13. Staff. (ND)

JOUR 220. Reporting on Business and Economics (3)
The principles behind the economy, the markets and companies and how to report on them; the role of business reporting in the media; the use of computer technology in business reporting. Prerequisite: JOUR 11 or JOUR 123 and ECO 1. (SS)

JOUR 231. Science Writing Practicum (1-4) spring
On-site experience as accredited science reporter at major scientific meetings, or writing and research in university laboratories as part of science writing field research program. May be repeated for a maximum of eight credits. Prerequisites: JOUR 11 or JOUR 123 or JOUR 311, junior standing, and consent of the department chair. S. Friedman (ND)

JOUR 232. Journalism Practicum (1-4) every semester
Practical application of journalism principles and skills in semester-long projects, as well as various on- and off-campus work experiences. Course is designed to provide credit for supervised experience, particularly through study abroad programs, that does not meet the more rigorous, required internship. May be repeated for a maximum of eight credits. Prerequisites: consent of department chair. Lule (ND)

JOUR 240. Writing for Broadcasting (4) spring
Basic writing style for radio and television news, and scripting newscasts in a variety of formats, including electronic news gathering and voiceovers. Scripting and storyboarding for commercials and public service announcements. A three-hour writing lab is included. A five-hour writing lab is included. A portion of the course is devoted to study and discussion of issues related to television news coverage. Staff (ND)

JOUR 242 Web Writing & Design (4)
This course examines the ways in which writing and design are influenced by online technology. Students will learn principles and practice of hypertext, Web writing and Web design and will plan and create Web sites that tell stories using the unique features of online technology. Prerequisites: JOUR 11 or JOUR 123 or JOUR 228. Olsen (ND)

JOUR 246. (IR 246) International Communication (4)
Role of international news media in world affairs. Global theories of the press; process and influence of U.S. reporting of international affairs; survey of global media systems; global communication controversies. Lule (SS)

JOUR 311. Science and Technical Writing (3-4) every semester
Study of and practice in writing about scientific and technical issues for multiple audiences. Emphasis on developing effective writing and organizational skills and

Journalism and Communication 295
translating scientific information for a wide range of audiences. Similar in content to JOUR 123, but should be taken instead by upperclassmen (3-4 credits) and graduate students (3-4 credits). K. Friedman (SS) 4 credits for upperclassmen and 3 for graduate students

JOUR 312. Advanced Science Writing (3–4)
Further practice, on individual basis, in science writing techniques. Prerequisite: JOUR 123 or 311. S. Friedman (ND)

JOUR 313. Special Topics in Science Communication (1–4)
Research or writing involving a topic, medium or issue in science, environmental or technical communication not covered in other courses. Prerequisite: Eight hours in science or environmental writing or consent of the department chair. S. Friedman (SS)

JOUR 314. Technical Communication (3–4) summer
This online course covers basic tools needed to write about all kinds of science and technical information for academic papers, term papers, proposals, reports, theses and dissertations. Involves practice with feedback on definitions, descriptions, cause-and-effect relationships, process writing, concept maps, graphics, classification, comparison and more. Taken by seniors for 4 credits and graduate students for 3 credits. K. Friedman (ND)

JOUR 320. Journalism Proseminar (3) spring
Intensive research and writing on contemporary issues and problems facing the mass media; methods and approaches for studying the mass media; course culminates with a seminar thesis based on original and comprehensive research. Prerequisite: nine hours in journalism, public relations or communication or consent of the department chair. Lule (SS)

JOUR 323. (STS 323) Controversies (4) spring
Exploration of science, health and environmental controversies from the dual perspectives of scientific uncertainty and mass media coverage. Examines genetic engineering and biotechnology, environmental health risks, and human behavior research. Includes discussion of ethical and social responsibilities and interactions of scientists, journalists and the public. S. Friedman (SS)

JOUR 324 (SSP 324). Health Communication and the Internet (4) spring
This interdisciplinary class examines the role of the Internet in changing the way lay people, the mass media and medical organizations think and behave regarding health and medical care. It explores the nature of traditional and online health communication, and highlights online health issues such as access, quality of information, economics, privacy, and ethics. S. Friedman and J. Lasker (SS)

JOUR 325. Seminar in Journalism and Communication Issues (4)
A seminar focusing on contemporary issues and problems facing the mass media. Topics vary. Prerequisite: nine hours in journalism or communication or consent of the department chair. (ND)

JOUR 327. (SPSY 327) Mass Communication and Society (4)
A review of theories and research on the relationship of mass communication to social processes. Intensive analysis of selected media products (e.g., TV news, dramas, and sitcoms; films; print; music videos, etc.). Prerequisites: ANTH 1 or SSP 5 or SSP 21 or ANTH 11 or ANTH 12. Rosenwein (SS)

JOUR 361. Internship (6)
Professionally supervised work on newspapers, magazines, Web sites radio and television stations, or with public relations organizations. Some internships involve science writing. May be repeated for a maximum of eight credits. Prerequisite: Senior standing and declared major in journalism or science writing. S. Friedman (ND)

JOUR 365. Advanced Research and Reporting (4) fall
Planning, researching and writing comprehensive news projects; special attention paid to computer-assisted research, online resources, investigative techniques, interviewing skills, reporting on local, county, state and federal governments and courts; emphasis also given to organizing and writing in-depth articles. Prerequisites: eight hours in journalism and senior standing or permission of department chair. Lule, Trimble (ND)

JOUR 366. Online Journalism (3–4) spring
The course examines the social, cultural, political, legal and economic influence of online technology on journalism and the role of journalism in society. Emphasizing critical thinking and analysis, the course studies the ways in which digital technology has changed the way journalists research, write, edit and design. Taken by seniors for 4 credits and graduate students for 3 credits. Prerequisite: JOUR 11 or JOUR 123, JOUR 122, or consent of department chair. Lule, Olson (ND).

JOUR 389. College Scholar Project (1-8)
Opportunity for college scholars to pursue an extended project. May be repeated for credit. College-wide course designation. Transcript will identify department in which project was completed. Prerequisite: consent of department chair. Staff (ND)

JOUR 390. Honors Thesis (1-4)
Directed undergraduate research thesis required of students who apply for and qualify for graduation with departmental honors. Staff (ND)

JOUR 391. Special Topics in Journalism (1-4)
Directed research or writing involving a subject or issue in journalism not covered in other courses. May be repeated for credit. Prerequisite: 12 hours in journalism or consent of the department chair. Staff (ND)

Communication Courses
COMM 65. Interpersonal Communication in a Changing World (3) every semester
This course helps develop a better understanding of how we communicate with others, verbally and non-verbally, individually and in groups; and how communication affects how we develop our own concept of who we are. The course examines critical thinking and how it relates to the communication process. The concepts of stigma and prejudice are examined in the context of interpersonal communications. This is a first-year class, open to freshmen only. (ND)

COMM 130. Public Speaking (4) every semester
Applying the principles of public speaking to making informative and persuasive presentations effectively. Emphasis on speech composition and effective oral communication skills. Ross (HU)
Courses are listed alphabetically under Modern Languages and Literature and Classical Studies.

**Latin American Studies**

The minor in Latin American Studies is designed for students who wish to develop an understanding of a neighboring region that is of vital importance to the United States. Courses in archeology, foreign policy, history, language and literature, and politics, along with independent studies in the visual arts and museum studies, allow students to explore various aspects of Latin American cultures and societies from different disciplinary perspectives. The minor contributes to a liberal arts education by offering students an international vantage point from which they can examine their own societies and preparing them to meet the challenges of an increasingly interdependent world. Additionally, the unprecedented movement of peoples and ideas between the American continents in recent decades makes the study of this region of the world an essential component for understanding the history and culture of the expanding U.S. Latino population. The minor in Latin American Studies complements, therefore, major concentrations in disciplines that have either an international or a domestic focus, and it enhances the relevance of a Lehigh education by preparing students to be citizens of a culturally diverse society and, more generally, of the Americas.

The minor program requires 15 to 16 credit hours of coursework. In addition to regular Lehigh offerings, students may receive minor credit for appropriate courses at other LVAIC institutions, study abroad programs in Latin America, and various Lehigh-faculty-led programs, such as "Lehigh in Martínique," "Lehigh in Costa Rica" (both offered during the winter term), and "Lehigh in Honduras" (summer). Students are encouraged to take advantage of extracurricular activities sponsored by the Latin American Studies Program, which include guest speakers and exhibits.

For further information or to coordinate their minor program, students should contact Dr. Antonio Prieto, Director, Latin American Studies Program, 529 Maginnes Hall. For minor declaration forms, please go to the Modern Languages and Literature office, 516 Maginnes Hall.

**Requirements (8 credits).**

A. **History/Culture (4 credits).**

Choose one of the following:

- HIST 049. History of Latin America (4)
- HIST 050. History of Latin America (4)
- SPAN 152. The Cultural Evolution of Latin America (4) (taught in Spanish)

B. **Language (4 credits)**

- Spanish 12. Intermediate Spanish II (4)

**Elective courses (7-8 credits).**

Choose courses from the following list. Credit may be received for other courses, in consultation with the Program Director.

- ART 269. Special Topics in Art History (1-3)
- ART 273. Special Topics in Studio Practice (1-3)
- ART 370. Special Topics in Museum Studies (1-4)
- ART 375. Museum Internship (3)
- ARTS 196. Sustainable Development: The Costa Rican Experience (3-4)
- AAS 148. Cultural Diversity in the Caribbean (4)
- ANTH 178. Mesoamerican Archaeology (4)
- ANTH 394. Field School in Anthropology (4-8)

**Languages**

- Choose from the following:
  - ANTH 294. Field School in Archaeology (3-4)
  - ANTH 394. Field School in Anthropology (4-8)
  - HIST 105. History of Latin America (4)
  - HIST 050. History of Latin America (4)
  - SPAN 152. The Cultural Evolution of Latin America (4) (taught in Spanish)
  - SPAN 153. Latin American Literature (4) (taught in Spanish)
  - SPAN 156. Latin American Civilization (4) (taught in Spanish)

**Notes:**

- Students are encouraged to participate in extracurricular activities sponsored by the Latin American Studies Program, which include guest speakers and exhibits.

**Prerequisites:**

- For additional details, please refer to the [Latin American Studies Program](#) for course descriptions and prerequisites.
Economics Graduate Courses.

(Section V) under the heading of Business and Economics, graduate courses can be found in this section.

Special problems and issues in commercial law.

LAW 372. Special Topics (3)
who have a special interest in a field of law.

LAW 371. Directed Readings (1-3)
Readings in various fields of law, designed for students who have a special interest in a field of law.

LAW 372. Special Topics (3)
Special problems and issues in commercial law.
Course descriptions for the College of Business and Economics graduate courses can be found in this section (Section V) under the heading of Business and Economics Graduate Courses.

Management

Professors. Michael G. Klotz, D.B.A. (Indiana); C.P.M.; Susan A. Shere, Ph.D. (Pennsylvania); Kenan Professor of Information Technology Management and chair, department of management.

Associate professors. Michael D. Santoro, Ph.D. (Rutgers); Theodore W. Schlief, Ph.D. (Northwestern); Robert J. Trent, Ph.D. (Michigan State).

Assistant professors. Brian Fugate, M.B.A. (Tennessee); Robert C. Gambarista, Ph.D. (Wisconsin); Ruihua Jiang, Ph.D. (Western Ontario); Qingjiu Tao, Ph.D. (Pittsburgh).

Adjunct professor. Sandra Holsonbach, Ph.D. (Lehigh).

Professor of practice. Dale F. Falcinelli, M.B.A. (Lehigh).

Active emeriti. Richard W. Barness, Ph.D. (Minnesota); Benjamin Litt, Ph.D. (N.Y.U.).

Management Courses

For Advanced Undergraduates and Graduate Students

MGT 186. Supply Chain Operations Management (3)
Introduction to managing global supply chains and operations within the context of an integrated value chain. Topics include purchasing and supplier management, demand forecasting, aggregate planning and inventory management, collaborative planning, forecasting, and replenishment processes, capacity planning, ERP, quality management, distribution, transportation management, service operations logistics, and performance measurement. Prerequisites: Math 21 or 75/76, Eco 145.

MGT 243. Management of Organizations (3)
Introduction to the principles of management and human behavior in organizations. Survey of organizational design structure, strategy, planning, control, human resource management, and project management. Conceptual and applied introduction to organizational behavior topics such as individual differences, perception/judgment/decision-making, motivation, communication, teams/groups, leadership, conflict, ethics, social responsibility, diversity, and culture. Prerequisite: junior standing in the College of Business and Economics.

MGT 280. Management of People and Operations (4)
A total quality management perspective of managing people and operations in today's modern organizations. Lectures, case studies, and exercises. Major project required. Prerequisite: junior standing in the College of Business and Economics.

MGT 301. Business Management Policies (3) fall, spring
Case study of business problems and the formulation of policies, strategies, and tactics to resolve those problems from the viewpoint of general management. Long-range goal attainment, policy formulation, and administrative implementation for specific functional areas and the total firm. Includes a simulation. Prerequisite: senior standing in the College of Business and Economics, and completion of the college core.

MGT 306. Entrepreneurship and Business Policy (3) spring
Case study of problems in creating new ventures or managing family-owned businesses. Integrates knowledge
acquired in other courses and stresses development of strategic and administrative policies for particular functions and the company as a whole. Prerequisites: senior standing, completion of College of Business and Economics core, and MGT 311, as well as approval of the department chair. Students may not receive credit for both MGT 301 and 306.

MGT 311. LUMAC Management Assistance Counseling (3) fall, spring
A field studies course providing management assistance to small businesses in the Lehigh Valley. Students work in small groups under faculty supervision on a direct basis with owners. Problem solving and experience in applying marketing, accounting, finance, and/or management concepts to business. Prerequisites: junior standing in the College of Business and Economics or ENTP 201.

MGT 371. Directed Readings (1-3)
Readings in various fields of management designed for the student who has a special interest in some field of management not covered by the regularly scheduled courses. Prerequisite: consent of the department chair. May be repeated.

MGT 372. Special Topics (1-3)
Special problems and issues in management for which no regularly scheduled course work exists. When offered as group study, coverage varies according to interests of instructor and students. Prerequisite: consent of the department chair. May be repeated.

MGT 373. Management Internship (1-3) summer
A sponsoring faculty member shall direct readings, projects, and other assignments including a comprehensive final report in conjunction with an industry-sponsored internship. The work experience itself, whether paid or unpaid, is not the basis for academic credit. Intellectual development in the context of a field study learning experience will be the determining factor in awarding academic credit. This course cannot be used to satisfy requirements of the Management major. Consent of department chair. Prerequisite: junior standing in the College of Business and Economics and Management major declaration.

Course descriptions for the College of Business and Economics graduate courses can be found in this section (Section V) under the heading of Business and Economics Graduate Courses.

Management Science

The management science program is directed toward integrating scientific methods with the functional aspects of organizations by investigating the application of quantitative methodology and systems analysis in the context of decision making, risk analysis, economics and cost analysis, production management, and supply chain logistics. This integration provides the students with a broader perspective toward managerial decision-making in both private enterprise and public administration.

Mid-career professionals and recent graduates with a background in engineering, mathematics, and physical sciences who intend to seek managerial, consulting or systems analyst positions are appropriate candidates. In particular, those candidates who intend to seek positions demanding both technical and management skills find the management science background advantageous in dealing with the complex problems of industrial, commercial, and public service organizations.

The Industrial and Systems Engineering Department administers the management science program. To be admitted to the program a candidate must demonstrate basic competence in calculus, statistics, linear algebra, introductory operations research, accounting, production and economics. A candidate lacking a certain background may be required to take background courses.

The minimum program consists of 30 credit hours of course work, of which at least 18 credit hours must be in the 400-level. The IESE graduate faculty coordinator must approve all course work. Upon entering the program, the student must declare an area of concentration as follows:

- Operations Research
- Decision and Risk Analysis
- Economics and Cost Analysis
- Production and Operations Management
- Logistics and Supply Chain Management

Each student is required to complete 15 credit hours of core courses, 12 credit hours of courses in the declared area of concentration, and 3-credit hours of approved free elective or completing a management science project. No more than 9 credit hours may be taken from the College of Business and Economics (e.g., including MKT, GECO, GBUS courses).

Core Courses (at least 15 credit hours)

- IE 328 Engineering Statistics (3), Prerequisite: Math 23 or equivalent
- IE 358 Game Theory (3), Prerequisite: ECO 105 or 115 and 119 and Math 21, 31 or 51
- IE 362 Logistics and Supply Chain Management (3), Prerequisite: IE 251 or equivalent
- IE 404 Simulation (graduate version of IE 305)(3), Prerequisite: IE 121 and IE 220
- IE 410 Design of Experiments (3), Prerequisite: IE 121 or equivalent
- IE 426 Optimization Models and Applications (graduate version of IE 316) (3), Prerequisite: IE 220 or equivalent
- IE 429 Stochastic Models and Applications (graduate version of IE 339) (3), Prerequisite: IE 220 or equivalent
- IE 458 Topics in Game Theory (3), Prerequisite: 2 semesters of calculus, GECO 412 and GECO 414, or permission of instructor

MATH 334 Mathematical Statistics (3-4), Prerequisite: MATH 231 or 309

Note: Students who satisfy one or more of the core requirements from previous coursework (e.g., IE 305/404, 316/426, 339/429) may substitute the core requirement by taking additional courses from his/her declared area of concentration. Up to 9 credit hours may be substituted.

Areas of Concentration (at least 12 credit hours)

Each student must declare an area of concentration. No more than 3 credit hours may be taken outside the declared area of concentration.

Area Qualified Courses


---

Management Science 299
Graduate Study and Research.
Complete requirements are listed under Interdisciplinary economics.

of engineering and applied science, and business and technologies. It integrates systems perspectives with management, facilities, logistics and people using leading edge technology to change, mass customization, manufacturing flexibility, activity-based management.

The manufacturing systems engineering program develops engineers who can design, install, operate, and modify systems involving materials, processes, equipment, facilities, logistics and people using leading edge technologies. It integrates systems perspectives with interdisciplinary course offerings from Lehigh's colleges of engineering and applied science, and business and economics.

Complete requirements are listed under Interdisciplinary Graduate Study and Research.

Graduate Courses

MSE 362. (IE 362) Logistics and Supply Chain Management (3)
Modeling and analysis of supply chain design, operations, and management. Analytical framework for logistics and supply chains, demand and supply planning, inventory control and warehouse management, transportation, logistics network design, supply chain coordination, and financial factors. Students are expected to complete industry case studies and a comprehensive final project. Prerequisite: IE 220 and IE 251 or equivalents, or instructor approval.

MSE 421. (GBUS 481) Technology, Manufacturing & Competitive Strategy (3)

Interrelationships among advanced manufacturing management, technology and competitive strategy of the firm. Topics to include industry analysis and competitiveness; competitive strategy formulation and implementation; value chain analysis; manufacturing and technology strategy; manufacturing's contribution to competitive advantage in quality, cost, variety and new product availability; segmentation and substitution; vertical integration.

MSE 423. Product Design/Analysis (3)

Integrated approach to design and analysis of products and systems. Principles for robust design and use of computer-aided engineering to model, evaluate, and enhance design. Case studies and design assignments are major components of this course.

MSE 427. (IE 443) Automation and Production Systems

Principles and analysis of manual and automated production systems for discrete parts and products. Cellular manufacturing, flexible manufacturing systems, transfer lines, manual and automated assembly systems, and quality control systems.

MSE 431. Marketing & the Invention to Innovation Process (3)

Organizational issues and decision-making for capital investments in new technologies. The commercialization process is traced from research and development and marketing activities through the implementation phase involving the manufacturing function. Term project is a commercialization plan for a new manufacturing technology.

MSE 433. Technology and the Factory of the Future (3)

Engineering and technological issues affecting future developments in manufacturing. Topics include flexible automation systems, integration of design and production through the factory data network, intelligent machines, the man-machine interface, and the manufacturing management information system.

MSE 438. Agile Organizations & Manufacturing Systems (3)

Analysis of the factors contributing to the success of manufacturing enterprises in an environment characterized by continuous and unpredictable change. Fundamentals of lean production: aspects of systems design, value stream analysis, flow, set-up and cycle time reduction, kaizen, elimination of waste. Fundamentals of agility: global enterprises, virtual organizations, adapting to change, mass customization, manufacturing flexibility, activity-based management.
MSE 446. International Supply Chain Management (3)
Financial and managerial issues. Evaluation, selection, development and management of suppliers; business models, financial reporting strategies, earnings, quality, risk assessment and internal control, team based new product development. Selected readings, case studies, discussions, lectures, group projects, and presentations.

MSE 451. Manufacturing Systems Engineering Project (1-3)

MSE 490. Manufacturing Systems Engineering Thesis (1-6)

MSE 496. Microelectronics Manufacturing Systems & Technologies (3)
Manufacturing engineering in electronics manufacture: crystal growth, doping, thin film deposition technologies and tooling, pattern generation techniques, contamination control, clean room practices, microelectronics assembly and packaging. Examination of systems design and operation issues.

Marketing

Professors: K. Sivakumar, Ph.D. (Syracuse), Arthur C. Tauck Jr. Professor of International Marketing and Logistics and Chairperson, Department of Marketing.
Associate Professors: James M. Maskulka, D.B.A. (Kent State).
Assistant Professors: Franklin Carter, Ph.D. (Carnegie Mellon); Ravindra Gupta, Ph.D. (CUNY), Nevena Koukova, Ph.D. (Maryland).
Professors of Practice: Robert Kuchta, M.S. (New Jersey Institute of Technology).
Adjunct Lecturers: R. Gregory Surovcik, M.B.A. (Lehigh).

Marketing is a critical success factor in any business. Marketing is more than just selling or advertising. It is understanding a product. It is focusing on the needs of the consumers. It encompasses new product development, pricing, promotion and distribution considerations. Marketing influences virtually all strategic business plans and decisions and its scope ranges from government and not-for-profit organizations to free enterprise. Marketing plays a major role in the management of any business.

Lehigh's marketing major is a rigorous and highly relevant curriculum of instruction. Students are taught to recognize the strong linkage between theory and practice and to appreciate the need for teamwork, leadership and communication skills. Activities that encourage students to acquire professional-level competency throughout the curriculum include: developing integrated advertising campaigns, designing and implementing marketing research projects, conducting customer analyses, participating in business-to-business negotiation simulations as well as a wide variety of practice-based projects. Students are encouraged to explore the potential enhancement of their educational experience through study abroad programs, internships with business, and research projects with faculty members.

Participation in the Marketing Club student organization is an extracurricular activity that offers a professional orientation program and the enjoyment of socializing with other students from across the campus.

The marketing major offered by the Department of Marketing consists of 18 credit hours from the following courses:

**Required courses**
- MKT 311 Buyer Behavior
- MKT 312 Marketing Research
- MKT 387 Marketing Strategy

**Elective courses**
Two courses (6 credit hours) from the following list of courses, and one additional marketing elective course (3 credit hours) required, either from the following, or any course approved by the academic advisor.
- MKT 313 Integrated Marketing Communications
- MKT 319 Development & Marketing of New Products
- MKT 320 Global Marketing Strategies
- MKT 321 Business-to-Business Marketing
- MKT 325 Quantitative Marketing Analysis
- MKT 331 Electronic Commerce
- MKT 332 Sales Management
- MKT 348 Management of Marketing Channels
- MKT 360 Marketing Practicum
- MKT 366 Marketing of Services
- MKT 371 Directed Readings
- MKT 372 Special Topics

**Undergraduate Courses**

MKT 211. Principles of Marketing (3)
The purpose of this course is to give an overview of the entire marketing function. The objective is to take a broad-based approach to expose students to the meaning of marketing, the terminology of marketing, the activities involved in marketing, how managers make and implement decisions in marketing, and how they evaluate the results. The role of marketing in the broader society will also be discussed. At the end of this course, students will be able to understand the meaning of the marketing concept, various marketing terminologies, how firms develop and evaluate marketing strategies related to product, place, price, and promotions, how marketing strategies are related to other strategies of the firm, and what internal and external factors influence the marketing decisions. The outcome of the course will be assessed by a series of multiple choice and short essay questions, and other suitable assignments decided by the instructor. Prerequisite: ECO 1.

MKT 311. Buyer Behavior (3)
This course focuses on the theory and tools necessary to analyze and understand consumer buyers and business buyers, as well as other organizational and governmental buyers, in the context of the global information age. The topics covered include, but are not limited to, diffusion of innovations; market segmentation and product positioning; the multiattribute model and the theory of reasoned action; group and individual decision making processes of buyers; and buyer conditioning and learning processes. Throughout the course, the relevance of the covered theory and tools will be illustrated by using cutting edge examples of what businesses and consumers are doing today. At the end of this class, students will be able to demonstrate an understanding of the theories and tools of buyer behavior. In addition, they will be
able to analyze buyers and develop appropriate marketing strategies. The achievement of course objectives will be measured through the use of examinations, as well as a variety of application level tools, including in-class projects, case analyses, and a term project. Prerequisite: MKT 211.

MKT 312. Marketing Research (3)
The objective of this course is to offer a managerial approach toward conducting and using research for market and marketing decisions. The focus will be on the relevance and usefulness of systematic research for decision making, the process and steps involved in conducting effective marketing research, analysis and interpretation of the information for decision making, and the presentation of research results to help managers arrive at sound marketing decisions. Particular emphasis will be placed on the context of technological advances in the collection, dissemination, and use of marketing information, the applicability of marketing research principles for a wide variety of organizations and individuals in the global context, and ethical issues involved in marketing research. At the end of this course, students will have an understanding of the costs and benefits of marketing research, be able to conduct marketing research using a systematic set of procedures, know how to develop research instruments such as questionnaires, have the knowledge to analyze the data, and present the conclusions to other managers. In addition to periodic testing of their knowledge of marketing research by means of examinations (multiple choice, short essay questions, and hands-on problems), the course will involve a marketing research project from problem formulation to presentation of findings. Prerequisites: ECO 145 and MKT 211.

MKT 313. Integrated Marketing Communications (3)
This course focuses on the wide range of areas included in marketing communications and the tools and techniques needed to create an integrated approach. Students are introduced to the broad spectrum of communication messages and the sources that produce them, and then showed how they can be used for maximum efficiency through a coordinated planning process. Lectures and assignments develop an understanding for the factors found in all integrated marketing communications plans, their interactions, strengths and weaknesses, and their effect on the overall marketing message. The course concludes with the students creating and presenting an integrated marketing communications plan and its supporting tactics. Prerequisite: MKT 211.

MKT 319. Development and Marketing of New Products (3)
This course adopts the marketing philosophy that new products and services will be profitable if the extended product provides customers with highly valued benefits. The goal is to help students learn how to use state-of-the-art management techniques to identify markets, develop new product ideas, measure customer benefits, and design profitable new products. The course provides techniques to interface the marketing function with the functions of R&D, design engineering, and manufacturing. Prerequisite: MKT 211.

MKT 320. Global Marketing (3)
This course focuses on understanding the process of globalization and its impact on the firm's marketing activities. Whether an organization operates in the domestic market or in the global market place, it cannot ignore competitive pressures and market opportunities at the global level. This course will focus on topics such as the changes in global environment (e.g., financial, cultural, political, and legal) and their impact on marketing activities, development of global marketing strategies based on sound marketing research (e.g., global segmentation and positioning, global market entry strategies, developing products for the global market place, pricing, communication, and distribution strategies, and so on), and the role of technology in global marketing strategies. Prerequisite: MKT 211.

MKT 321. Business-to-Business Marketing (3)
This course introduces students to the elements necessary to market a product, service, idea, event, organization, place, information, property, experience, or personality to another business. Students develop the knowledge and thinking skills needed to create, develop, and present a complete, integrated Business-To-Business (B2B) marketing plan. Lecture and assignments focus on B2B marketing, a process that begins with researching the relevant marketplace to understand its dynamics. Students learn how to identify opportunities to meet existing needs, segment the market, and select those segments that a company can satisfy in a superior way. In addition, students learn how to formulate a broad strategy, refine it into a detailed marketing mix and action plan, carry out the plan, evaluate the results, and make further improvements. Prerequisite: MKT 211.

MKT 325 (ECO 325). Quantitative Marketing Analysis (3)
Explores economics and management science approaches to improve marketing decision making and marketing interactions in such areas as strategic marketing, e-marketing, advertising, pricing, sales force management, sales promotions, new products, and direct marketing. The development, implementation, and use of quantitative models are emphasized. Cases are used to illustrate how these models can be applied. Students have the opportunity to learn how to use and evaluate models through spreadsheet-based assignments. Prerequisites: MKT 211, ECO 145, ECO 146, and MATH 21, 31, 51.

MKT 331 (BIS 331). Electronic Commerce (3)
This course covers how businesses and consumers use the Internet to exchange information and initiate transactions. Both theoretical concepts and practical skills will be addressed within the scope of the class. Topics include advertising, Internet buyer behavior, risks of insecure systems, Internet security standards and protocols, authentication and digital signatures, electronic cash systems, infrastructure issues, privacy issues, intranets, extranets, and overall electronic commerce strategy. Prerequisites: BIS 111, MKT 211 or consent of the instructor.

MKT 332. Sales Management (3)
This course is an integrative approach to sales management including formulation of strategically sound sales programs, implementation of sales programs, and evaluation and control of the organization's sales activities. Illustrative topics include the role of the sales manager in the divergent demands of multiple constituencies: the development of effective sales organizations; salesperson's motivations and the development of flexible motivation plans; the variety of financial and non-financial rewards used by sales managers; forecasting sales costs...
and evaluating performance by person, territory, customer, market, and industry; and coordination of the sales activities with other elements in a firm’s marketing program. Prerequisite: MKT 211.

**MKT 348. Management of Marketing Channels (3)**

This course focuses on the design, elements, and management of marketing channels. For our purposes, a marketing channel is viewed as an interdependent, interorganizational system involved in the task of making goods, services, and concepts available for consumption. The main emphasis of this course is on the initial design of such systems and the on-going management of relationships between system participants. Economic, social, and structural aspects of channels will be analyzed. Illustrative topics include how channel systems should be formed; an investigation of a variety of channel intermediaries, including franchise systems, distributors, retailers, intermediary “market makers,” and gray channels; the role of technology in channel relationships; the interpersonal dimensions of channel relationship management such as conflict management, minority issues, and ethics; and sales-force management, including selection, motivation, and compensation. Prerequisite: MKT 211.

**MKT 360. Marketing Practicum (3)**

The marketing practicum combines formal classwork on marketing problem formulation and business communications with an intensive internship or consulting engagement with a business. Students work with client firms to develop individual or team projects, which focus on marketing activities such as market research, strategy development, sales management, and promotion management. Upon completion of the project, students submit a written report and make a formal presentation to clients. Prerequisites: MKT 211, MKT 311 and MKT 312.

**MKT 366. Marketing of Services (3)**

This course focuses on service quality issues and strategies from a customer-focused business perspective. The course gives students an appreciation of the challenges of marketing and managing services (whether in a manufacturing or service business) and develops strategies for addressing these challenges. The need for integration across functions to provide effective service is stressed. Illustrative topics include service quality gap analysis; services triangle analysis; 7 P’s for services; service-profit chain; service encounter analysis; customer lifetime value analysis; new service development process; service quality dimensions; services guarantees; and demand/capacity management. Prerequisite: MKT 211.

**MKT 371. Directed Readings (1-3)**

Readings in various fields of marketing designed for the student who has a special interest in some field of marketing not covered in regularly scheduled courses. Prerequisite: consent of the department chair. May be repeated.

**MKT 372. Special Topics (1-3)**

Special problems and issues in marketing for which no regularly scheduled course work exists. When offered as group study or internship, coverage will vary according to the interests of the instructor and students. Prerequisite: consent of the department chair. May be repeated.

**MKT 373. Marketing Internship (1)**

Based on a student’s work experience, a sponsoring faculty member shall direct readings, projects, and other assignments—including a “capstone report.” It should be noted that the work experience (at least 80 hours), by itself, is not the basis for academic credit. The faculty directed activity must be provided concurrent with the work. Course registration and related arrangements must be made in advance of the work engagement. This course must be taken Pass/Fail and cannot be used to satisfy marketing major requirements. Prerequisites: MKT 211, declaration of a marketing major, junior standing, and department approval. May be repeated once.

**MKT 387. Marketing Strategy (3)**

The objective of this capstone course is to synthesize the marketing principles introduced in other marketing courses and thus provide students an integrative framework to marketing decision-making. Our review indicates that this integrative closure for the marketing coursework is a common practice at some of the better business schools. It will focus on how marketing strategy supports the overall corporate strategy. The course will emphasize that marketing does not operate in vacuum. What is done in other functional areas will impact marketing strategy profoundly, and vice versa. The course will address traditional strategic issues such as identification of organizational strengths, weaknesses and environmental opportunities in the context of developing marketing strategies, but will also emphasize the importance of embracing a customer centric orientation throughout the organization. Incorporating a customer centric orientation is an essential component of marketing strategy today as it captures the dynamic and evolving nature of marketing. Every company employee is important to the marketing function, every employee contact with a customer is a form of marketing communication, the increasing number of customer-initiated contacts with the firm are as important as firm-initiated contacts, and customer relationships now take precedence over sales transactions. Specific emphasis will be placed on applying theoretical principles in realistic scenarios by means of case studies of how marketing strategy is impacted by the overall corporate strategy and other functional strategies. Student performance will be evaluated by his/her ability to prepare and present case analyses. Prerequisite: MKT 311, 312 and senior standing.

**Graduate Courses**

Course descriptions for the College of Business and Economics graduate courses can be found in this section (Section V) under the heading of Business and Economics Graduate Courses.
Materials Science and Engineering

**Professors.** G. Slade Cargill, Ph.D. (Harvard), chair and Sherman Fairchild Professor; Charles E. Lyman, Ph.D. (M.I.T.), associate chair; Helen M. Chan, Ph.D. (Imperial College of Science and Technology, England), New Jersey Zinc Professor; Alwyn Eades, Ph.D. (Cambridge); Marin P. Harmer, Ph.D. (Leeds, England), Aiena Professor, director of Center for Advanced Materials and Nanotechnology; Himanshu Jain, ENGR. Sci. D. (Columbia), Diamond Chair; Chris Kiely, Ph.D. (Bristol); Arnold R. Marder, Ph.D. (Lehigh), R.D. Stout Professor; Wojciech Misiolek, Sc.D (U. of Mining and Metallurgy, Krakow, Poland), Loevy Chair; Raymond A. Peaseon, Ph.D. (Michigan); Jeffrey M. Rickman, Ph.D. (Carnegie-Mellon); David R. Williams, Ph.D. (Cambridge), Harold Chambers Senior Professor, Vice Provost for Research.

**Associate Professors.** John N. DuPont, Ph.D. (Lehigh); Richard P. Vinci, Ph.D. (Stanford).

**Assistant Professors.** Audrey N. Soulkhajak, Ph.D. (M.I.T.).

**Adjunct Professors.** Walter L. Brown, Ph.D. (Harvard); W. Thomas Chase, M.A. (New York University); Richard W. Herrzbreg, Ph.D. (Lehigh); Michael R. Notis, Ph.D. (Lehigh); Charles V. Robino, Ph.D. (Lehigh); Walter J. Shakespeare, Ph.D. (Lehigh); S. Kenneth Tarby, Ph.D. (Carnegie-Mellon); William H. Van Geertruyden, Ph.D. (Lehigh).

**Emeritus Professors.** Betzalel Avitzur, Ph.D. (Michigani); Sidnor R. Butler, Ph.D. (Penn State); Ye T. Chou, Ph.D. (Carnegie Mellon); Richard W. Herrzbreg, Ph.D. (Lehigh); Ralph J. Jacodine, Ph.D. (Notre Dame); Michael R. Notis, Ph.D. (Lehigh); Alan W. Penoe, Ph.D. (Lehigh); Donald M. Smyth, Ph.D. (M.I.T.); Leslie H. Sperling, Ph.D. (Duke); Robert D. Stout, Ph.D. (Lehigh); S. Kenneth Tarby, Ph.D. (Carnegie-Mellon); David A. Thomas, Sc.D. (M.I.T.); John D. Wood, Ph.D. (Lehigh).

**Research engineers and scientists.** David W. Ackland; Arlan O. Benscoter.

As science and technology advance in the 21st century, progress in many fields will depend on the discovery and development of new materials, processed in more complex ways, and with new kinds of properties. It is widely recognized that the progress of history has been divided into periods characterized by the materials that mankind has used, e.g., the stone age, the bronze age, the iron age. Today, materials science and engineering is critical to all other fields of engineering, and advances in other fields are often limited by advances in materials.

Interest in new materials for solid-state devices, space technology, and superconductivity, as well as a better understanding of the behavior of materials in the design of structures, automobiles and aircraft, plant processing equipment, electrical machinery, etc., have increased the need for people trained in science and technology of materials.

Education for this field of engineering requires basic studies in mathematics, chemistry, physics and mechanics, plus a general background in engineering principles, followed by intensive training in the application of these principles to the development and use of materials in a technological society.

B.S. in Materials Science and Engineering

The undergraduate program is designed to train graduates for research, development, operations, management, and sales careers in industry or for graduate study in various specialties of the field, including the manufacture and application of metals, ceramics, polymers, composites, and electronic materials. While some graduates go directly into materials-producing companies, most serve as engineers in the transportation, electronics, chemical, communications, space, and other industries. A number of students pursue graduate study leading to careers in research and teaching, medicine, or the law.

Materials Science and Engineering majors have opportunities to gain valuable experience in other, related fields, including other areas of engineering or science, by choosing to concentrate elective courses in one of these areas. Requirements for adding a Minor include at least 15 course credits in that area, which may be taken as technical or free electives in the student's major. It is particularly straightforward for students to obtain a minor in Chemical Engineering, in Manufacturing Engineering, in Nanotechnology, or in Polymer Science and Engineering.

Materials Science and Engineering majors can also participate in undergraduate research at universities in Great Britain and elsewhere during the summer between Junior and Senior years. The Materials Science and Engineering Industrial Option program enables students to gain work experience during the Senior Year. The Materials Science and Engineering Research Option program provides senior undergraduates with research experience.

Five-year programs are available to broaden the Materials Science and Engineering undergraduate experience. One such program is the Arts-Engineering Program, in which students can earn both the Bachelor of Science degree in Materials Science and Engineering and the Bachelor of Arts degree in some area within the College of Arts and Sciences, such as biology, physics, chemistry, or history. Another is the B.S./M.Ed. Program, which leads (in five years of study and internships) to the B.S. degree in Materials Science and Engineering and a masters degree (M.Ed.) in Education, with elementary or secondary teacher certification.

Minor in Materials Science and Engineering

The Department of Materials Science and Engineering offers minors to students majoring in other subjects. The Department is enthusiastic in its support of students who wish to broaden their education by taking a minor. To obtain a minor in Materials Science and Engineering, a student must complete one required course (MAT 35, 3 credits) and four other three-credit courses for a total of 15 credit hours. The four courses may be chosen from a long list of 200 and 300 level courses relevant to various engineering disciplines.

Minor in Nanotechnology

Materials for nanotechnology applications have new properties unavailable in bulk materials. The synthesis, processing, and characterization of these materials require facility with concepts beyond those needed for typical engineering materials. This minor requires MAT 355 Materials for Nanotechnology (3 credits), a course
on crystallography and band theory, and additional electives for a total of 15 credits.

**Educational Mission**
The Materials Science and Engineering undergraduate program’s mission is to provide students an excellent education in a scholarly environment and to provide its graduates the knowledge and experience needed to advance to successful careers.

**Educational Objectives**
Students will be prepared for success in the career of their choice and, therefore, should:
- be able to define and solve materials-related problems, including design problems, within economic, environmental, and time deadline constraints;
- understand relationships between structure, properties, processing and performance for metals, ceramics, polymers, composites, and electronic materials; be able to extend this knowledge; and be able to apply it in materials analysis development, selection, and design;
- be able to function effectively on problem-solving teams and to coordinate and provide leadership for teams, including multi-disciplinary teams;
- understand and accept professional and ethical responsibilities, including responsibilities for public safety and workplace safety;
- develop skills in writing, speaking, reading, and listening, needed to communicate logically and effectively;
- be knowledgeable and experience in using basic laboratory tools, computers, and databases for materials analysis, development, and selection;
- have a firm base of knowledge in areas of mathematics, physics, and chemistry relevant to materials science and engineering, and be able to apply and extend this knowledge;
- gain background in history, economics, world cultures, and current events to provide a realistic context for their professional activities.

**Major Requirements**
The recommended sequence of courses is shown below. The standard freshman engineering year is shown in section III. A total of 135 credits or more is required to graduate.

### sophomore year, first semester (17 credits)
- MATH 23 Analytic Geometry & Calculus III (4)
- PHY 21, 22 Introductory Physics II and Laboratory (5)
- ECO 1 Economics (4)
- MAT 10 Materials Laboratory (1)
- MAT 33 Engineering Materials and Processes (3)

### sophomore year, second semester (18 credits)
- MATH 205 Linear Methods (3)
- MECH 2 Elementary Engineering Mechanics (3)
- MAT 203 Materials Structure at the Nanoscale (3)
- MAT 205 Thermodynamics of Macro/Nanoscale Materials (3)
- MAT 20 Computational Methods in Materials Science (2)
- HSS Humanities/Social Sciences Elect (4)

### junior year, first semester (18 credits)
- MAT 201 Physical Properties of Materials (3)
- MAT 216 Diffusion and Phase Transformations (3)
- MAT 218 Mechanical Behavior of Macro/Nanoscale Materials (3)
- MAT 101 Professional Development (2) Elect. Elective (3)
- HSS Humanities/Social Sciences Elect (4)

### junior year, second semester (18 credits)
- ENGR 211 Integrated Product Development Projects I (3)
- MAT 204 Processing and Properties of Polymeric Materials (3)
- MAT 206 Processing and Properties of Metals (3)
- MAT 214 Processing and Properties of Ceramic Materials (3)
- MAT 210 Macro, Micro, and Nanoscale Processing Laboratory (2)
- MAT 226 Materials Selection in Design (1)
- HSS Humanities/Social Sciences Elective (3)

### senior year, first semester (17-18 credits)
- ENGR 212 Integrated Product Development Projects II (2)
- MAT 302 Electronic Properties of Materials (3)
- ECE 81 Principles of Electrical Engineering (4)
- PHY 190 Electronics (3) or
- MAT 352 Electronics for Materials Science and Engineering (3)
- IE 328 Engineering Statistics (3) or
- MATH 231 Probability and Statistics (3)
- ENGR. Sci. Elect. Engineering Science Elective (3)
- HSS Humanities/Social Science Elective (3)

### senior year, second semester (17 credits)
- MAT 338 Failure Analysis Reports (2)
- CHE 60 Unit Operations Survey (3)
- ENGR.SCI. Elect. Engineering Science Elective (3)
- App. Elect. Approved Elective (3)
- Elect Elective (3)
- Elect Elective (3)

Electives for the sophomore, junior and senior years must be distributed as follows:
- Humanities and Social Sciences: 13-15 credit hours. Free Electives: 9 credit hours in any department. Approved Elective (3 credit hours) and Engineering Science Electives (6 credit hours) must be selected from a specific list supplied by the Materials Science and Engineering Department. The list includes the Industrial Option and the Research Option.

**Industrial Option**
- MAT 327 Industrial Project (4)
- MAT 329 Industrial Project (4)

**Research Option**
- MAT 240 Research Techniques (3)
- MAT 291 Undergraduate Research (3)

The Industrial Option introduces students to the work of materials engineers in industry. The emphasis is a team approach to the solution of actual plant problems. The courses are conducted in cooperation with local industries. Three days per week are spent at the plant of the cooperating industry on investigations of selected problems. The option is limited to a small group of seniors, selected by the Department from those who apply. Summer employment is provided when possible for
those who elect to initiate the program during the summer preceding the senior year.

The Research Option is offered for students interested in research and development. Financial support may be available for students who elect to initiate a research program during the summer preceding the senior year. The option is limited to a small group of students, selected by the Department from those who apply.

### Undergraduate Courses

**MAT 10. Materials Laboratory (1) fall**
Introduction to experimental methods used to fabricate and measure the structure and properties of materials. Thermal and mechanical processing and properties are emphasized. Specimen preparation and examination by light optical microscopy. Prerequisite: MAT 33 previously or concurrently. DuPont

**MAT 20. Computational Methods in Materials Science (2) spring**
The use of computers and computational methods to solve problems in materials science and engineering. Students will employ both commercial packages and their own code in order to complete assignments. Students will utilize word processing and display packages to present results of projects. Prerequisite: ENGR. 1 or equivalent. Rickman

**MAT 33. Engineering Materials and Processes (3)**
fall-spring
Application of physical and chemical principles to understanding, selection, and fabrication of engineering materials. Materials considered include metals, polymers, ceramics, composites and electronic materials. Case studies of materials used range from transportation systems to microelectronic devices. Kiely or Chan and Staff

**MAT 101. Professional Development (2) fall**
Seminar on the role and purpose of engineering in society; the meaning of being a professional; engineering ethics, communications and decision-making in the engineering process; expectations and problems of young engineers; personal goals; choosing a career. Required reading, Written reports based on library research. Prerequisite: junior standing. Lyman

**MAT 107. Special Topics in Materials (1-3)**
A study of selected topics in materials science and engineering not covered in other formal courses.

**For Advanced Undergraduates and Graduate Students**

**MAT 201. Physical Properties of Materials (3) fall**
Basic concepts of modern physics and quantum mechanics needed for an understanding of electrons in solids. The experimental development leading to wave mechanics is emphasized. Use of the Schrödinger equation as the basis for the free electron theory of metals and band theory. Optical properties are developed leading to a discussion of lasers. Prerequisites: Phys 21, MAT 33, MATH 205. Jain

**MAT 203. Materials Structure at the Nanoscale (3) spring**
The structure of metals, ceramics, semiconductors and polymers at the atomic scale. Materials structures at the nanoscale and macroscale. Crystalline, semicrystalline, liquid crystalline, and amorphous (glassy) states. Crystal structures and fundamental aspects of formal crystallography. Point, line, and planar crystal defects. Materials characterization by x-ray diffraction, light and electron microscopy, and other techniques. Prerequisites: CHEM 21; MAT 33 previously or concurrently; MAT 10 or permission of instructor. Eades

**MAT 204. Processing and Properties of Polymeric Materials (3) spring**
The structure-property relationships in polymers will be developed, emphasizing the glass transition, rubber elasticity, crystallinity, and mechanical behavior. Elements of polymer processing, Extrusion of plastics and fibers, and fiber spinning operations. Prerequisite: MAT 33. Pearson

**MAT 205. Thermodynamics of Macro/Nanoscale Materials (3) spring**
The three laws of thermodynamics. Gibbs free energy and conditions of equilibrium. Effects of scale on material behavior. Binary and ternary equilibrium phase diagrams. Application of thermodynamics to materials problems, with examples from nanotechnology, biotechnology, and structural materials. Prerequisites: MATH 23 and MAT 33, previously or concurrently. Vinci

**MAT 206. Processing and Properties of Metals (3) spring**
The production and purification of metals, their fabrication, and control of their properties. Includes topics such as precipitation hardening, hot and cold working, and casting. Prerequisites: MAT 216, MAT 218. Marder

**MAT 210. Macro, Micro and Nanoscale Materials Processing Laboratory (2) spring**
Processes for different materials classes and size scales. Direct experience with current and emerging materials. Class lectures to introduce principles and applications, followed by laboratory experiments such as synthesis and characterization of ceramic nanoparticle systems, forming of polymeric and polymer-based nanocomposite materials, and fabrication and heat treatment of metal systems. Prerequisites: MAT 204, 206, and 214 taken previously or concurrently.

**MAT 214. Processing and Properties of Ceramic Materials (3) spring**

**MAT 216. Diffusion and Phase Transformations (3) fall**
Fundamental diffusion equations; liquid-solid transformations; solid-solid transformations; transformation kinetics; metastable transformations; diffusionless transformations; examples of various transformations in different materials and their effect on properties. Prerequisites: MAT 203, MAT 205. DuPont

**MAT 218. Mechanical Behavior of Macro/Nanoscale Materials (3) fall**
Elasticity, plasticity, and fracture of metals, ceramics, polymers, and composites. The roles of defects and size scale on mechanical response. Strengthening and toughening mechanisms in solids. Statics and time-dependent failures from microstructural and fracture mechanics viewpoints. Lectures and laboratories. Prerequisites: MECH 2, MAT 33; MAT 10 or permission of instructor. Vinci
MAT 221. (STS 221) Materials in the Development of Man (3) Fall
Development of materials technology and engineering from the stone age to atomic age as an example of the interaction between technology and society. In-class demonstration laboratories on composition and structure of materials. Term projects using archaeological materials and alloys. Course intended for, but not limited to, students in the humanities and secondary science education. Engineering students may not use this course for engineering science or technical elective credit. Notis

MAT 226. Materials Selection in Design (1) Spring
Review of different classes of engineering materials and mechanical stress states experienced by structural components. Derivation of performance indices. Selection and design of materials based on materials selection charts and performance indices. Application of materials selection concepts to ENGR 211 IPD #1 course. Prerequisites: MECH 2; MAT 33 or consent of instructor, DuPont

MAT 240. Research Techniques (3) Fall
Study and application of research techniques in materials science and engineering. Research opportunities, design of experimental programs, analysis of data, presentation of results. Selection of research topic and preparation and defense of research proposal. Restricted to a small number of students selected by the department from those who apply.

MAT 291. Undergraduate Research (3) Spring
Application of research techniques to a project in materials science and engineering selected in consultation with the faculty. Normally preceded by MAT 240.

MAT 302. Electronic Properties of Materials (3) Fall
The electronic structure of materials, i.e., band and zone theory, is presented from a physical point of view. Electrical conductivity in metals, semiconductors, insulators and superconductors is discussed. Simple semiconductor devices reviewed. Magnetic properties are examined in the context of domain theory and applications are discussed. Optical and dielectric properties of semiconductors and ferroelectrics are considered. Prerequisites: MAT 201, MAT 203, Eades

MAT 309. Composite Materials (3)
The principles and technology of composite materials. Processing, properties, and structural applications of composites, with emphasis on fiber-reinforced polymers. Lectures and some field trips or laboratories. Prerequisite: MAT 33 or equivalent, MECH 2, Pearson

MAT 310. Independent Study in Materials (1-3)
Provides an opportunity for advanced, independent study of selected topics in materials science and engineering not covered in other formal courses.

MAT 312. (CHE 312, CHM 312) Fundamentals of Corrosion (3)

MAT 314. Metal Forming Processes (3)

MAT 315. Physical Properties of Structural and Electronic Ceramics (3)
Structure-property relationships in ceramics. Mechanical behavior including plasticity, hardness, elasticity, strength and toughening mechanisms. Thermal behavior including specific heat, thermal expansion, thermal conduction and thermal shock. Electrical behavior including application of tensors and crystal physics to electronic ceramics. Prerequisites: MAT 214 or consent of instructor, Harmer

MAT 317. Imperfections in Crystals (3)
The major types of crystal defects and their role in controlling the properties of materials. Point, line and planar defects, their atomic configurations and experimental techniques to study their characteristics. Emphasis on the role of dislocations and grain boundaries in the control of mechanical properties. Prerequisite: MAT 203 or consent of instructor, Rickman

MAT 319. Current Topics in Materials Science (3)
Selected topics of current interest in the field of materials engineering but not covered in the regular courses. May be repeated for credit with consent of the department chair. Prerequisite: Consent of department chair.

MAT 320. Analytical Methods in Materials Science (3)
Selected topics in modern analysis and their application to materials problems in such areas as thermodynamics, crystallography, deformation and fracture, diffusion. Prerequisite: MATH 231 or 205, Rickman

MAT 327. Industrial Project (4)
Restricted to a small group of seniors and graduate students selected by the department from those who apply. Three full days per week are spent on development projects at the plant of an area industry, under the direction of a plant engineer and with faculty supervision. Misiolek

MAT 329. Industrial Project (4)
To be taken concurrently with MAT 327. Course material is the same as MAT 272, Misiolek

MAT 333. (EES 337, CHM 337) Crystallography and Diffraction (3)
Introduction to crystal symmetry, point groups, and space groups. Emphasis on materials characterization by x-ray diffraction and electron diffraction. Specific topics include crystallographic notation, stereographic projections, orientation of single crystal, textures, phase identification, quantitative analysis, stress measurement, electron diffraction, ring and spot patterns, convergent beam electron diffraction (CBED), and space group determination. Applications in mineralogy, metallurgy, ceramics, microelectronics, polymers, and catalysts. Lectures and laboratory work. Prerequisites: MAT 203 or EES 133 or senior standing in chemistry, Cargill
MAT 334. (EES 338, CHE 334) Electron Microscopy and Microanalysis (4) fall
Fundamentals and experimental methods in electron microscopy, including scanning electron microscopy (SEM), conventional transmission (TEM) and scanning transmission (STEM) electron microscopy. Specific topics covered will include electron optics, electron beam interactions with solids, electron diffraction and chemical microanalysis. Applications to the study of the structure of materials are given. Prerequisite: consent of the department chair. Lyman and Kiely

MAT 335. (CHE 335) Principles of Semiconductor Materials Processing (3)
Description and analysis of the processing steps involved in microelectronic material fabrication. Emphasis will be placed on the chemistry of the fabrication steps, mathematical modeling of the transport and chemical reaction phenomena, and interpretation of experimental methods and data. Prerequisite: a course in thermodynamics and senior standing.

MAT 338. Failure Analysis Reports (2) spring
Application of chemical and mechanical failure concepts, microstructural analysis, and fracture surface characterization to the analysis and prevention of engineering component failures. Conduct laboratory investigations on component failures with written and oral presentations of the results. Prerequisite: Senior standing and MAT 204, MAT 206, MAT 210, MAT 214, and MAT 302. Marder

MAT 339 Light Metals (3)
Designing mechanical properties of light metals such as aluminum, beryllium, magnesium and titanium through alloying and processing. In-depth analysis of strengthening mechanisms and resulting physical properties. Review of typical casting, deformation, powder metallurgy and machining processes applied to these materials. Recent commercial applications in the construction, packaging, aerospace and automotive industries. Prerequisite: MAT 206 or consent of the instructor. Misiolek

MAT 342. Inorganic Glasses (3)
Definition, formation and structure of glass; common glass systems; manufacturing processes; optical, mechanical, electrical and dielectric properties; chemical durability; glass fibers and glass ceramics. Lectures and laboratories. Prerequisite: MAT 33, Jain

MAT 344. (IE 344) Metal Machining Analysis (3) spring
Intensive study of metal cutting emphasizing forces, energy, temperature, tool materials, tool life, and surface integrity. Abrasive processes. Laboratory and project work. Prerequisite: IE 115 or ME 240 or MAT 206. Misiolek

MAT 345 Powder Metallurgy (3)
Metal powder fabrication and characterization methods. Powder processing including powder compaction, theory of compacting, press and die design, sintering, and hot consolidation. Microstructure and properties of sintered materials and their relationship to processing conditions. Industrial applications. Emerging powder metallurgy technologies. Prerequisite: MAT 206 or consent of instructor. Misiolek

MAT 346. Physical Metallurgy of Welding (3)

MAT 348. Materials Science for Electronic Applications (3)
Materials technology for integrated circuit packaging systems. Dielectric, thermal and mechanical considerations; joining methods; resistor and ceramic capacitor materials and incorporation of active devices into packaging systems; multilayer package design and processing. Individualized semester project involving forensic examination of failures using scanning electron microscopy and microprobe analysis. Prerequisite: MAT 201, and MAT 33.

MAT 352. Electronics for Materials Science and Engineering (3) fall
Properties and structures of electronic components including resistors, capacitors, diodes and transistors, a.c. and d.c. circuits, electronic laboratory instruments, circuit analysis and design. Two lectures and one three-hour laboratory per week. Prerequisite: MAT 302 taken previously or concurrently. Cargill

MAT 355. Materials for Nanotechnology (3)
An introduction to the nanoworld and how we observe the nanoworld through transmission electron microscopy. Other topics include: probing nanosurfaces, carbon as a nanomaterial, fullerenes, carbon nanotubes, metal clusters, metal nanoparticle preparation, and directed self-assembly of nanoparticles. Also discussed are the thermal, chemical, electronic, optical, and magnetic properties of metal nanoparticles, nanowires, semiconductor nanoparticles, and inorganic nanoparticles. Kiely

MAT 356. Strategies for Nanocharacterization (3)
Lectures describe various nanocharacterization techniques in terms of which technique is best for specific measurements on nanostructures less than 100 nm in extent. Special attention is paid to spatial resolution and detection limits for SEM, TEM, X-ray analysis, diffraction analysis, ion beam techniques, surface techniques, AFM and other SPMs, and light microscopies and spectroscopies. Eades and Lyman

MAT 359. Thin Film Processing and Mechanical Behavior (3)
Metallic, ceramic and glassy films, with thickness less than approximately 1 µm, formed by gas phase deposition. Thin film applications, vacuum fundamentals, PVD and CVD, models for general thin film growth, epitaxial growth, sources of stress, deformation mechanisms, and mechanical characterization techniques such as substrate curvature and nanoindentation. Prerequisite: MAT 33. Also recommended, but not required, is some experience with mechanics of materials. Vinci

MAT 367. (CHE 367) Metal Films and Coatings: Processing, Structure, and Properties (3)
Focus will be on the processing, structure, and properties of metal films and coatings. Processing methods will include evaporation, sputtering, chemical vapor deposi-
ion (CVD), plasma-assisted CVD, ion implantation, electrodeposition, metal bath solidification, weld overlay, thermal spraying, and diffusion. Characterization of thin films and coatings will be done with the use of sophisticated analytical instrumentation, including spectroscopic methods, microscopy and diffraction techniques. Characterization methods are explored in conjunction with processing techniques and film/coating properties via class assignments that are designed to introduce students to the archival scientific literature. Prerequisite: Senior standing in Chemical Engineering or Materials Science and Engineering, or permission of the instructor(s).

MAT 388. (CHE 388, CHM 388) Polymer Synthesis and Characterization Laboratory (3) Techniques include: free radical and condensation polymerization; molecular weight distribution by gel chromatography; crystallinity and order by differential scanning calorimetry; pyrolysis and gas chromatography; dynamic for mechanical and dielectric behavior; morphology and microscopy; surface properties. Prerequisite: Senior level standing in chemical engineering, chemistry, or materials science and engineering, or permission of the instructor.

MAT 393. (CHE 393, CHM 393) Physical Polymer Science (3) Structural and physical aspects of polymers (organic, inorganic, natural). Molecular and atomic basis for polymer properties and behavior. Characteristics of glassy, crystalline states (including viscoelastic and relaxation behavior) for single- and multi-component systems. Thermodynamics and kinetics of transition phenomena, Structure, morphology and behavior. Prerequisite: Senior level standing in Chemical Engineering, Chemistry, or Materials Science and Engineering, or permission of the instructor. Sperring

MAT 396. (CHEM 396) Chemistry of Nonmetallic Solids (3) Chemistry of ionic and electronic defects in nonmetallic solids and their influence on chemical and physical properties. Intrinsic and impurity-controlled defects, nonstoichiometric compounds, defect interactions. Properties to be discussed include: diffusion, sintering, ionic and electronic conductivity, solid-state reactions, and photoconductivity. Prerequisite: CHEM 187 or MAT 205 or equivalent.

For Graduate Students

The department offers graduate degrees in Materials Science and Engineering at both masters (M.S. and M.Eng.) and doctoral levels (Ph.D.). Specialized masters degree programs are also available, in Photonics, in Polymers, and in Business Administration and Engineering (MBA&E). The M.S. Degree in Photonics is an interdisciplinary degree for broad training in such topics as fiber optics, lightwave communications, and optical materials, to prepare students for work in industry or for further graduate research at the Ph.D. level. The program requires a total of 30 credits of graduate work, including a 15-credit core of courses in materials, electrical engineering, and physics. The Polymer Science and Engineering Program offers interdisciplinary M.S. and Ph.D. degrees through several departments, including Materials Science and Engineering. The program includes courses in materials, chemical engineering, chemistry, physics, and mechanical engineering. The MBA&E is an interdisciplinary degree program in business and engineering designed primarily for students with an undergraduate degree in engineering and two years or more of relevant work experience. The curriculum consists of an MBA core and electives (23 credits) and engineering core and electives (18 credits), plus other electives and a project which integrates business and engineering (4 credits). Students wishing to have the engineering core in Materials Science and Engineering may enter this program through the Materials Science and Engineering Department.

Special Programs and Opportunities

The department has established specific recommended programs for the M.S., the M.Eng., and the Ph.D., emphasizing the following areas: metals processing and performance, ceramics and glass processing and properties, electronic and photonic materials and packaging, electron microscopy and microstructural characterization, and archaeometallurgy.

These programs are flexible and often interdisciplinary. Advanced level courses can be rescheduled to be held first thing in the morning or late in the day, when off-campus students register.

Major Requirements

The requirements are explained in section IV. A candidate for the M.S. completes a thesis, unless fully funded by industry, in which case a thesis is not required. M.S. thesis research normally represents six of the 30 semester hours required for this degree. Candidates for the M.Eng. complete a three-credit engineering project.

A candidate for the Ph.D. prepares a preliminary program of courses and research, providing for specialization in some field (largely through research) in consultation with the advisor. Prior to formal establishment of the doctoral program by the special committee and its approval by the college, the student passes a qualifying examination that must be taken in the first or second year of doctoral work. The department does not require a foreign language. It does require preparation and defense of a research proposal as a portion of the general examination.

Of the courses listed above only those in the 300 series are available for graduate credit. There are many additional offerings in materials under the listings of other departments.

Most graduate students receive some form of financial aid. Several kinds of fellowships and assistantships are available. This type of aid generally provides for tuition, and a stipend. For details of graduate scholarships, fellowships and assistantships, please refer to section IV.

Research Activities

Graduate students conduct their research in facilities located in the Department or the Center for Advanced Materials and Nanotechnology, or other centers and institutes. The following list describes current Materials Science and Engineering research activities:

Metals Processing and Performance: joining of metals and alloys, laser engineered net shaping, solidification modeling, corrosion and coatings, deformation processing, grain boundary cohesion, bulk metallic glasses.
Ceramics and Glass Processing and Properties: fundamental studies of sintering and grain growth, novel reaction-based processing for bulk and thin film ceramics, microstructure and properties of oxides for environmental coatings, growth of single crystal piezoelectric ceramics, creep and grain boundary chemistry of alumina, dielectric and electrical properties of glasses, corrosion of glass.


Microstructural Characterization: transmission electron microscopy, scanning electron microscopy, nanoscale compositional mapping, cathodoluminescence microscopy and spectroscopy, x-ray microbeam diffraction and fluorescence, x-ray microanalysis, electron-loss spectroscopy, extended x-ray absorption and electron energy loss fine structure (EXAFS and EXELFS).

Archaeometallurgy: reconstruction of ancient smelting and fabrication processes, artifact analysis using modern analytical methods, history of materials.

Graduate-Level Courses

MAT 401. Thermodynamics and Kinetics (3)
Integrated treatment of the fundamentals of thermodynamics, diffusion and kinetics, as related to materials processes. Laws of thermodynamics, conditions of equilibrium thermodynamics of phase transitions, diffusion in multicomponent systems, and kinetics of phase transformations. DuPont and Eades

MAT 403. Structure and Properties (3)
The underlying principles of the structure of materials and relationship to properties. Crystal structures and properties, point, line and planar defects and properties, and non-crystalline structure including covalent-ionic, metallic and polymeric glasses and properties. Jain

MAT 405. Mathematical Methods in Materials Science and Engineering (3)
Mathematical and computational skills required for an understanding of materials science principles. The topics to be discussed include vector and tensor calculus, with applications to crystallography and materials properties, solution of differential equations, emphasizing rate equations and the diffusion equation, integral transforms for solving differential equations and computation of scattering intensities, statistics and experimental design, and numerical methods and computer simulation. Cargill and Rickman

MAT 406. Solidification (3)
Structure, theory and properties of liquids, Homogeneous and heterogeneous nucleation theory and experimental results. Solidification phenomena in pure, single and multiphase materials including the nature of the freezing interface, segregation, constitutional supercooling, dendritic growth, crystallographic effects, the origin of defects, crystal growing, zone processes. Prerequisite: consent of the department chair. DuPont

MAT 408. Transformations (3) fall
The thermodynamic, kinetic and phenomenological aspects of a wide spectrum of solid-state phase transformations. Theories of nucleation, growth and coarsening of second-phase precipitates. Application of the theories to continuous and discontinuous reactions, massive, martensitic and bainitic transformations in metals. Transformations in nonmetals. Prerequisite: MAT 205 and 216 or equivalent. Marder

MAT 409. Current Topics in Materials (3)
Recent practical and theoretical developments in materials. This course may be repeated for credit if new material is covered. Prerequisite: consent of the department chair.

MAT 410. Physical Chemistry of Metals (3)
Discussions of reactions involving gases and reactions involving pure condensed phases and a gaseous phase. Ellingham diagrams and equilibria in metal-oxygen-carbon systems. Consideration of the behavior of solutions and methods for determining thermodynamic properties of solutions by experimentation and computation. Prerequisite: MAT 205 or equivalent.

MAT 411. Modern Joining Methods (3)
The foundations upon which the joining processes rest; the present limitations of the various processes; the trends in new developments; the engineering and structural aspects of joining. Prerequisite: MAT 216 and 218 or equivalent.

MAT 412. Magnetic Properties of Materials (3)
Fundamental concepts of magnetism and magnetic properties of ferro- and ferrimagnetic materials. Metallic and nonmetallic materials. Current application areas considered as examples. Prerequisite: Phys 31 or 363 or equivalent.

MAT 413. Formability of Metals (3)
Formability concept. Analysis of the microstructure response to deformation processing parameters including state of stress, state of strain, stain rate, temperature, and friction. Analysis of formability in metal forming processes. Defects. Seminar/discussion format. Prerequisite: MAT 314 or consent of instructor. Misiolek

MAT 415. Mechanical Behavior of Ceramic Solids (3)
Strength, elasticity, creep, thermal stress fracture, hardness, abrasion and high-temperature deformation characteristics of single- and multi-component brittle ceramic solids. Statistical theories of strength, static and cyclic fatigue, crack propagation, fracture toughness. Correlation of mechanical behavior, microstructure, and processing parameters. Prerequisite: MAT 218 or consent of the department chair.

MAT 416. Atom Movements (3)
Phenomenological and atomistic development of the laws of diffusion and their solution. Influence of gradients of concentration, potential, temperature and pressure. Effects of structural defects on diffusion in metals and nonmetals. Prerequisite: MATH 23 and MAT 205 or the equivalent.

MAT 417. Deformation and Strength of Solids (3)
Topics related to deformation of solids including creep, strengthening mechanisms, annealing of deformed solids, preferred orientation. Primary emphasis is on crystalline materials. May be repeated for credit if different material is covered. Prerequisite: MAT 218 or equivalent.
MAT 418. Fatigue and Fracture of Engineering Materials (3)

MAT 419. Advanced Physical Metallurgy (3)
Application of physical metallurgy principles to materials systems. Transformation structures and the influence of morphology on properties. Alloy design and heat treatment for improved strength, toughness, creep, corrosion resistance, electrical and magnetic properties. Prerequisite: MAT 325 or equivalent. Marder

MAT 421. Fracture Analysis (3)
Application of fracture mechanics concepts, microstructural analysis, and fracture surface characterization to the analysis and prevention of engineering component failures. Extensive use of case histories. Introduction to legal aspects of product liability. Prerequisite: MAT 218 or MECH 313 or equivalent.

MAT 423. Advanced Transmission Electron Microscopy (4)
The theory and practice of operation of the transmission and scanning transmission electron microscope. Techniques covered include bright field, high resolution and weak-beam dark field, lattice imaging, diffraction pattern indexing and Kikuchi line analysis. The theory of diffraction contrast is applied to the interpretation of electron micrographs. Specimen preparation techniques. Prerequisite: MAT 334 or equivalent. Lyman, Eades

MAT 425. Topics in Materials Processing (3)
Topics such as ceramics, metal, and polymer synthesis and compaction phenomena. Theories of sintering and grain growth. Physical behavior of sintered compacts. Techniques of fiber and crystal growth. Vapor deposition and ultra-high-purity materials preparation. Desired properties of sintered compacts. Prerequisite: MAT 204 or 206 or 214, and MAT 218. Prerequisite: consent of the department chair.

MAT 427. Advanced Scanning Electron Microscopy (4)
The theory and practice of operation of the scanning electron microscope and electron microprobe. Techniques covered will include high-resolution scanning, quantitative electron probe microanalysis. Electron beam sample interactions, X-ray spectrometry, and electron optics will be discussed in detail. Prerequisite: MAT 334 or equivalent. Lyman, Eades

MAT 429. Dielectric and Electrical Properties of Ceramics (3)
Basic concepts of dielectric and electrical phenomena in ceramics including dielectric loss, dielectric breakdown, ferroelectricity, piezoelectricity, mixed conduction, and interfacial effects. Physical and materials aspects of technologically important ceramics such as thermistors, varistors, boundary layer capacitors, solid electrolytes, gas sensors, glasses, etc. Prerequisite: MAT 201 or equivalent. Jain

MAT 430. Glass Science (3)
Definition and formation of glass. Structure of common inorganic (including metallic) and polymeric glass systems. Methods of glass making. Phase separation of devitrification. Physical properties including diffusion, electrical conductivity, chemical durability, and optical and mechanical properties. Special products including glass ceramics, optical fibers, photosensitive glasses, etc. Visit to a glass manufacturing plant may also be included. Prerequisite: MAT 315 or equivalent. Jain

MAT 431. Sintering Theory and Practice (3)
Science and technology of the sintering of solid-state materials. Driving force and variables. Critical review of the sintering models. Coverage of single phase, multiphase and composite systems. Special sintering techniques such as fast firing, rate controlled sintering, hot pressing and transient second-phase sintering. Sintering of specific ceramic and metal systems. Prerequisite: MAT 214 or equivalent. Harmen

MAT 432. Theories of Silicon Oxidation (3)
A critical review is given of advanced theories of silicon oxidation. Present accepted theory (Deal-Grove) is inadequate for explaining thin (state-of-the-art) oxides. Course will consider most recent approaches to theory of thin gate insulators. It will also include new experimental approaches that use “impurity gaseous doping” and halogen additions.

MAT 435 Photonic Materials (3)
Scope of photonics, especially in communications. Characteristics of light. Optical properties of metals, semiconductors and insulators. Nonlinear optical properties. Materials for fibers, lasers, detectors, modulators, amplifiers and other components. Prerequisites: MAT 302 or consent of instructor. Jain

MAT 437. (MECH 437) Dislocations and Strength in Crystals (3)
Theory and application of dislocations. Geometrical interpretation; elastic properties; force on a dislocation; dislocation interactions and reactions; multiplication. Dislocations in crystal structures. Selected topics in strengthening, plastic flow, creep, fatigue and fracture are discussed. Prerequisite: MATH 205 or 231, or MAT 320; MAT 317, or consent of the department chair. Wei

MAT 443. (CHEM 443) Solid-State Chemistry (3)
Crystal structure, diffraction in crystals and on surfaces, bonding and energy spectra in solids, dielectrics, surface states and surface fields in crystals. Prerequisites: one course in linear algebra and one course in quantum mechanics. Klier

MAT 455. Materials for Nanotechnology (3)
An introduction to the nanoworld and how we observe the nanoworld through transmission electron microscopy. Other topics include: probing nanosurfaces, carbon as a nanomaterial, fullerenes, carbon nanotubes, metal clusters, metal nanoparticle preparation, and directed self-assembly of nanoparticles. Also discussed are the thermal, chemical, electronic, optical, and magnetic properties of metal nanoparticles, nanowires, semiconductor nanoparticles, and inorganic nanoparticles. Kidi

MAT 456. Strategies for Nanocharacterization (3)
Lectures describe various nanocharacterization techniques in terms of which technique is best for specific measurements on nanostructures less than 100 nm in extent. Special attention is paid to spatial resolution and detection limits for SEM, TEM, X-ray analysis, diffraction analysis, ion beam techniques, surface techniques, AFM and other SPMs, and light microscopies and spectroscopies. Eades and Lyman
MAT 458. Materials Design (3)
Analysis of design requirements for materials components. Selection of materials and processes. Study of failures in process and service and application of recent metallurgical and materials engineering knowledge for improved design. Solution and discussion of industrial problems, and outline of experimental approach.
Prerequisite: consent of the chair.

MAT 460. Engineering Project (1-3)
In-depth study of a problem in the area of materials engineering or design. The study is to lead to specific conclusions and be embodied in a written report. Intended for candidates for the M.Eng. May be repeated for a total of three credit hours.

MAT 461. Advanced Materials Research Techniques (3)
Study of the theory and application of selected advanced techniques for investigating the structure and properties of materials. May be repeated for credit with the approval of the department chair.

MAT 482. (CHM 482, CHE 482) Engineering Behavior of Polymers (3) spring
A treatment of the mechanical behavior of polymers. Characterization of experimentally observed viscoelastic response of polymeric solids with the aid of mechanical model analogs. Topics include time-temperature superposition, experimental characterization of large deformation and fracture processes, polymer adhesion, and the effects of fillers, plasticizers, moisture and aging on mechanical behavior. Pearson

MAT 485. (CHM 485, CHE 485) Polymer Blends and Composites (3) fall
Synthesis, morphology, and mechanical behavior of polymer blends and composites. Mechanical blends, block and graft copolymers, interpenetrating polymer networks, polymer impregnated concrete, and fiber and particulate reinforced polymers are emphasized. Prerequisite: any introductory polymer course or equivalent. Sperling

MAT 490. Thesis. (1-6)

MAT 493. (CHE 493, CHM 493) Physical Polymer Science (3)
Structural and physical aspects of polymers (organic, inorganic, natural). Molecular and atomic basis for polymer properties and behavior. Characteristics of glassy, crystalline states (including viscoelastic and relaxation behavior) for single- and multi-component systems. Thermodynamics and kinetics of transition phenomena. Structure, morphology and behavior.

MAT 499. Dissertation (1-15)

Mathematics

Professors. Huai-Dong Cao, Ph.D. (Princeton); A. Everett Pitcher Professor; Donald M. Davis, Ph.D. (Stanford); Vladimir Dobric, Ph.D. (Zagreb, Croatia); Bennett Eisenberg, Ph.D. (M.I.T.); Wei-Min Huang, Ph.D. (Rochester); Jerry P. King, Ph.D. (Kentucky); Eric P. Salathe, Ph.D. (Brown), director of the Institute for Biomedical Engineering and Mathematical Biology; Lee J. Stanley, Ph.D. (Berkeley); Steven H. Weintraub, Ph.D. (Princeton), chair; Joseph E. Yukich, Ph.D. (M.I.T.).

Associate professors. Bruce A. Dodson, Ph.D. (S.U.N.Y. at Stony Brook); Garth Isaak, Ph.D. (Rutgers); David L. Johnson, Ph.D. (M.I.T.); Terrence Napier, Ph.D. (Chicago); Clifford S. Quen, Ph.D. (Ohio State); Susan Szczepanski, Ph.D. (Rutgers); Ramamirthan Venkataraman, Ph.D. (Brown).

Assistant professors. Mark A. Skanderza, Ph.D. (M.I.T.); Xiaofeng Sun, Ph.D. (Stanford); Ping-Shi Wu, Ph.D. (Davis); Linghai Zhang, Ph.D. (Ohio State).

Adjunct professor. Howard Fegan, Ph.D. (Oxford).

Mathematics is a subject of great intrinsic power and beauty. It is the universal language of science, and is essential for a clear and complete understanding of virtually all phenomena. Mathematical training prepares a student to express and analyze problems and relationships in a logical manner in a wide variety of disciplines including the physical, engineering, social, biological, and medical sciences, business, and pure mathematics itself. This is a principal reason behind the perpetual need and demand for mathematicians in education, research centers, government, and industry.

The department offers three major programs leading to the degrees of bachelor of arts in mathematics, bachelor of science in mathematics (with a general mathematics and an applied mathematics option), and bachelor of science in statistics. It also offers several minor programs for undergraduates.

At the graduate level, it offers programs leading to the degrees of master of science in mathematics, master of science in applied mathematics, master of science in statistics, doctor of philosophy in mathematics, and doctor of philosophy in applied mathematics.

The Division of Applied Mathematics and Statistics is a part of the Department of Mathematics.

Calculus Sequences

Many degree programs throughout the university include a mathematics requirement consisting of a sequence in calculus. The Department of Mathematics offers three calculus sequences: MATH 21, 22, 23; MATH 31, 32, 33; MATH 51, 52.

The MATH 21, 22, 23 sequence is a systematic development of calculus. Most students of mathematics, science, engineering, and business will take some or all of this sequence.

As an honors sequence, the MATH 31, 32, 33 sequence covers essentially the same material but in greater depth and with more attention to rigor and proof. This sequence should be considered by students who have demonstrated exceptional ability in mathematics.

Students who are contemplating a major in mathematics are strongly encouraged to consider this sequence. The MATH 51, 52 sequence is a survey of calculus. This sequence is not sufficient preparation for most subsequent mathematics courses. Students contemplating further study in mathematics should consider MATH 21, 22 instead.

MATH 75, 76 is a two-semester sequence that substitutes for MATH 21, covering the same material but at a slower pace.

The MATH 31, 32, 33 sequence will be accepted in place of the other two sequences. MATH 21, 22 will be accepted in place of MATH 51, 52. Credit will be awarded for only one course in each of the following
groups: 21, 31, and 51; 22, 32, and 52; 23 and 33. If two courses in the same group are taken, credit will be awarded for the more advanced course; 3x is the most advanced, while 5x is the least advanced.

**Undergraduate Degree Programs**

The Department of Mathematics offers degree programs in Mathematics and Statistics. These programs have the flexibility and versatility needed to prepare students for a wide variety of careers in government, industry, research and education.

Students in the degree programs in mathematics must satisfy three types of requirements beyond those required by the college: Core Mathematics Requirements, Major Requirements and General Electives. The Core Mathematics Requirement ensures a common core of knowledge appropriate for students in each program. The Major Program Electives consist of courses with specific mathematical or statistical content chosen by the student in consultation with the major advisor to complement the student's interest and career aspirations. With these further breadth and greater depth of knowledge are achieved. The General Electives consist of additional courses chosen from among those offered by the university faculty. Students can use these electives to pursue interests beyond the major, or may use these to expand upon the basic requirements of the degree program. Students are strongly encouraged to use some of these electives to earn a minor in another discipline.

Students in the degree program in statistics must satisfy four types of requirements beyond those required by the college: Required Major Courses, Major Electives, Professional Electives and Free Electives.

Each student is provided a faculty advisor to guide an individual program and supervise the selection of electives.

**B.A. in Mathematics**

The B.A. program in mathematics emphasizes fundamental principles as well as the mastery of techniques required for the effective use of mathematics. The program provides a solid foundation for those who want to pursue a mathematically oriented career or advanced study in any mathematically oriented field.

**Requirements:**

- **College Distribution Requirements (32-35 credits)**
- **Core Mathematics Requirements (32-35 credits)**
  - **Calculus** (12 cr) MATH 21, 22, 23 or MATH 31, 32, 33
  - **Introductory Seminar** (3 cr) MATH 163
  - **Statistics/Probability** (3 cr) MATH 231 or MATH 309
  - **Linear Algebra** (4 cr) MATH 242
  - **Differential Equations** (3-4 cr) MATH 205 or MATH 320
  - **Analysis** (4 cr) MATH 301
  - **Complex Analysis** (3-4 cr) MATH 208 or MATH 316
  - **Major Requirements (10 credits)**
  - **Algebra** (4 cr) MATH 243
  - **Electives** (6 cr) Two courses (at least 6 credits) at or above the 200-level chosen in consultation with the major advisor. At most one course may be taken outside the department.
  - **General Electives** Chosen in consultation with (41-47 credits) faculty advisor.

This program requires a total of 121 credit hours. A student must achieve an average of 2.0 or higher in major courses.

**BS in Mathematics**

The BS in Mathematics program provides a more extensive and intensive study of mathematics and its applications. Students can pursue the General Mathematics Option or the Applied Mathematics Option. These programs are especially recommended for students intending to pursue advanced study in mathematics or applied mathematics. The General Mathematics Option is recommended for students who wish to pursue mathematics either by itself or in combination with a related field (e.g., physics, computer science or economics). The Applied Mathematics Option provides a broad background in the major areas of applicable mathematics.

**General Mathematics Option**

**Requirements:**

- **College Distribution Requirements (32-35 credits)**
- **Core Mathematics Requirements (32-34 credits)**
  - **Calculus** (12 cr) MATH 21, 22, or MATH 31, 32, 33
  - **Introductory Seminar** (3 cr) MATH 163
  - **Statistics/Probability** (3 cr) MATH 231 or MATH 309
  - **Linear Algebra** (4 cr) MATH 242
  - **Differential Equations** (3-4 cr) MATH 205 or MATH 320
  - **Analysis** (4 cr) MATH 301
  - **Complex Analysis** (3-4 cr) MATH 208 or MATH 316
  - **Major Requirements (24-25 credits)**
  - **Algebra** (4 cr) MATH 243
  - **Electives** (14 cr) Four courses (at least 14 credits) at or above the 200 most two courses may be taken outside the department.
  - **Computer Science** (6-7 cr) Two courses: ENGR 1 and one approved CSE course or two approved CSE courses.
General Electives (27-33 credits) Chosen in consultation with faculty advisor.

This program requires a total of 121 credit hours.
A student must achieve an average of 2.0 or higher in major courses.

**Applied Mathematics Option**

**Requirements:**
College Distribution Requirements (32-35 credits)
Core Mathematics Requirements (33-34 credits)

| Calculus | MATH 21, 22, 23 or MATH 31, 32, 33 (12 cr) |
| Introductory Seminar | MATH 163 (3 cr) |
| Statistics/Probability | MATH 231 or MATH 309 (3 cr) |
| Linear Algebra | MATH 242 (4 cr) |
| Differential Equations | MATH 320 (4 cr) |
| Analysis | MATH 301 (4 cr) |
| Complex Analysis | MATH 208 or MATH 316 (3-4 cr) |

Major Requirements (23-24 credits)
Electives (17 cr) Five courses (at least 17 credits) at or above the 200 level chosen in consultation with the major advisor to establish a concentration as described below. At most two courses may be taken outside the department.

Computer Science (6-7 cr) Two courses: ENGR 1 and one approved CSE course or two approved CSE courses.

General Electives (28-33 credits) Chosen in consultation with faculty advisor.

In consultation with the major advisor, a student must establish a concentration in a particular area of applied mathematics. The courses chosen must have specific mathematical or statistical content and together constitute a coherent program. At most two courses may be taken outside the Department of Mathematics. Students, in consultation with the major advisor, can design a concentration which reflects a particular area of interest or choose to pursue one of the following:

**Concentration in Probability and Statistics:** Electives must include MATH 309 and MATH 310
This program requires a total of 121 credit hours.
A student must achieve an average of 2.0 or higher in major courses.

**B.S. in Statistics**
Statistics provides a body of principles for designing the process of data collection, for summarizing and interpreting data, and for drawing valid conclusions from data. It thus forms a fundamental tool in the natural and social sciences as well as business, medicine, and other areas of research. Mathematical principles, especially probability theory, underlie all statistical analyses.

College and university requirements excluding Mathematics (32-35 credit hours)

**Required Major courses** (45-47 credit hours)
MATH 21, 22, 23/ Calculus I, II, III (12) or MATH 31, 32, 33 Honors Calculus I, II, III (12)
MATH 12/231 Basic Statistics (4) or Probability and Statistics (3)
MATH 43/205/242 Survey of Linear Algebra (3) or Linear Methods (3) or Linear Algebra (4)
MATH 309 Theory of Probability (3)
MATH 310 Random Processes and Applications (3)
MATH 312 Statistical Computing and Applications (3)
MATH 334 Mathematical Statistics (4)
MATH 338 Linear Models in Statistics (4)
MATH 374 Statistical Project (3)
Two approved computing science courses or one approved computer science course and Engineering 1 (6) or (7).

**Major Electives** (12 credit hours) At least three courses with specific mathematical or statistical content chosen with the approval of the faculty advisor.

**Professional Electives** (21 credit hours) Courses selected from two or three fields of application of statistics and probability.

**Free Electives** (6-11 credits) This program requires a total of 121 credit hours.
A student must achieve an average of 2.0 or higher in major courses.

**Departmental Honors**
Students may earn departmental honors by writing a thesis during their senior year. Students are accepted into the program during their junior year by the department chairperson. This acceptance is based upon the student’s grades and a thesis proposal, which the student must prepare in consultation with a thesis advisor selected by the student. An oral presentation as well as a written thesis are required for completion of the program.

**Minor Programs**
The department offers minor programs in different branches of the mathematical sciences. Each program requires the courses shown below, and MATH 23 or 33. At most one of the courses in the minor program may also be required in the major program. For substitutions, the student should consult the chairperson.
Minor in Pure Mathematics
MATH 242, 243, 301
MATH 302 or 303 or 307 or 316 or 342

Minor in Applied Mathematics
Two of MATH 205, 208, 230, 231, 242, 320, 323
MATH 322
MATH 341

Minor in Probability and Statistics
MATH 12 or 231
MATH 309
Two of MATH 310, 312, 334, 338

Minor in Actuarial Science
MATH 202, 309 and 310
ECON 129
ACCT 108 or 151

For information on examinations of actuarial societies, students may consult their minor advisor.

Undergraduate Courses

MATH 0. Preparation for Calculus (2) summer-fall
Intensive review of fundamental concepts in mathematics utilized in calculus, including functions and graphs, exponential and logarithmic, and trigonometry. This course is for students who need to take MATH 51 or 21, but who require remediation in precalculus. In particular, students who fail the MATH 51 Readiness Exam must pass MATH 0 before being admitted to MATH 51. The credits for this course do not count toward graduation, but do count on the GPA and current credit count. Prerequisite: department permission.

MATH 5. Introduction to Mathematical Thought (3) spring
Meaning, content, and methods of mathematical thought illustrated by topics that may be chosen from number theory, abstract algebra, combinatorics, finite or non-Euclidean geometries, game theory, mathematical logic, set theory, topology. (MA)

MATH 9. Introduction to Finite Mathematics (4) fall
Systems of linear equations, matrices, introduction to linear programming. Sets, counting methods, probability, random variables, introduction to Markov chains. Students may not receive credit for both MATH 9 & 61. (MA)

MATH 12. Basic Statistics (4) fall-spring
A first course in the basic concepts and methods of statistics with illustrations from the social, behavioral, and biological sciences. Descriptive statistics; frequency distributions, mean and standard deviation, two-way tables, correlation and regression; random sampling, rules of probability, probability distributions and parameters, parameter estimation, confidence intervals, hypothesis testing, statistical significance. (MA)

Note: Students may not have credit for MATH 12 & ECO 145.

MATH 21. Calculus I (4) fall-spring
Functions and graphs; limits and continuity; derivative, differential, and applications; indefinite and definite integrals; trigonometric, logarithmic, exponential, and hyperbolic functions. (MA)

MATH 22. Calculus II (4) fall-spring
Applications of integration; techniques of integration; separable differential equations; infinite sequences and series; Taylor’s Theorem and other approximations; curves and vectors in the plane. Prerequisite: MATH 21 or MATH 31. (MA)

MATH 23. Calculus III (4) fall-spring
Vectors in space; partial derivatives; Lagrange multipliers; multiple integrals; vector analysis; line integrals; Green’s Theorem, Gauss’s Theorem. Prerequisite: MATH 22 or MATH 32. (MA)

MATH 31. Honors Calculus I (4) fall
Same topics as in MATH 21, but taught from a more thorough and rigorous point of view. (MA)

MATH 32. Honors Calculus II (4) fall-spring
Same topics as in MATH 22, but taught from a more thorough and rigorous point of view. Prerequisite: MATH 31. (MA)

MATH 33. Honors Calculus III (4) fall-spring
Same topics as in MATH 23, but taught from a more thorough and rigorous point of view. Prerequisite: MATH 32. (MA)

MATH 43. Survey of Linear Algebra (3) fall
Matrices, vectors, vector spaces and mathematical systems, special kinds of matrices, elementary matrix transformations, systems of linear equations, convex sets, introduction to linear programming. (MA). Students may not receive credit for both MATH 61 & 43.

MATH 51. Survey of Calculus I (4) fall-spring
Limits. The derivative and applications to extrema, approximation, and related rates. Exponential and logarithm functions, growth and decay. Integration. Partial derivatives and extrema. Prerequisite: Passing score on Readiness Exam, or MATH 0. (MA)

MATH 52. Survey of Calculus II (3) spring
Trigonometric functions and related derivatives and integrals. Techniques of integration. Differential equations. Probability and calculus. Prerequisite: MATH 21 or 31 or 51. (MA)

MATH 61. Linear Algebra for Business and Economics (2) fall-spring
Matrices, solutions of linear systems, linear programming, examples from business and economics, computer solutions. (MA). Students may not receive credit for both MATH 61 & 9, or for both MATH 61 & 43.

MATH 75. Calculus I, Part A (2) fall
Covers the same material as the first half of MATH 21. Meets three hours per week, allowing more class time for each topic than does MATH 21. (MA)

MATH 76. Calculus I, Part B (2) spring
Continuation of MATH 75, covering the second half of MATH 21. Meets three hours per week. Final exam for this course is identical to the MATH 21 final. Prerequisite: MATH 75. (MA)

MATH 163. Introductory Seminar (3) spring
An introduction to the discipline of mathematics designed for students considering a major in mathematics. The course will provide an introduction to rigorous mathematical reasoning and will survey some area of mathematics. Topics covered will vary. Satisfies the Introductory Seminar requirement.
MATH 171. Readings (1-3) fall-spring
Study of a topic in mathematics under individual supervision. Intended for students with specific interests in areas not covered in the listed courses. Prerequisite: consent of the department chair. (MA)

MATH 201. Problem Solving (1) fall
Practice in solving problems from mathematical contests using a variety of elementary techniques. (MA)

MATH 202. Actuarial Exam I (1) spring
Practice in solving problems from the first actuarial exam; problems in calculus and probability with insurance applications. Prerequisites: MATH 23 and 231. (MA)

MATH 205. Linear Methods (3) fall-spring
Linear differential equations and applications; matrices and systems of linear equations; vector spaces; eigenvalues and application to linear systems of differential equations. Prerequisite: MATH 22 or 32. (MA)

MATH 207. (CHE 207) Introduction to Biomedical Engineering and Mathematical Physiology (3) fall
Topics in human physiology and mathematical analysis of physiological phenomena, including the cardiovascular and respiratory systems, biomechanics, and renal physiology; broad survey of bioengineering. Independent study projects. Prerequisite: MATH 205. (MA)

MATH 208. Complex Variables (3) fall-spring
Functions of a complex variable; calculus of residues; contour integration; applications to conformal mapping and Laplace transforms. Prerequisite: MATH 23 or MATH 33. (MA)

MATH 230. Numerical Methods (3) fall
Representation of numbers and rounding error; numerical solution of equations; quadrature; polynomial and spline interpolation; numerical solution of initial and boundary value problems. Prerequisites: MATH 205 (previously or concurrently) and knowledge of either FORTRAN or PASCAL. (MA)

MATH 231. Probability and Statistics (3) fall-spring
Probability and distribution of random variables; populations and random sampling; chi-square and t distributions; estimation and tests of hypotheses; correlation and regression theory of two variables. Prerequisite: MATH 23 or MATH 33 or MATH 52. (MA)

MATH 234. Fractal Geometry (3-4)
Metric spaces and iterated function systems; various types of fractal dimension; Julia and Mandelbrot sets. Other topics such as chaos may be included. Small amount of computer use. Prerequisite: MATH 23 or MATH 33. (MA)

MATH 242. Linear Algebra (3-4) fall
Thorough treatment of the solution of simultaneous linear equations in n unknowns, including a discussion of the computational complexity of the calculation. Vector spaces, linear dependence, bases, orthogonality, eigenvalues. Applications as time permits. Prerequisite: MATH 23 or 33 or 52. (MA)

MATH 243. Algebra (3-4) spring
Introduction to basic concepts of modern algebra: groups, rings, and fields. (MA)

MATH 251. Combinatorics (3-4)
Topics selected from enumeration, graphs and networks, Ramsey theory, ordered sets, min-max duality, and designs. Theory will be motivated by applications from operations research and computer science. Prerequisite: MATH 22 or consent of instructor. (MA)

MATH 261. (CSE 261) Discrete Structures (3)
Topics in discrete mathematical structures chosen for their applicability to computer science and engineering. Sets, propositions, induction, recursion; combinatorics; binary relations and functions; ordering, lattices and Boolean algebra; graphs and trees; groups and homomorphisms. Prerequisites: MATH 21. (MA)

MATH 301. Principles of Analysis I (3-4) fall
Existence of limits, continuity and uniform continuity; Heine-Borel Theorem; existence of extreme values; mean value theorem and applications; conditions for the existence of the Riemann integral; absolute and uniform convergence; emphasis on theoretical material from the calculus of one variable. Prerequisite: MATH 23 or MATH 33. (MA)

MATH 302. Principles of Analysis II (3-4) spring
Continuation of MATH 301. Functions of several variables; the implicit function theorem, and further topics with applications to analysis and geometry. Prerequisite: MATH 301. (MA)

MATH 303. (Phil 303) Mathematical Logic (3-4) fall
A course, on a mathematically mature level, designed not only to acquaint the student with logical techniques used in mathematics but also to present symbolic logic as an important adjunct to the study of the foundations of mathematics. Prerequisite: non-math majors need Phil 114. (MA)

MATH 304. Axiomatic Set Theory (3-4) fall
A development of set theory from axioms; relations and functions; ordinal and cardinal arithmetic; recursion theorem; axiom of choice; independence questions. Prerequisite: MATH 301 or consent of the department chair. (MA)

MATH 307. General Topology I (3-4) fall
An introductory study of topological spaces, including metric spaces, separation and countability axioms, connectedness, compactness, product spaces, quotient spaces, function spaces. Prerequisite: MATH 301. (MA)

MATH 309. Theory of Probability (3) fall
Probabilities of events on discrete and continuous sample spaces; random variables and probability distributions; expectations; transformations; simplest kind of law of large numbers and central limit theorem. The theory is applied to problems in physical and biological sciences. Prerequisite: MATH 23 or MATH 33 or MATH 52. (MA)

MATH 310. Random Processes and Applications (3-4) spring
Theory and applications of stochastic processes. Limit theorems, introduction to random walks, Markov chains, Poisson processes, birth and death processes, and Brownian motion. Applications to financial mathematics, biology, business and engineering. Prerequisites: MATH 309 or MATH 231.
MATH 312. Statistical Computing and Applications (3-4)
Use of statistical computing packages; exploratory data analysis; Monte Carlo methods; randomization and resampling, application and interpretation of a variety of statistical methods in real world problems. Prerequisite: Math 12 or 231. (MA)

MATH 316. Complex Analysis (3-4) spring
Concept of analytic function from the points of view of Cauchy-Riemann equations, power series, complex integration, and conformal mapping. Prerequisite: MATH 301. (MA)

MATH 320. Ordinary Differential Equations (3-4) spring
The analytical and geometric theory of ordinary differential equations, including such topics as linear systems, systems in the complex plane, oscillation theory, stability theory, geometric theory of nonlinear systems, finite difference methods, general dynamical systems. Prerequisite: MATH 205, or both MATH 23, 33 and MATH 242. (MA)

MATH 322. Methods of Applied Analysis I (3) fall
Fourier series, eigenfunction expansions, Sturm-Liouville problems, Fourier integrals and their application to partial differential equations; special functions. Emphasis is on a wide variety of formal applications rather than logical development. Prerequisite: MATH 205 or consent of the department chair. (MA)

MATH 323. Methods of Applied Analysis II (3) spring
Green's functions; integral equations; variational methods; asymptotic expansions, method of saddle points; calculus of vector fields, exterior differential calculus. Prerequisite: MATH 322. (MA)

MATH 327. Groups and Rings (3-4) fall
An intensive study of the concepts of group theory including the Sylow theorems, and of ring theory including unique factorization domains and polynomial rings. Prerequisite: MATH 243 or consent of the department chair. (MA)

MATH 329. Computability Theory (3-4) spring
Core development of classical computability theory: enumeration, index and recursion theorems, various models of computation and Church's Thesis, uncomputability results, introduction to reducibilities and their degrees (in particular, Turing degrees, or degrees of uncomputability), computable operators and their fixed points. (MA)

MATH 334. Mathematical Statistics (3-4) spring
Populations and random sampling; sampling distributions; theory of statistical estimation; criteria and methods of point and interval estimation; theory of testing statistical hypotheses. Prerequisite: MATH 231 or MATH 309. (MA)

Mathematics 338. Linear Models in Statistics (3-4) spring
Least square principles in multiple regression and their interpretations; estimation, hypothesis testing, confidence and prediction intervals; analysis, multicollinearity, selection of regression models, analysis of variance and covariance; general linear models, principal component analysis. Use of computer packages. Prerequisite: Math 12 or 231. (MA)

MATH 340. (CSE 340) Design and Analysis of Algorithms (3) spring
Algorithms for searching, sorting, counting, graph and tree manipulation, matrix multiplication, scheduling, pattern matching and fast Fourier transforms. Abstract complexity measures and the intrinsic complexity of algorithms and problems in terms of asymptotic behavior; correctness of algorithms. Prerequisites: MATH 22 and MATH 261, or consent of the department chairperson. (MA)

MATH 341. Mathematical Models and Their Formulation (3) spring
Mathematical modeling of engineering and physical systems with examples drawn from diverse disciplines. Emphasis is on building models of real world problems rather than learning mathematical techniques. Prerequisite: MATH 205. (MA)

MATH 342. Number Theory (3-4)
A survey of elementary and nonelementary algebraic and analytic methods in the theory of numbers. Includes the Euclidean algorithm, Diophantine equations congruences, quadratic residues, primitive roots, number-theoretic functions as well as one or more of the following topics: distribution of primes, Pell's equation, Fermat's theorem, partitions. Prerequisite: MATH 301 or consent of the department chair. (MA)

MATH 350. Special Topics (3) fall-spring
A course covering special topics not sufficiently covered in listed courses. Prerequisite: consent of the department chair. May be repeated for credit. (MA)

MATH 371. Readings (1-3) fall-spring
The study of a topic in mathematics under appropriate supervision, designed for the individual student who has studied extensively and whose interests lie in areas not covered in the listed courses. Prerequisite: consent of the department chair. May be repeated for credit. (MA)

MATH 374. Statistical Project (3)
Supervised field project or independent reading in statistics or probability. Prerequisite: consent of the department chair. (MA)

MATH 391. Senior Honors Thesis (3) fall-spring
Independent research under faculty supervision, culminating in a thesis presented for departmental honors. May be repeated once for credit. Prerequisite: consent of chair (MA)

Graduate Programs in Mathematics
The department offers graduate programs leading to the degrees of master of science in mathematics, applied mathematics, or statistics, and the doctor of philosophy in mathematics or applied mathematics.
To begin graduate work in mathematics a student must present evidence of adequate undergraduate preparation. The undergraduate program should have included a year of advanced calculus, a semester of linear algebra, and a semester of abstract algebra.

M.S. in Mathematics or Applied Mathematics
The master's program demands 30 credit hours of graduate courses with at least 18 hours at the 400 level. With the permission of the chairperson, up to six hours of these courses can be replaced by a thesis. All students in the master's program must also pass a comprehensive examination. The M.S. degree can serve both as a final
degree in mathematics or as an appropriate background for the Ph.D. degree.

**M.S. in Statistics**

This program requires 30 credit hours of graduate courses with at least 18 hours of 400-level STAT or MATH courses. The choice of courses must be approved by the graduate advisor, and up to six hours of coursework may be replaced with a thesis. All students in the program must also pass a comprehensive examination.

The M.S. program in statistics has two tracks. The statistics track has recommended courses MATH 309, STAT 412, 434, and 462; electives STAT 410, 438, and 461; and other possible electives STAT 408 and 409, EDUC 411, I.E. 332, 409, and 410, ECO 455 and 463, CSE 411, and MECH 405. The stochastic modeling track has recommended courses MATH 309 and 401, and STAT 410 and 463; electives MATH 341 and STAT 434, 438, and 464; and other possible electives STAT 408 and 409, MATH 402, 407, 430, 467, and 468, ECO 453, CSE 411, MECH 405, and I.E. 316, 339, 409, 416, and 439.

**Ph.D. in Mathematics**

The plan of work toward the doctor of philosophy degree will include a comprehensive examination and a qualifying examination. The latter tests the student’s command of three areas. The combination of areas must be approved by the department. Recent exam areas include algebra, analysis, differential equations, differential geometry, discrete structures, functional analysis, logic and set theory, numerical analysis, probability, statistics, and topology. Other areas of mathematics may be proposed by the candidate and approved by the department.

A general examination, a foreign language examination, and the doctoral dissertation and its defense comprise the work for the Ph.D. degree.

Each candidate’s plan of work must be approved by a special committee of the department. A Ph.D. student is required to have 18 credits of approved graduate level course work beyond the master’s level. After completion of 18 credits a student is required to take at least one course per academic year other than Math 409, 410, and 499.

**Ph.D. in Applied Mathematics**

The plan of work toward the doctor of philosophy degree will include a comprehensive examination and a qualifying examination. The latter tests the student’s command of three areas. The combination of areas must be approved by the department. Recent exam areas include analysis, applied probability, differential equations, discrete structures, financial mathematics, linear algebra and linear programming, mathematical biology, mathematical statistics, numerical methods, and statistical methods. Other areas of mathematical and physical sciences may be proposed by the candidate and approved by the department. A general examination, a foreign language examination, and the doctoral dissertation and its defense complete the work for the Ph.D. degree.

Each candidate’s plan of work must be approved by a special committee of the department. A Ph.D. student is required to have 18 credits of approved graduate level course work beyond the master’s level. After completion of 18 credits a student is required to take at least one course per academic year other than Math 409, 410, and 499.

**Graduate Courses**

**MATH 401. Real Analysis I (3) fall**
Set theory, real numbers; introduction to measures, Lebesgue measure; integration, general convergence theorems; differentiation, functions of bounded variation, absolute continuity; Lp spaces. Prerequisites: MATH 302 or consent of department chair.

**MATH 402. Real Analysis II (3) spring**
Metric spaces; introduction to Banach and Hilbert space theory; Fourier series and Fejer operators; general measure and integration theory, Radon-Nikodym and Riesz representation and theorems; Lebesgue-Stieljes integral. Prerequisites: MATH 307 and MATH 401.

**MATH 403. Topics in Real Analysis (3)**
Intensive study of topics in analysis with emphasis on recent developments. Prerequisite: consent of the department chair. May be repeated for credit.

**MATH 404. Topics in Mathematical Logic (3)**
Intensive study of topics in mathematical logic. Prerequisite: Consent of the department chair. May be repeated for credit.

**MATH 405. Partial Differential Equations I (3) fall**
Classification of partial differential equations; methods of characteristics for first order equations; methods for representing solutions of the potential, heat, and wave equations, and properties of the solutions of these equations; maximum principles. Prerequisite: MATH 302 or its equivalent.

**MATH 406. Partial Differential Equations II (3) spring**
Continuation of MATH 405. Emphasis on second order equations with variable coefficients and systems of first order partial differential equations. Prerequisite: MATH 405.

**MATH 407. Theory and Technique of Optimization (3)**
Linear programming: simplex and revised simplex methods, duality theory; unconstrained optimization by one-dimensional search methods; convexity and Kuhn-Tucker conditions, applications to methods for constrained optimization.

**MATH 408. Algebraic Topology I (3)**
Polyhedra; fundamental groups; simplicial and singular homology.

**MATH 409.(STAT 409) Mathematics Seminar (1-6) fall**
An intensive study of some field of mathematics not offered in another course. Prerequisite: consent of the department chair.

**MATH 410.(STAT 408) Mathematics Seminar (1-6) spring**
Continuation of the field of study in MATH 409 or the intensive study of a different field. Prerequisite: consent of the department chair.

**MATH 416. Complex Function Theory (3) fall**
Continuation of MATH 316. Prerequisite: MATH 316 or consent of the department chair.

**MATH 421. Introduction to Wavelets (3)**
Continuous and discrete signals; review of Fourier analysis; discrete wavelets; time-frequency spaces; Haar and Walsh systems; multiresolution analysis; Hilbert spaces;
quadradic mirror filters; fast wavelet transforms; computer code; applications to filtering, compression, and imaging. Prerequisite: ECE 108, MATH 205, or consent of instructor.

MATH 423. Differential Geometry I (3) Differential manifolds, tangent vectors and differentials, submanifolds and the implicit function theorem. Lie groups and Lie algebras, homogeneous spaces. Tensor and exterior algebras, tensor fields and differential forms, de Rham cohomology, Stokes' theorem, the Hodge theorem. Prerequisite: MATH 301, 302, or MATH 243 or MATH 205 with consent of instructor.

MATH 424. Differential Geometry II (3) Curves and surfaces in Euclidean space; mean and Gaussian curvatures, covariant differentiation, parallelism, geodesics, Gauss-Bonnet formula. Riemannian metrics, connections, sectional curvature, generalized Gauss-Bonnet theorem. Further topics. Prerequisite: MATH 423.

MATH 428. Fields and Modules (3) Field theory, including an introduction to Galois theory; the theory of modules, including tensor products and classical algebras. Prerequisite: MATH 327.

MATH 430. Numerical Analysis (3) spring Multistep methods for ordinary differential equations; finite difference methods for partial differential equations; numerical approximation of functions. Use of computer required. Prerequisite: MATH 230 or consent of the department chair.

MATH 431. Calculus of Variations (3) Existence of a relative minimum for single and multiple integral problems; variational inequalities of elliptic and parabolic types and methods of approximating a solution. Prerequisite: MATH 302 or its equivalent.

MATH 435. Functional Analysis I (3) fall Banach spaces and linear operators; separation and extension theorems; open mapping and uniform boundedness principles; weak topologies; local convexity and duality; Banach algebras; spectral theory of operators; and compact operators. Prerequisites: MATH 307 and MATH 401.

MATH 443. Algebraic Topology II (3) Continuation of MATH 408. Cohomology theory, products, duality. Prerequisite: MATH 408.

MATH 444. Topics in Algebra (3) Selected topics reflecting the interests of the professor and the students. Prerequisite: MATH 444.

MATH 446. Combinatorics (3) fall Fundamental combinatorial theories and modern techniques interconnecting these theories. Topics selected from: enumeration, Ramsey theory, extremal set theory, hypergraphs, structural and extremal graph theory, polyhedral combinatorics, designs and codes, matroids, ordered sets and lattices. Prerequisite: consent of instructor.

MATH 448. Combinatorics and Graph Theory (3) spring Fundamental theories and techniques for graphs, ordered sets, hypergraphs, extremal set theory, and matroids. Topics are distinct from those of MATH 446, which is not a prerequisite for this course. Prerequisite: consent of instructor.

MATH 449. Topics in Algebra (3) Intensive study of topics in algebra with emphasis on recent developments. Prerequisite: consent of the department chairman. May be repeated for credit with the consent of the department chair.

MATH 450. Special Topics (3) fall-spring Intensive study of some field of the mathematical sciences not covered in listed courses. Prerequisite: consent of the department chair. May be repeated for credit with the consent of the department chair.

MATH 455. Topics in Number Theory (3) Selected topics in algebraic and analytic number theory. Prerequisites: MATH 316 and MATH 327. May be repeated for credit with consent of the department chair.

MATH 461. (STAT 461) Topics in Mathematical Statistics (3) An intensive study of one or more topics such as theory of statistical tests, statistical estimation, regression, analysis of variance, nonparametric methods, stochastic approximation, and decision theory. Prerequisites: MATH 334 and MATH 401. May be repeated for credit with consent of the department chair.

MATH 462. (STAT 462) Nonparametric Statistics (3) fall Order and rank statistics; tests based on runs, signs, ranks, and order statistics; chi-square and Kolmogorov-Smirnov tests for goodness of fit; the two-sample problem; confidence and tolerance intervals. Prerequisite: MATH 231 or 309.

MATH 463. (STAT 463) Advanced Probability (3) Measure theoretic foundations; random variables, integration in a measure space; expectation; convergence of random variables and probability measures; conditional expectations; characteristic functions; sums of random variables, limit theorems. Prerequisites: MATH 309 and MATH 401.

MATH 464. (STAT 464) Advanced Stochastic Processes (3) Theory of stochastic processes; stopping times; martingales; Markov processes; Brownian motion; Slepian's lemma; imbedding; Brownian bridge, laws of suprema; Gaussian processes. Prerequisites: MATH 309 and MATH 401.

MATH 467. Financial Calculus I (3) fall Basic mathematical concepts behind derivative pricing and portfolio management of derivative securities. Development of hedging and pricing by arbitrage in the discrete time setting of binary trees and Black-Scholes model. Introduction to the theory of Stochastic Calculus, Martingale representation theorem, and change of measure. Applications of the developed theory to a variety of actual financial instruments. Prerequisites: Math 231 or Math 309 or consent of instructor.

MATH 468. Financial Calculus II (3) spring Models and mathematical concepts behind the interest rates markets. Heath-Jarrow-Morton model for random evolution of the term structure of interest rates and short rate models. Applications of the theory to a variety of interest rates contracts including swaps, caps, floors, swap-options. Development of multidimensional stochastic calculus and applications to multiple stock models, quants, and foreign currency interest-rate models. Prerequisites: Math 467.
MATH 470. Proseminar (3) spring
Preparation for entering the mathematics profession. Seminar will concentrate on methods of teaching mathematics, and will include other topics such as duties of a professor and searching for a job. Prerequisite: consent of mathematics graduate advisor.

MATH 471. Homological Algebra (3)
Modules, tensor products, categories and functions, homology functors, projective and injective modules. Prerequisite: MATH 428.

MATH 472. Group Representations (3)
Linear representations and character theory with emphasis on the finite and compact cases. Prerequisite: MATH 428 or consent of the department chairperson.

MATH 490. Thesis
MATH 499. Dissertation

Statistics

STAT 408. (MATH 410) Seminar in Statistics and Probability (1-6) spring
Intensive study of some field of statistics or probability not offered in another course. Prerequisite: consent of the graduate advisor.

STAT 409 (MATH 409) Seminar in Statistics and Probability (1-6) spring
Intensive study of some field of statistics or probability not offered in another course. Prerequisite: consent of the graduate advisor.

STAT 410. Random Processes and Applications (3) spring
See MATH 310.

STAT 412. Statistical Computing and Applications (3)
See MATH 312.

STAT 434. Mathematical Statistics (3) spring
See MATH 334.

STAT 438. Linear Models in Statistics (3) spring
See MATH 338

STAT 461 (MATH 461). Topics in Mathematical Statistics (3)
See MATH 461.

STAT 462 (MATH 462). Nonparametric Statistics (3)
See MATH 462.

STAT 463 (MATH 463). Advanced Probability (3)
See MATH 463.

STAT 464 (MATH 464). Advanced Stochastic Processes (3)
See MATH 464.

Mechanical Engineering and Mechanics

Professors.

Herman F. Nied, Ph.D. (Lehigh), chair; Philip A. Blythe, Ph.D. (Manchester, Engeland); John C. Coulter, Ph.D. (Delaware); Terry J. Delph, Ph.D. (Stanford); D. Gary Harlow, Ph.D. (Cornell); Ronald J. Hartranft, Ph.D. (Lehigh); Jacob Y. Kazakia, Ph.D. (Lehigh); Edward K. Levy, Sc.D. (M.I.T.), director; Andrew R. Arnold, Ph.D. (Lehigh); Donald J. O. Rockwell, Ph.D. (Lehigh), Paul B. Reinschmidt; Kenneth N. Sawyers, Ph.D. (Brown); Charles R. Smith, Ph.D. (Stanford); Eric Varley, Ph.D. (Brown); Askady Voloshin, Ph.D. (Tel-Aviv, Israel); Robert P. Wei, Ph.D. (Princeton), Paul B. Reinschmidt.

Associate professors.

Meng-Sang Chew, Ph.D. (Columbia); Joachim L. Grenestedt, Ph.D. (KTH, Royal Inst. of Tech., Stockholm, Sweden), Class of '61 Professor; Robert A. Lucas, Ph.D. (Lehigh), associate chair; Alparslan Ozturk, Ph.D. (Illinois); N. Duke Pereira, Ph.D. (California, Los Angeles).

Assistant professors.

Samir N. Ghadiiali, Ph.D. (Tulane), Frank Hook Professor; Eugenio Schuster, Ph.D. (California, San Diego).

Emeritus professors.

Russell E. Benner, Ph.D. (Lehigh); Forbes T. Brown, Sc.D. (M.I.T.); Fazil Erdogan, Ph.D. (Lehigh); Stanley H. Johnson, Ph.D. (California, San Diego); Jerzy A. Owczarek, Ph.D. (Lehigh); Richard Roberts, Ph.D. (Lehigh); Robert G. Sarubbi, Ph.D. (Lehigh); George C. M. Sih, Ph.D. (Lehigh); Gerald F. Smith, Ph.D. (Brown); Theodore A. Terry, Ph.D. (Lehigh); Dean P. Udupa, Ph.D. (Brown).

Educational Mission

The Department of Mechanical Engineering and Mechanics prepares our students to be learners, and agents in both the application and development of technology to better serve the needs of society.

Program Educational Objectives

Mechanical engineering is one of the core disciplines in the P.C. Rossin College of Engineering and Applied Science (RCEAS). The department is committed to serving the overall mission of the RCEAS, and of the University, by providing education and training to undergraduate and graduate students, by developing new knowledge and engineering methodology, and by providing service to industry and society at large. To achieve our Educational Mission, the Department of Mechanical Engineering has established a set of Program Educational Objectives, which are to educate engineers who can:

• Model, formulate and creatively synthesize (i.e. design) realistic and practical systems, products, and environments;
• Naturally incorporate basic sciences and the art of mathematics as part of their thinking and problem-solving processes;
• Design, conduct, and analyze experimental tests of practical systems and products;
• Understand and appreciate the technical diversity required to develop new products/processes, and use this understanding to work effectively in multi-disciplinary teams;
• Develop an appreciation of the contemporary world, and be able to contribute to it in a professional and ethical manner;
• Learn how to learn, so that life-long learning becomes second nature.

The undergraduate program in mechanical engineering focuses principally on the first five of these objectives, and is configured to prepare our students for employ-
ment, and continued professional development and growth. The program provides students with the basic education they will need to function in an engineering environment, pursue graduate studies, continue their professional development and growth, and develop an awareness of the culture and society in which we live. Because of technological innovations and the long-term demands of global competition, the program also seeks to prepare students to adapt to rapid advances and changes in technology, and to provide leadership in effecting these changes, consistent with the sixth educational objective for life-long learning.

Achievement of the six educational objectives is served first through a sound education in mathematics and those physical and engineering sciences that are of greatest relevance to the design and analysis of mechanical systems; second, by exposure to the engineering process (creation, innovation, analysis and judgment) through design courses, projects, laboratories, and a choice of technical electives that permits a degree of specialization; and third, by the development of cultural awareness through courses in humanities and social sciences. Students may take elective courses that transcend traditional disciplinary lines, while satisfying the basic requirements for mechanical engineering.

Design and engineering practices are integrated with the engineering science aspects of the program. Through a broadening of the design sequence to include hands-on manufacturing and multi-disciplinary collaborations, the program seeks to emphasize the integration of design, manufacturing, business, and aesthetics in modern technological enterprises, and to prepare our students to function in an increasingly interdisciplinary environment. Through a comprehensive set of laboratory courses, which ultimately focus on the design and planning of laboratory experiences by the students (rather than carrying out rote experiments), opportunities are provided for students to learn and employ the processes and skills for solving hands-on engineering problems.

B.S. in Mechanical Engineering

Mechanical engineering is one of the broadest of the engineering professions, dealing generally with systems for energy conversion, material transport and the control of motions and forces.

Mechanical engineers may choose from among many different activities in their careers, according to their interests and the changing needs of society. Some concentrate on the conversion of thermal, nuclear, solar, chemical and electrical energy, or on the problems of air, water, and noise pollution. Some concentrate on the design of mechanical systems used in transportation, manufacturing or health care industries or by individual consumers. Some will be working, a decade from now, in fields that do not yet exist. Most will be engaged with concepts involving all four dimensions of space and time.

The curriculum leading toward the bachelor of science in mechanical engineering combines a broad base in mathematics, physical sciences, and the engineering sciences (mechanics of solids, materials, dynamics and fluid, thermal and electrical sciences), including laboratory. Special emphasis is placed on the practice of modern Integrated Product Development, combining state-of-the-art computer-aided design and manufacturing methods in a business-oriented framework. Several specific application fields are chosen toward the end of the program in the form of four or more courses elected from a wide variety of 300-level offerings. Courses in mechanical engineering and engineering mechanics are equally available.

The course requirements for a B.S. degree in mechanical engineering are listed below. In addition to required mathematics, physics, chemistry and basic engineering courses, the program includes a minimum of seven courses in humanities and social sciences (see humanities/social sciences), two free electives and five approved electives. The total graduation requirement is 132 credits.

Undergraduate Curriculum in Mechanical Engineering

freshman year (see Engineering, freshman year, Section III)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 10 : Graphics for Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 111 : Professional Development</td>
<td>1</td>
</tr>
<tr>
<td>MECH 2 : Elementary Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MAT 33 : Engineering Materials and Processes</td>
<td>3</td>
</tr>
<tr>
<td>MATH 23 : Analytical Geometry &amp; Calculus III</td>
<td>4</td>
</tr>
</tbody>
</table>

 sophomore year, first semester (16 - 18 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 12 : Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 211 : Mechanical Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>ME 231 : Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 102 : Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 81 : Principles of Electrical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ME 215 : Engineering Reliability</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205 : Linear Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 208 : Complex Variables</td>
<td>3</td>
</tr>
<tr>
<td>MECH 208 : Complex Variables</td>
<td>3</td>
</tr>
<tr>
<td>MATH 230 : Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>MECH 231 : Probability and Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

 sophomore year, second semester (16 - 18 credit hours)*

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 104 : Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>MECH 10 : Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 212 : Mechanical Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>ME 211 : Mechanical Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>ME 240 : Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 242 : Mechanical Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 252 : Mechanical Elements</td>
<td>3</td>
</tr>
<tr>
<td>ECE 162 : Electrical Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH 231 : Probability and Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

 junior year, first semester (16 - 18 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 21 : Mechanical Engineering Lab I</td>
<td>1</td>
</tr>
<tr>
<td>ME 231 : Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 2 : Elementary Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 81 : Principles of Electrical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>ME 215 : Engineering Reliability</td>
<td>3</td>
</tr>
<tr>
<td>MATH 205 : Linear Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 230 : Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td>MATH 231 : Probability and Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

 junior year, second semester (16 - 18 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 212 : Mechanical Engineering Design II</td>
<td>3</td>
</tr>
<tr>
<td>Senior Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ME 211 : Mechanical Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>ME 240 : Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 242 : Mechanical Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME 252 : Mechanical Elements</td>
<td>3</td>
</tr>
<tr>
<td>ECE 162 : Electrical Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH 231 : Probability and Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

 senior year, first semester (16 - 18 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 207 : Mechanical Engineering and Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 208 : Mechanical Engineering and Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 210 : Mechanical Engineering and Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 389 : Mechanical Engineering and Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Laboratories
Select two out of the following four courses:
ME 207, ME 208, ME 210, and ME 389.
The total number of credits required for graduation is 132. A total of 41 credits in electives must be taken.

These electives are of six types:

**Mechanical Engineering Electives**

a) Humanities/Social Sciences: A total of 17 credits of electives in humanities and social science, which must include ECO 1. (Note that these electives are in addition to the 6 hours of required freshman English.) See description of HSS in Section III of this catalog.
b) ME 321 Introduction to Heat Transfer (3)
c) ENGR. Elective A: One, 3-credit course selected from the following: MECH 302, MECH 305, ME 304, ME 322, ME 331, or ME 343
d) ENGR. Elective B: One, 3-credit course selected from any ME 300 or MECH 300-level course, excluding ME 310
e) ENGR. Elective C: Three, 3-credit courses selected from any ME 300/MECH 300-level course or an engineering/science/mathematics course, as approved by the department chair. ME 310 may be taken once to satisfy this requirement.
f) Free electives: 6 credit hours in any subject area are required

**Co-op Program**

To participate in the Co-op program you must rank in the top third of the engineering class after three semesters of study and attend a summer program between the sophomore and junior years. See your advisor or contact the Co-op Faculty Liaison for further details.

**B.S. in Engineering Mechanics**

The curriculum in engineering mechanics is designed to prepare students for careers in engineering research and development, and is especially appropriate for students wishing to specialize in the analysis of engineering systems. In many industries and governmental laboratories there is a demand for men and women with broad training in the fundamentals of engineering in which engineering mechanics and applied mathematics play an important role.

The first two years of the curriculum is the same as that in mechanical engineering. One of the advantages of the curriculum is the flexibility it offers through 18 credits of technical and six credits of personal electives in the junior and senior years. Beyond the sophomore year there are required courses in dynamics, solid mechanics, fluid mechanics, heat transfer, principles of electrical engineering, mathematics, vibrations, and senior laboratories or projects. It is recommended that the electives be chosen either to concentrate in areas such as applied mathematics and computational mechanics, solid mechanics, engineering materials, and fluid mechanics or to obtain further depth in all areas. The academic advisor for the engineering mechanics program will provide guidance in formulating the student's goals and choosing electives.

In addition to the required and elective courses in mathematics, sciences and engineering, the B.S. degree program in engineering mechanics includes a minimum of seven courses in humanities and social sciences (see humanities/social sciences). The total graduation requirement is 130 credits.

**Undergraduate Curriculum in Engineering Mechanics**

**freshman and sophomore years:** same as ME curriculum

**junior year, first semester (16 - 18 credit hours)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 21</td>
<td>Mechanical Engineering Lab I (1)</td>
<td>1</td>
</tr>
<tr>
<td>ME 231</td>
<td>Fluid Mechanics (3)</td>
<td>3</td>
</tr>
<tr>
<td>MECH 102</td>
<td>Dynamics (3)</td>
<td>3</td>
</tr>
<tr>
<td>ECE 81</td>
<td>Principles of Electrical Engineering (4)</td>
<td>4</td>
</tr>
<tr>
<td>MATH 230</td>
<td>Numerical Methods (3)</td>
<td>3</td>
</tr>
</tbody>
</table>

**junior year, second semester (16 - 18 credit hours)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 121</td>
<td>Mechanical Engineering Lab II (1)</td>
<td>1</td>
</tr>
<tr>
<td>ME 240</td>
<td>Manufacturing (3)</td>
<td>3</td>
</tr>
<tr>
<td>ME 242</td>
<td>Mechanical Engineering Systems (3)</td>
<td>3</td>
</tr>
<tr>
<td>ECE 162</td>
<td>Electrical Laboratory (1)</td>
<td>1</td>
</tr>
<tr>
<td>MATH 208</td>
<td>Complex Variables (3)</td>
<td>3</td>
</tr>
</tbody>
</table>

**senior year, first semester (16 - 18 credit hours)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Laboratory (2)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>electives (14 - 16)</td>
<td></td>
<td>14 - 16</td>
</tr>
</tbody>
</table>

**senior year, second semester (16 - 18 credit hours)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Laboratory (2)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>electives (14 - 16)</td>
<td></td>
<td>14 - 16</td>
</tr>
</tbody>
</table>

The total number of credits required for graduation is 130. A total of 44 credits in electives must be taken. These electives are of five types:

**Engineering Mechanics Electives**

a) Humanities/Social Sciences: A total of 17 credits of electives in humanities and social science, which must include ECO 1. (Note that these electives are in addition to the 6 hours of required freshman English.) See description of HSS in Section III of this catalog.
b) ME 321 Introduction to Heat Transfer (3)
c) ENGR. Mechanics Elective A: Two, 3-credit courses selected from the following: MECH 302, MECH 305, ME 304, ME 322, ME 331, or ME 343
d) ENGR. Mechanics Elective B: Four, 3-credit courses selected from any ME 300/MECH 300-level course or an engineering/science/mathematics course, as approved by the Department Chair
e) Free electives: 6 credit hours of any subject area required. Typical recommended options:

**Applied Mathematics and Computational Mechanics**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 305</td>
<td>Advanced Mechanics of Materials (3)</td>
<td>3</td>
</tr>
<tr>
<td>MECH 312</td>
<td>Finite Element Analysis (3)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 309</td>
<td>Theory of Probability (3)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 322</td>
<td>Methods of Applied Analysis I (3)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 323</td>
<td>Methods of Applied Analysis II (3)</td>
<td>3</td>
</tr>
</tbody>
</table>

**Solid Mechanics**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 305</td>
<td>Advanced Mechanics of Materials (3)</td>
<td>3</td>
</tr>
<tr>
<td>MECH 307</td>
<td>Mechanics of Continua (3)</td>
<td>3</td>
</tr>
<tr>
<td>MECH 312</td>
<td>Finite Element Analysis (3)</td>
<td>3</td>
</tr>
<tr>
<td>MECH 313</td>
<td>Fracture Mechanics (3)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 322</td>
<td>Methods of Applied Analysis I (3)</td>
<td>3</td>
</tr>
</tbody>
</table>

**Engineering Materials**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 305</td>
<td>Advanced Mechanics of Materials (3)</td>
<td>3</td>
</tr>
<tr>
<td>MECH 313</td>
<td>Fracture Mechanics (3)</td>
<td>3</td>
</tr>
<tr>
<td>MAT 218</td>
<td>Mechanical Behavior of Materials (3)</td>
<td>3</td>
</tr>
</tbody>
</table>
**Minor in Aerospace Engineering**

The minor in aerospace engineering provides a foundation for students who intend to pursue a career in the aerospace industry. This minor will also provide sufficient technical background in aerospace studies for undergraduates who plan to enter graduate programs in this field. The minor requires a minimum of 17 credits from the following course selection:

**Required Courses**

- ME 326 Aerodynamics (3)
- MECH 305 Advanced Mechanics of Materials (3)
- ME 343 Control Systems (3)
- MECH 328 Fundamentals of Aircraft Design (3)

**Elective Courses**

- ME 322 Gas Dynamics (3)
- ME 323 Reciprocating and Centrifugal Engines (3)
- ME 331 Advanced Fluid Mechanics (3)
- ME 389 Controls Laboratory (2)
- MECH 312 Finite Element Analysis (3)
- ME 348 Computer-Aided Design (3)
- MAT 309 Composite Materials (3)

---

**Undergraduate Courses in Mechanical Engineering**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 31</td>
<td>Introduction to Quantum Mechanics (3)</td>
<td></td>
</tr>
<tr>
<td>PHY 363</td>
<td>Physics of Solids (3)</td>
<td></td>
</tr>
</tbody>
</table>

**Fluid Mechanics**

- ME 331 Advanced Fluid Mechanics (3)
- ME 322 Gas Dynamics (3)
- MECH 326 Aerodynamics (3)
- MATH 322 Methods of Applied Analysis I (3)

**ME 111. Professional Development (1) fall**

Examination of ethical and professional choices facing mechanical engineers. Written and oral communications. Industrial field trips. (ES 0.5), (ED 0.5)

**ME 10. Graphics for Engineering Design (3) fall**

Graphical description of mechanical engineering design for visualization and communication by freehand sketching, production drawings, and 3-D solid geometric representations. Introduction to creation, storage, and manipulation of such graphical descriptions through an integrated design project using state-of-the-art, commercially available computer-aided engineering software. Lectures and laboratory. (ES 1), (ED 2)

**ME 21. Mechanical Engineering Laboratory I (1) fall, spring**

Experimental methods in mechanical engineering and mechanics. Analysis of experimental error and error propagation. Introduction to elementary instrumentation. Introduction to digital data acquisition. Prequisite: MECH 12, previously or concurrently. (ES 1), (ED 0)

**ME 104. Thermodynamics I (3) fall, spring**

Basic concepts and principles of thermodynamics with emphasis on simple compressible substances. First and second law development, energy equations, reversibility, entropy and efficiency. Properties of pure substances and thermodynamic cycles. Corequisites: MATH 23 and PHY 11. (ES 3), (ED 0)

**ME 121. Mechanical Engineering Laboratory II (1) fall, spring**

A continuation of ME 21 including use of transducers, advanced instrumentation, and data acquisition. Emphasis on experimental exercises that illustrate, and/or introduce material from thermodynamics, and fluid mechanics. Includes proposal writing and interpretation of results. Prerequisites: ME 21, ME 104, and co-requisite: ME 231. (ES 1), (ED 0)

**ME 207. Mechanical Engineering Laboratory III (2) fall**

Formulation of laboratory experiments through open-ended planning, including decision criteria for laboratory techniques and approaches. Execution of experiments based on individual plans, followed by assessment of experimental results. Prerequisite: ME 121. (ES 1), (ED 1)

**ME 208. Mechanical Engineering Laboratory IV (2) spring**

Formulation of laboratory experiments through open-ended planning, including decision criteria for laboratory techniques and approaches. Execution of experiments based on individual plans, followed by assessment of experimental results. Prerequisite ME 121. (ES 1), (ED 1)

**ME 210. Laboratory Projects (1-2) fall, spring**

Experimental work including planning, design and development of apparatus, data collection and analysis as it pertains to an engineering problem. Progress is reported in the form of several planning and project reports. Prerequisite: Department permission required. (ES 1), (ED 1)

**ME 211. Integrated Product Development I (3) spring**

Business, engineering and design arts students work in cross disciplinary teams of 4-6 students on conceptual design including marketing, financial and economic planning, economic and technical feasibility of new product concepts. Teams work on industrial projects with faculty advisors. Oral presentations and written reports. Prerequisites: ME 10, MECH 12, ME 104. (ES 0), (ED 3)

**ME 212. Integrated Product Development II (2) fall**

Business, engineering and design arts students work in cross disciplinary teams of 4-6 students on the detailed design including fabrication and testing of a prototype of the new product designed in the IPD course 1. Additional deliverables include a detailed production plan, marketing plan, detailed base-case financial models, project and product portfolio. Teams work on industrial projects with faculty advisors. Oral presentations and written reports. Prerequisites: ME 211, ME 252, (ME 252 may be taken concurrently). (ES 0) (ED 2)

**ME 215. Engineering Reliability (3) fall, spring**

Applications of reliability methods to engineering problems. Modeling and analysis of engineered components and systems subjected to environmental and loading conditions. Modeling content encompasses mechanistically based probability and experientially based statistical approaches. Concepts needed for design with uncertainty are developed. Principles are illustrated through case studies and projects. Engineering applications software will be extensively utilized for the projects. Prerequisites: MATH 23 or 33; MECH 12, previously or concurrently.
ME 231. Fluid Mechanics (3) fall, spring
Kinematics of fluid flow and similarity concepts. Equations of incompressible fluid flow with inviscid and viscous applications. Turbulence. One-dimensional compressible flow, shock waves. Boundary layers, separation, wakes and drag. Prerequisite: MATH 205, (ES 2.5), (ED 0.5)

ME 240. Manufacturing (3) spring
Analytical and technological base for several manufacturing processes and common engineering materials. Processes include metal cutting, metal deformation, injection molding, thermoforming, and composites. Process planning, computer-aided manufacturing, manufacturing system engineering, and quality measurements. Design project. Weekly laboratory. Prerequisites: ME 10, MATH 33, MECH 12. (ES 1.5), (ED 1.5)

ME 242. Mechanical Engineering Systems (3) fall, spring
The modeling and analysis of mechanical, fluid, electrical and hybrid systems, with emphasis on lumped models and dynamic behavior, including vibrations. Source-load synthesis. Analysis in temporal and frequency domains. Computer simulation of nonlinear models, and computer implementation of the superposition property of linear models. Prerequisites: MECH 102, MATH 205 and, previously or concurrently, ME 231. (ES 2), (ED 1)

ME 252. Mechanical Elements (3) spring
Methods for the analysis and design of machine elements such as springs, gears, clutches, brakes, and bearings. Motion analysis of cams and selected mechanisms. Projects requiring the design of simple mechanisms of mechanical sub-assemblies. Prerequisites: MECH 12, ME 10 and MECH 102. (ES 1.5), (ED 1.5)

For Advanced Undergraduates and Graduate Students

ME 304. Thermodynamics II (3) fall, spring

ME 310. Directed Study (1-3) fall, spring
Project work on any aspect of engineering, performed either individually or as a member of a team made up of students, possibly from other disciplines. Project progress is reported in the form of several planning and project reports. Direction of the projects may be provided by faculty from several departments and could include interaction with outside consultants and local communities and industries. Prerequisite: Department permission required. (ES 1), (ED 2)

ME 312. Synthesis of Mechanisms (3) fall
Geometry and constrained plane motion with application to linkage design. Type of number synthesis. Comparison of motion analysis by graphical, analytical and computer techniques. Euler-Savary and related curvature techniques as applied to cam, gear and linkage systems. Introduction to the analysis of space mechanisms. Prerequisites: MATH 205, MECH 102. Chew. (ES 1), (ED 2)

ME 321. Introduction to Heat Transfer (3) fall, spring
Analytical and numerical solutions to steady and transient one- and two-dimensional conduction problems. Forced and natural convection in internal and external flows. Thermal radiation. Thermal design of engineering processes and systems. Prerequisites: ME 104, ME 231. Neti, Blythe, MacPherson. (ES 2), (ED 1)

ME 322. Gas Dynamics (3) spring

ME 323. Reciprocating and Centrifugal Engines (3) fall
Thermal analysis and design of internal combustion engines (conventional and unconventional), gas turbine engines, air breathing jet engines, and rocket engines. Components such as jet nozzles, compressors, turbines, and combustion chambers are chosen to exemplify the theory and development of different types of components. Both ideal fluid and real fluid approaches are considered. Prerequisite: ME 104. (ES 2.5), (ED 0.5)

ME 331. Advanced Fluid Mechanics (3) fall

ME 340. Advanced Mechanical Design (3) fall
Probabilistic design of mechanical components and systems. Reliability functions, hazard models and product life prediction. Theoretical stress-strength-time models. Static and dynamic reliability models. Optimum design of mechanical systems for reliability objectives or constraints. Prerequisite: MATH 231 or consent of instructor. Harlow. (ES 2), (ED 1)

ME 341. Mechanical Systems (3) spring
Advanced topics in mechanical systems design. Kinematics and dynamics of planar machinery. Shock and vibration control in machine elements. Balancing of rotating and reciprocating machines. Design projects using commercial computer-aided-engineering software for the design and evaluation of typical machine systems. Prerequisite: ME 252. Lucas. (ES 1.5), (ED 1.5)

ME 342. Dynamics of Engineering Systems (3) spring
Dynamic analysis of mechanical, electro-mechanical, fluid and hybrid engineering systems with emphasis on the modeling process. Lumpred and distributed-parameter models. Use of computer tools for modeling, design and simulation. Design projects. Prerequisite: ME 242. (ES 2), (ED 1)
ME 343. Control Systems (3) fall
Linear analyses of mechanical, hydraulic and electrical feedback control systems by root locus and frequency response techniques. A design project provides experience with practical issues and tradeoffs. Prerequisite: ME 242 or ECE 125. (ES 2), (ED 1)

ME 344 (IE 344, MAT 344) Metal Machining Analysis (3) spring
Intensive study of metal cutting emphasizing forces, energy, temperature, tool materials, tool life, and surface integrity. Abrasive processes. Laboratory and project work. Prerequisite: ME 240 or IE 215 or MAT 206.

ME 348. Computer-Aided Design (3) spring
Impact of computer-aided engineering tools on mechanical design and analysis. Part geometry modeling and assembly modeling using solid representations. Analysis for mass properties, interference, kinematics, displacements, stresses and system dynamics by using state-of-the-art commercially available computer-aided-engineering software. Integrated design projects. Two one-hour lectures and two-hour lab per week. Prerequisites: ME 10, ME 252, ME 242, Lucas, Ozsoy. (ES 1), (ED 2)

ME 350. Special Topics (1–4)
A study of some field of mechanical engineering not covered elsewhere. Prerequisite: consent of the department chair. (ES 1), (ED 2)

ME 360. (CHE 360) Nuclear Reactor Engineering (3) spring
A consideration of the engineering problems related to nuclear reactor design and operation. Topics include fundamental properties of atomic and nuclear radiation, reactor fuels and materials, reactor design and operation, thermal aspects, safety and shielding, instrumentation and control. Course includes several design projects stressing the major topics in the course. Prerequisite: Senior standing in engineering or physical science. Neti. (ES 2), (ED 1)

ME 387. (CHE 387, ECE 387) Digital Control (3) spring
Sampled-data systems; z-transforms; pulse transfer functions; stability in the z-plane; root locus and frequency response design methods; minimal prototype design; digital control hardware; discrete state variables; state transition matrix; Liapunov stability state feedback control (two lectures and one laboratory per week). Prerequisite: CHE 386 or ECE 212 or ME 343 or consent of instructor. Luyben.(ES 3), (ED 0)

ME 389. (ECE 389, CHE 389) Control Systems Laboratory (2) spring
Experiments on a variety of mechanical, electrical and chemical dynamic control systems. Exposure to state-of-the-art control instrumentation: sensors, transmitters, control valves, analog and digital controllers. Emphasis on design of feedback controllers and comparison of theoretical computer simulation predictions with actual experimental data. Lab teams will be interdisciplinary. Prerequisites: Either CHE 386, ME 343, or ECE 212. (ES 1), (ED 1)

Undergraduate Courses in Engineering Mechanics

MECH 2. Elementary Engineering Mechanics (3) fall, spring
Static equilibrium of particles and rigid bodies. Analysis of simple truss and frame structures, internal forces, stress, strain, and Hooke's Law; torsion of circular shafts; pure bending of beams. Prerequisites: MATH 22 and Phys 11. (MATH 22 may be taken concurrently). (ES 2.5), (ED 0.5)

MECH 12. Strength of Materials (3) fall, spring
Transverse shear in beams. Mohr's circle for stress. Plastic yield criteria. Deflection of beams. Introduction to numerical analysis of simple structures. Fatigue and fracture. Column buckling. Stresses in thick-walled cylinders. Prerequisites: MECH 2 and MATH 23. (MATH 23 may be taken concurrently). (ES 2), (ED 1)

MECH 102. Dynamics (3) fall, spring
Particle dynamics, work-energy, impulse-momentum, impact, systems of particles; kinematics of rigid bodies, kinetics of rigid bodies in plane motion, energy, momentum, eccentric impact. Prerequisites: MECH 2 and MATH 23. (ES 3), (ED 0)

MECH 103. Principles of Mechanics (4)
Composition and resolution of forces; equivalent force systems; equilibrium of particles and rigid bodies; friction. Kinematics and kinetics of particles and rigid bodies; relative motion; work and energy; impulse and momentum. Prerequisites: MATH 23 and Phys 11. (ES 4), (ED 0)

For Advanced Undergraduates and Graduate Students

MECH 302. Advanced Dynamics (3) spring
Fundamental dynamic theorems and their application to the study of the motion of particles and rigid bodies, with particular emphasis on three-dimensional motion. Use of generalized coordinates; Lagrange's equations and their applications. Prerequisites: MECH 102 or 103; MATH 205. Perreira (ES 3), (ED 0)

MECH 305. Advanced Mechanics of Materials (3) fall
Strength, stiffness, and stability of mechanical components and structures. Fundamental principles of stress analysis three-dimensional stress and strain transformations, two-dimensional elasticity, contact stresses, stress concentrations, energy and variational methods. Stresses and deformations for rotating shafts, thermal stresses in thick-walled cylinders, curved beams, torsion of prismatic bars, and bending of plates. Projects relate analysis to engineering design. Prerequisites: MECH 12, MATH 205. Nied. (ES 2.5), (ED 0.5)

MECH 307. Mechanics of Continua (3)
Fundamental principles of the mechanics of deformable bodies. Study of stress, velocity and acceleration fields. Compatibility equations, conservation laws. Applications to two-dimensional problems in finite elasticity, plasticity, and viscous flows. Prerequisite: MECH 305. Varley. (ES 3), (ED 0)

MECH 312. Finite Element Analysis (3) spring
Basic concepts of analyzing general media (solids, fluids, heat transfer, etc.) with complicated boundaries. Emphasis on mechanical elements and structures. Element stiffness matrices by minimum potential energy.
mechanical engineering and mechanics below the 300-level may be used towards the M.Eng., but two courses (6 credits) outside the department that are below the 300-level may apply, with approval from a student's advisor and the departmental Graduate Committee.

**Master of Science in Computational and Engineering Mechanics**

All students pursuing a master's degree in computational and engineering mechanics must take a minimum of 30 credit hours of graduate level work, with not less than 24 of these hours being at the 400-level. Their program must include the following three required courses:

- Mathematical Methods I & II PHYS 428 & 429 or ME 442 & ME 443
- Numerical Methods ME 413

In addition they must take two of the four MEM core courses:

- Heat and Mass Transfer ME 423
- Advanced Fluid Mechanics ME 430
- Introduction to Elasticity MECH 408
- Analyt. Meth. In Dynamics & Vibs. MECH 425

The remaining 15 credits may be taken from any of the graduate courses in MEM and other approved electives. Both thesis and non-thesis options are available.

**Doctor of Philosophy in Mechanical Engineering**

The Ph.D. program in Mechanical Engineering requires innovative research in collaboration with one or more faculty members, along with the completion of 72 credit hours beyond the bachelor's degree, or 48 beyond the master's, including the core courses. Students are admitted to Ph.D. candidacy in mechanical engineering upon attainment of a minimum GPA of 3.35 in five core courses (see core course requirements for Master of Science in Mechanical Engineering) and completion of a General Examination, which is based on assessment and presentation of a research topic. Formal University candidacy for the Ph.D. is granted upon recommendation of the doctoral committee and approval by the engineering college. Course work for the Ph.D. is determined in consultation with the student's advisor and doctoral committee. To complete the Ph.D. degree, the student must present and defend a dissertation before the doctoral committee.

**Doctor of Philosophy in Computational and Engineering Mechanics**

Students wishing to pursue a Ph.D. in computational and engineering mechanics must take the required core courses:

- Mathematical Methods I & II PHYS 428 & 429 or ME 442 & ME 443
- Numerical Methods ME 413
- They must also take two core courses from the supplemental list given below:
  - Asymptotic Methods MECH 419
  - Finite Element Methods MECH 418
  - Non-deterministic Models in Engr. MECH 445
  - Mechanical Reliability MECH 446
studies and modeling of crack growth under static, peri-
and anisotropic materials; analytical and experimental
Fracture Mechanics.

Recent Research Activities

- **Heat and Mass Transfer**: ME 423*
- **Advanced Fluid Mechanics**: ME 430*
- **Introduction to Elasticity**: MECH 408*
- **Analyt. Meth. in Dynamics & Vibs.**: MECH 425*

A student must attain a GPA of 3.35 for the five
required courses taken. All students who satisfy the GPA
requirement will be required to take a three-hour written
examination in an area (special topic) of the student’s
choice. This topic is subject to approval by the computa-
tional and engineering mechanics graduate committee.

For students who start in the program following their
bachelor’s degree, the written examination must be taken
no later than the beginning of the fourth semester after
entry. A student who fails the written examination will
be allowed a single retake. The retake examination will
be given at the end of the semester in which the exami-
nation was first attempted.

In addition, before completion of the degree, a student
must have received graduate credit for at least two of the
four MEM core courses which are designated by a * in
the above list. If desired, these starred courses may be
used as part of the Computational and engineering
mechanics core, and hence count towards the core GPA
requirement.

Research Facilities

The department has a wide range of computational,
computer graphics and experimental systems. The
department’s CAD Lab has over 50 computers that
include high-end engineering workstations. The universi-
ty supports networks of hundreds of PCs as well as links
to the Internet with thousands of on-line services.

Experimental facilities include 11 pulsed and continuous
laser units for laser diagnostics in the areas of fluid and
solid mechanics, four image processing systems, and a
number of unique facilities for observing and controlling
flow past surfaces and through machines. There are well-
equipped laboratories for multi-disciplinary studies of
-crack growth in deleterious environments and at elevated
temperatures of up to 700°C, in conjunction with a num-
ber of surface analysis and electron microscopy facilities
on campus.

Extensively equipped, interdisciplinary robotics, con-
trols, and manufacturing laboratories are also available.

Other facilities include the latest mechanical, electroly-
dynamic and servocontrolled hydraulic testing machines,
photoelastic equipment, and Moiré strain measuring
instruments.

Recent Research Activities

**Continuum and Solid Mechanics.** Formulation of field
equations and constitutive equations in non-linear elas-
ticity theories; mechanics of viscoelastic solids and fluids,
plasticity theory; generalized continuum mechanics;
thermomechanical and electromechanical interactions;
analyses and modeling of manufacturing processes; free
vibration and dynamic response of elastic shells, elas-
tropic deformation of shells upon cyclic thermal loading,
and applications of shell analysis to nuclear power plant
components; optical stress analysis; biomechanics of gait;
wave propagation; finite amplitude wave propagation.

**Fracture Mechanics.** Stress analysis of materials contain-
ing defects, including viscoelastic, non-homogeneous,
and anisotropic materials; analytical and experimental
studies and modeling of crack growth under static, peri-
odic, and random loadings and environmental effects;
optimizations of fracture control; crack propagation the-
ories for nonlinear material; influence of cracks on the
strength of structural members and of interfaces;
hydraulic fracture; applications to reliability and durabil-
ity of composites, structural and microelectronic
components, and to processes for resource recovery.

**Thermofluids.** Structure of turbulent boundary layers,
wakes and jets; vortex-solid boundary interactions;
boundary layers in compressible flow, including hyper-
sonic regimes; vortex breakdown in internal machinery
and in flow past wings; drag reduction in turbulent
flows; flow-induced noise and vibration; flutter of blades
in axial-flow turbomachinery and of tails and fins on air-
craft; unsteady aerodynamic flows past three-dimensional
wings and bodies; flow structure and heat transfer at
end-wall junctions in rotating machinery and on surfaces
of aircraft; flows in micro-hydro-electromechanical sys-
tems; convective heat transfer in systems of electronic
components; flows through complex components of
power generation systems; transport of coal particles;
flow and heat transfer in fluidized beds; cycle analysis
applied to coal gasifiers; control optimization of heat
pumps; laser-Doppler and particle image velocimetry;
liquid crystal sensors for heat transfer; Raman spectral
techniques applied to two-phase flow; laser diagnostics
and image processing of complex flow and heat transfer
systems.

**Theoretical Fluid Mechanics.** Vortex boundary layer
interaction, modeling of turbulent boundary layers; geo-
-physical flows such as frontal systems and mountain
flows; statistical mechanics of plasmas, liquids and shock
waves; finite amplitude waves in stratified gases and liq-
uids; shock wave propagation; non-Newtonian flows in
flexible tubes with application to hemorheology; magne-
to-fluid mechanics; wing theory; thermally driven flows.

**Design.** Geometric modeling: tolerance analysis and
synthesis; assembly modeling; geometric dimensioning
and tolerancing; 3-D digitizing: data and information
structures; design for manufacturing; design methodolo-
gy, tools and practices; expert systems in design; industry
projects with Integrated Product Development (IPD)
focus.

**Manufacturing.** Free-form surface machining; coordi-
nate measuring machine applications to geometric
dimensions and tolerances; Taguchi’s method; injection
molding; sheet metal fabrication; FEAFEM applications
to plastic deformation of metals; rapid prototyping;
inelligent manufacturing incorporating process model-
ing, sensor subsystems for in situ product quality
monitoring, and knowledge-based control for real-time
process adaptation; blow molding; composites process-
ing; thermforming; resin transfer molding; spin
coating; electronic packaging.

**Systems Dynamics and Controls.** Modeling, simula-
tion and control of dynamic systems including: control
of unstable processes, programmed logic control experi-
ence, compensator design and construction, issues in
digital implementation, state-of-the-industrial art experi-
mental equipment, energy methods and bond graph
modeling, methods of model identification from experi-
mental data; application to various mechanisms, vehicles,
chemical processes, aircraft systems, chemical processes,
hydraulic systems, thermodynamic systems, micro-
electromechanical actuators; application to mechatronics
for the integration of mechanical systems, computer control and programming for the design of smart consumer products and intelligent manufacturing machinery.

**Stochastic Processes.** Modeling of random behavior in mechanical systems; static and time-dependent stochastic fracture mechanics, with particular applications to assessments of reliability and service life prediction.


**Graduate Courses in Mechanical Engineering**

Except for core courses, graduate courses are generally offered every third semester. Several courses are offered each year as ME 450 Special Topics. For details, contact the graduate office of the department.

**ME 401. Integrated Product Development (IPD) (3) fall**

An integrated and interdisciplinary approach to engineering design, concurrent engineering, design for manufacturing, industrial design and the business of new product development. Topics include design methods, philosophy and practice, the role of modeling and simulation, decision making, risk, cost, material and manufacturing process selection, platform and modular design, mass customization, quality, planning and scheduling, business issues, teamwork, group dynamics, creativity and innovation. The course uses case studies and team projects with international partners. Ochs

**ME 402. Advanced Manufacturing Science (3) spring**

The course focuses on the fundamental science-base underlying manufacturing processes, and applying that science base to develop knowledge and tools suitable for industrial utilization. Selected manufacturing processes representing the general classes of material removal, material deformation, material phase change, material flow, and material joining are addressed. Students create computer-based process simulation tools independently as well as utilize leading commercial process simulation packages. Laboratory experiences are included throughout the course. Coulter/Nied

**ME 411. Boundary-Layer Theory (3)**

The course is intended as a first graduate course in viscous flow. An introduction to boundary-layer theory, thermodynamics and heat transfer at the undergraduate level are assumed to have been completed. Topics include the fundamental equation of continuum fluid mechanics, the concept of asymptotic methods and low and high Reynolds number flows, laminar boundary layers, generalized similarity methods, two- and three-dimensional flows, steady and unsteady flows and an introduction to hydrodynamic stability. The material is covered in the context of providing a logical basis as an introduction to a further course in turbulent flows.

**ME 413. Numerical Methods in Mechanical Engineering (3)**


**ME 415. Flow-Induced Vibrations (3)**


**ME 420. Advanced Thermodynamics (3)**


**ME 421. Topics in Thermodynamics (3)**

Emphasis on theoretical and experimental treatment of combustion processes including dissociation, flame temperature calculations, diffusion flames, stability and propagation; related problems in compressible flow involving one-dimensional, oblique shock waves and detonation waves. Methods of measurement and instrumentation. Staff

**ME 423. Heat and Mass Transfer (3) spring**

This course is a first graduate course in the basic concepts of heat and mass transfer, providing a broad coverage of key areas in diffusion, conduction, convection, heat and mass transfer, and radiation. Topics covered include: the conservation equations, steady and transient diffusion and conduction, periodic diffusion, melting and solidification problems, numerical methods, turbulent convection, transpiration and film cooling, free convection, heat transfer with phase change, heat exchanges, radiation, mixed mode heat and mass transfer. Neti, Oztekin

**ME 424. Unstable and Turbulent Flow (3)**

Stability of laminar flow; transition to turbulence. Navier-Stokes equations with turbulence. Bounded turbulent shear flows; free shear flows; statistical description of turbulence. Prerequisite: ME 331. Rockwell

**ME 426. Radiative and Conductive Heat Transfer (3)**

Principles of radiative transfer; thermal-radiative properties of diffuse and specular surfaces; radiative exchange between bodies; radiative transport through absorbing, emitting and scattering media. Advanced topics in steady-state and transient conduction; analytical and numerical solutions; problems of combined conductive and radiative heat transfer. Prerequisite: ME 321 or CHE 421. Varley

**ME 428. Boundary Layers and Convective Heat Transfer (3)**

Navier-Stokes and energy equations, laminar boundary layer theory, analysis of friction drag, transfer and separation. Transition from laminar to turbulent flow.
ME 433. (CHE 433, ECE 433) State Space Control (3)
State-space methods of feedback control system design and design optimization for invariant and time-varying deterministic, continuous systems; pole positioning, observability, controllability, modal control, observer design, the theory of optimal processes and Pontryagin’s Maximum principle, the linear quadratic optimal regulator problem, Lyapunov functions and stability theorems, linear optimal open loop control; introduction to the calculus of variations; introduction to the control of distributed parameter systems. Intended for engineers with a variety of backgrounds. Examples will be drawn from mechanical, electrical and chemical engineering applications. Prerequisite: ME 343 or ECE 212 or CHE 386 or consent of instructor.

ME 434. (CHE 434, ECE 434) Multivariable Process Control (3)
A state-of-the-art review of multivariable methods of interest to process control applications. Design techniques examined include loop interaction analysis, frequency domain methods (Inverse Nyquist Array, Characteristic Loci and Singular Value Decomposition) feed forward control, internal model control and dynamic matrix control. Special attention is placed on the interaction of process design and process control. Most of the above methods are used to compare the relative performance of intensive and extensive variable control structures. Prerequisite: CHE 433 or ME 433 or ECE 433 or consent of instructor.

ME 436. (CHE 436, ECE 436) Systems Identification (3)
The determination of model parameters from time-history and frequency response data by graphical, deterministic and stochastic methods. Examples and exercises taken from process industries, communications and aerospace testing. Regression, quasilinearization and invariant-imbedding techniques for nonlinear system parameter identification included. Prerequisite: CHE 433 or ME 433 or ECE 433 or consent of instructor.

ME 437. (CHE 437, ECE 437) Stochastic Control (3)
Linear and nonlinear models for stochastic systems. Controllability and observability. Minimum variance state estimation. Linear quadratic Gaussian control problem. Computational considerations. Nonlinear control problem in stochastic systems. Prerequisite: CHE 433 or ME 433 or ECE 433 or consent of instructor. Staff

ME 442. Mathematical Methods in Engineering I (3) fall
Analytical techniques are developed for the solution of engineering problems described by algebraic systems, and by ordinary and partial differential equations. Topics covered include: linear vector spaces; eigenvalues, eigenvectors, and eigenfunctions. First and higher-order linear differential equations with initial and boundary conditions; Sturm-Liouville problems; Green’s function. Special functions; Bessel, etc. Qualitative and quantitative methods for nonlinear ordinary differential equations: phase plane. Solutions of classical partial differential equations from the physical sciences; transform techniques; method of characteristics.

ME 443. Mathematical Methods in Engineering II (3) spring
Continuation of ME 442.

ME 444. Experimental Stress Analysis in Design (3) fall
Fundamental concepts of strain measurements and application of strain gages and strain gage circuits. Two-dimensional and three-dimensional photoelasticity, stress separation techniques, birefringent coatings, moiré methods, caustics. Use of image analysis in data acquisition and interpretation. Selected laboratory experiments. Voloshin

ME 446. Mechanical Reliability (3) fall
Design of mechanical engineering systems to reliability specifications. Probabilistic failure models for mechanical components. Methods for the analysis and improvement of system reliability. Effect of component tolerance and parameter variation on system failure. Reliability testing. Prerequisite: MATH 231 or MATH 309. Harlow

ME 450. Special Topics (3) fall
An intensive study of some field of mechanical engineering not covered in more general courses.

ME 451. Seminar (1-3) fall
Critical discussion of recent advances in mechanical engineering.

ME 458. Modeling of Dynamic Systems (3) spring
Modeling of complex linear and nonlinear energetic dynamic engineering systems. Emphasis on subdivision into multiport elements and representation by the bondgraph language using direct, energetic, and experimental methods. Field lumping. Analytical and graphical reductions. Simulation and other numerical methods. Examples including mechanisms, electromagnetic transducers, electric and fluid circuits, and thermal systems.

ME 460. Engineering Project (1-6) fall
Project work on some aspect of mechanical engineering in an area of student and faculty interest. Selection and direction of the project could involve interaction with local communities or industries. Prerequisite: consent of the department chair.

ME 461. IPD: Design (3) fall
Industry sponsored Integrated Product Development Project (IPD) projects. The student works with an industry sponsor to do a technical and economic feasibility study of new product development. Selection and content of the project is determined by the faculty project advisor in consultation with the industry sponsor.
Deliverables include progress and final reports, oral presentations and posters. Prerequisites: Consent of the department chair and faculty project advisor.

ME 462. IPD: Manufacturing (3)
Industry sponsored Integrated Product Development Project (IPD) projects. The student works with an industry sponsor to create detailed design specifications, fabricate and test a prototype new product and plan for production. Selection and content of the project is determined by the faculty project advisor in consultation with the industry sponsor. Deliverables include progress and final reports, oral presentations, posters and a prototype. Prerequisites: Consent of the department chair and faculty project advisor.

ME 464. Computer-Aided Geometric Modeling (3)
Representation schemes for geometric modeling, computational geometry for curved and surface design, finite-element meshing and NC tool path generation, interfacing different CAD/CAM databases, interactive computer graphics programming. Prerequisite: ME 348 or consent of instructor. Ozsoy

ME 466. Fundamentals of Acoustics (3)

ME 490. Thesis

ME 499. Dissertation

Graduate Courses in Engineering Mechanics

Except for core courses, graduate courses are generally offered every third semester.

MECH 407. Wave Propagation in Solids (3)
Wave propagation in deformable elastic solids; problems in half-space and layered media; application of integral transformations. Delph, Varley

MECH 408. Introduction to Elasticity (3) fall
This course is a first graduate course in solid mechanics. It addresses: kinematics and statics of deformable elastic solids; compatibility, equilibrium and constitutive equations; problems in plane elasticity and torsion; energy principles, approximate methods and applications. Staff

MECH 410. Theory of Elasticity II (3)
Advanced topics in the theory of elasticity. The subject matter may vary from year to year and may include, theory of potential functions, linear thermoelasticity, dynamics of deformable media, integral transforms and complex-variable methods in classical elasticity. Problems of boundary layer type in elasticity; current developments on the micro-structure theory of elasticity. Prerequisites: MECH 409, MATH 208, or consent of the department chair.

MECH 411. (PHY 471) Continuum Mechanics (3)
An introduction to the continuum theories of the mechanics of solids and fluids. This includes a discussion of the mechanical and thermodynamical bases of the subject, as well as the use of invariance principles in formulating constitutive equations. Applications of the theories to specific problems are given. Staff

MECH 413. Fracture Mechanics (3)
Elementary and advanced fracture mechanics concepts; analytical modeling; fracture toughness concept; fracture toughness testing; calculation of stress intensity factors; elastic-plastic analysis; prediction of crack trajectory; fatigue crack growth and environmental effects; computational methods in fracture mechanics; nonlinear fracture mechanics; fracture of composite structures; application of fracture mechanics to design. Prerequisites: MATH 205, MECH 305 or equivalent course in advanced mechanics of materials. Nied, Wei

MECH 415. (CE 468) Stability of Elastic Structures (3)
Basic concepts of instability of a structure; bifurcation, energy increment, snap-through, dynamic instability. Analytical and numerical methods of finding buckling loads of columns. Postbuckling deformations of cantilever columns. Dynamic buckling with nonconservative forces. Effects of initial imperfections. Inelastic buckling. Instability problems of thin plates and shells. Prerequisite: MATH 205.

MECH 416. (CE 464) Analysis of Plates and Shells (3)
Bending of rectangular and circular plates, plates under lateral loads, plates with thermal and inelastic strains, effect of inplane forces, large deflections. Geometry and governing equations of a shell, shells of revolution, membrane states, edge solutions, solution by numerical integration, applications to pressure vessels. Prerequisites: MATH 205; MECH 305 or equivalent course in advanced mechanics of materials.

MECH 417. Mixed Boundary Value Problems in Mechanics (3)

MECH 418. Finite Element Methods (3)
Finite element approximations to the solution of differential equations of engineering interest. Linear and nonlinear examples from heat transfer, solid mechanics, and fluid mechanics are used to illustrate applications of the method. The course emphasizes the development of computer programs to carry out the required calculations. Prerequisite: knowledge of a high-level programming language. Delph

MECH 419. (CHE 419) Asymptotic Methods in the Engineering Sciences (3)

MECH 424. Unsteady Fluid Flows (3)
Gas dynamics, finite amplitude disturbances in perfect and real gases; channel flows; three-dimensional acoustics; theories of the sonic boom. Motions in fluids with a free surface; basic hydrodynamics, small amplitude waves on deep water; ship waves; dispersive waves; shallow water gravity waves and atmospheric waves. Hemodynamics: pulsatile blood flow at high and low Reynolds number. Models of the interaction of flow with artery walls. Varley
MECH 425. Analytical Methods in Dynamics and Vibrations (3) spring
This course is a first graduate course in dynamics and vibrations. It treats three-dimensional rigid body motion by vector methods and multidegree of freedom systems by variational principles. Discrete modal analysis and continuous modal analysis of one-dimensional systems plus finite-element formulation of numerical problems constitutes about one-third of the course. There is a brief treatment of advanced impact. Use of symbolic computer codes is encouraged.

MECH 432. Inelastic Behavior of Materials (3)

MECH 445. Non-deterministic Models in Engineering (3)
Application of probability and stochastic processes to engineering problems for a variety of applications. Modeling and analysis of common non-deterministic processes. Topics are selected from the following linear and nonlinear models for random systems; random functions; simulation; random loads and vibrations; Kalman filtering, identification, estimation, and prediction; stochastic fracture and fatigue; probabilistic design of engineering systems; and spatial point processes. Prerequisites: advanced calculus and some exposure to probability and statistics. Harlow

MECH 450. Special Problems (3)
An intensive study of some field of applied mechanics not covered in more general courses.

MECH 454. Mechanics and Design of Composites (3)

MECH 490. Thesis
MECH 499. Dissertation

Graduate Courses in Engineering Mathematics
Students in the applied mathematics program also have access to the graduate courses listed under mechanical engineering, engineering mechanics, and mathematics, as well as other engineering departments.

EMA 425. Variational Methods in Science and Engineering (3)
Variational problems with one independent variable; Euler-Lagrange equations; methods of solution; space and time dependent fields; null Lagrangians and inhomogeneous Dirichlet data; problems with constraints; symmetries and conservation laws; variational approximation methods, Rayleigh-Ritz, Galerkin, finite element, and collocation. Problems and examples will be drawn from the mechanics of solids, fluids, and related fields. Prerequisite: consent of chair. Staff

EMA 450. Special Topics (3)
An intensive study of some field of engineering mathematics not covered in other courses.

EMA 490. Thesis
EMA 499. Dissertation

Military Science
Professor. LTC Charles M. McClung, M.A. Louisiana State University and A & M College.

Assistant professors. LTC, USAR, James W. Follweiler, M.S. (Embry-Riddle Aeronautical University); MAJ Robert Haldeman, MSBA (Bucknell University); CPT Thomas Brede, B.A. (Tarleton State University); CPT Darin Mills, B.S. (West Point).

Instructors. MSG Luis Pino, SFC Richard Boyer.
The Department of Military Science, established in 1919, conducts the Army Reserve Officers Training Corps (ROTC) program at Lehigh University. This is one of the oldest ROTC programs in the nation. The Army ROTC program provides a means for students to qualify for a commission as an officer in the Active Army, Army Reserve, or Army National Guard.
The objectives of the military science program are to develop leadership and management ability in each student; to provide a basic understanding of the Army's history, philosophy, organization, responsibilities, and role in American society; and to develop fundamental professional knowledge and skills associated with officership. These objectives are achieved through classroom instruction, leadership laboratories, field trips, role playing, leadership simulations, and individual assessment and counseling. Army ROTC offers a four-year program and a two-year program. The four-year program consists of a two-year basic course and a two-year advanced course. The two-year program consists of the two-year advanced course offered to students with previous military experience, and those who have successfully completed the five-week ROTC Leaders' Training Course. Basic course students incur no obligation for service in the Army as a result of taking these courses.

Basic Course. The basic course, normally taken in the freshman and sophomore years, provides training and instruction in leadership, public speaking, and basic military subjects, such as the Army's role and organizational structure, history and philosophy of the Army, basic tactics, land navigation, first aid, group dynamics, and leadership traits and characteristics. Basic course students incur no military obligation

Advanced Course. The advanced course is normally taken in the junior and senior years. The instruction includes management, military skills, advanced leadership and tactics, logistics, administration, military law, ethics, and professionalism, and includes attendance at the ROTC Leadership Development and Assessment Course. Students receive $350 per month subsistence pay during the junior year and $400 per month in their senior year.

To enroll in the advanced course, an applicant completes either the basic course or the five-week Leaders Training
Course; or has received basic course credit for previous military experience; or is a nursing student and is accepted for enrollment by the university and the Department of Military Science.

Uniforms and Equipment. All uniforms and equipment needed by the student for military science courses are supplied by the department. Students are charged only for those items not returned when they leave the program.

Transfers. Qualified students transferring from another institution may enter the ROTC program at the appropriate level and year, provided they have received the necessary credits, the recommendation of their former professor of military science (if applicable), and the approval of the university.

Obligation After Graduation. Upon graduation a student will receive a commission as a Second Lieutenant in either the Active Army or the Reserve Forces. If offered active duty, scholarship students serve four years while non-scholarship students serve three. If offered reserve duty, students normally serve six to eight years in a Reserve or National Guard unit.

Graduate Studies. ROTC graduates may request to delay their active service to pursue a full-time course of instruction leading to an advanced degree. Delay does not lengthen the active service obligation unless the degree is obtained at government expense. The three major areas of concentration are medical school, law school, and all other categories.

Course Credit. Students in the College of Arts and Sciences and the College of Business and Economics may substitute military science advanced credits for six hours of electives. In the College of Engineering and Applied Science, six credits of advanced ROTC work are permissible within the normal program of each student, irrespective of curriculum. For curricula that include more than six hours of personal electives in the junior and senior years, inclusion of the more than six hours of ROTC credit with normal programs can be effected only with the approval of academic advisers. All military science credits, including those in the basic course, apply toward the student's overall cumulative grade point average.

Career Opportunities

Individuals are commissioned as officers in the United States Army after completion of the ROTC program and the advanced camp and completion of their bachelor's degree requirements. They then qualify in branches (specialties) such as the Corps of Engineers, Infantry, Armor, Aviation, Field Artillery, Air Defense Artillery, Signal Corps, Military Intelligence, Chemical Corps, Ordnance Corps, Finance, Transportation, Military Police, Adjutant General, Quartermaster, Medical Service Corps, or Nursing. Officers work as leaders/managers, specialists, or combinations of the two depending on the assignment.

Programs and Opportunities

ROTC Scholarship Program

This program is designed to offer financial assistance to outstanding young men and women entering the ROTC program who are interested in an Army career. Scholarships provide up to $23,000 annual tuition, a textbook and supplies allowance, and laboratory fees, in addition to pay up to $400 per month for the period the scholarship is in effect. Three-year and two-year scholarships are available to outstanding cadets who are currently enrolled in the ROTC program and are completing their freshman or sophomore year of college. This program is also open to all qualified students who are not currently enrolled in Army ROTC.

Four-year scholarships are open to all students entering ROTC as freshmen. Applications for scholarship must be made to Headquarters, U.S. Army Cadet Command, Fort Monroe, VA by July 15th prior to the high school senior year for early selection, but no later than November 15th for normal application. Applications may be obtained by calling 1-800-USA-ROTC. Application booklets are also available from most high school guidance offices, or may be obtained from the military science department.

Two-Year Program

Students who want to enroll in ROTC after their sophomore year may apply. Applicants must successfully complete a five-week Leaders Training Course (LTC) and have two years of undergraduate or graduate studies remaining. The student is paid for the five-week encampment and receives transportation costs to and from the camp. Additional scholarships are available at this camp.

Physical Facilities

Army ROTC uses areas on and adjacent to the university campus to conduct field training. These locations are excellent for most outdoor activities such as orienteering, patrolling, and survival training. Fort Indiantown Gap Military Reservation, located east of Harrisburg, Pa., and Fort Dix, NJ, located east of Philadelphia, Pa., are used for field training exercises and weapons familiarization during the two annual weekend field exercises. Gettysburg National Park is also visited each year.

Off-campus U.S. Army Training Schools

Cadets may be selected to attend the following U.S. Army Schools: Airborne School (Fort Benning, Georgia), Air Assault School (Fort Campbell, Kentucky), Mountain Warfare School (Ethan Allen Training Center, Vermont), and Northern Warfare School (Fort Greely, Alaska). This off-campus program is fully funded by the U.S. Army. Many other installations throughout the world may be visited through the Cadet Troop Leader Training program. Nursing students may choose to attend the Nurse Summer Training Program at Army hospitals located throughout the United States.

Minor in Military Science

A minor in military science is available in the College of Arts and Sciences. A minor in military science consists of a minimum of 28 credit hours beyond the basic Military Science course and is designed to provide the student with an academic foundation necessary to support continued intellectual growth and stimulate future inquiry in the realm of civil military affairs and military science. Credit hours required are distributed as follows:

Military Science (13)

MIL 101 Adaptive Team Leadership I (3)
MIL 102 Adaptive Team Leadership II (3)
MIL 113 Developing Adaptive Leaders (3)
MIL 114 Leadership in a Complex World (3)
MIL 118. Special Military Topics (1)

HIST 110. American Military History (3)

**International Relations (3-4)**
(Select one course from one of the following categories)

**International Relations**
Political Science

**Written Communications (3)**
(Select one course from one of the following categories)
Creative Writing
Scientific Writing
Writing for Mass Communications

**English Composition**

**Human Behavior (3)**
(Select one course from one of the following categories)
General Psychology
Sociology
Anthropology
Ethics

**Computer Literacy (3)**

**Commissioning Requirements**
Individuals must complete either the two- or four-year programs, attend the advanced camp, receive a college degree, have a cumulative GPA of 2.0, and complete all professional military education requirements to become commissioned officers in the United States Army.

**Course Descriptions**
Leadership Laboratory is conducted for all students on three Saturdays or Sundays per semester. The Leadership Laboratory provides students the opportunity to demonstrate an understanding of the leadership process and develop fundamental military skills.

Instruction at several levels on a variety of subjects with military application provides the context within which students are furnished opportunities to both teach and lead in a group setting. Responsibility is expanded as the student progresses through the program. In the senior year, the students assume the responsibility for the planning, preparation and conduct of the laboratory. Leadership Laboratory is mandatory for all students enrolled in military science courses.

**MIL 15. Foundation of Officership (MS101) (1)**
fall
The American Army as an institution, its roots, history, customs and traditions and philosophy of leadership. Emphasis on development and role of a professional officer corps. Includes leadership laboratory.

**MIL 16. Basic Leadership (MS102) (1)**
spring
Role of individual and leader within the group, leadership skills and characteristics. Emphasis on problem solving and application. Includes laboratory and FTX.

**MIL 23. Individual Leadership Studies (MS201) (2)**
fall
Maps as tools in basic terrain analysis and as navigational aids and introduction to small unit tactics. Emphasis on application and field exercises at individual and small group levels. Includes leadership laboratory and FTX.

**MIL 24. Leadership and Teamwork (MS202) (2)**
spring
Contemporary theories, traits and principles and small unit tactics development. Leadership philosophies, communications, leader-follower relationships, and leadership problem-solving. Leadership simulations. Includes leadership laboratory and FTX. Note: Credit for this course will count as GPA but not credit passed toward a degree.

**MIL 101. Adaptive Team Leadership I (MS 301) (3)**
fall
Essential junior officer skills: advanced land navigation, principles of war, small unit tactical planning, tactics and techniques of the soldier, team leading techniques, oral communications and trainer skills. Emphasizes application and field experience. Includes leadership laboratory and FTX. Prerequisite: permission of department chair.

**MIL 102. Adaptive Team Leadership II (MS 302) (3)**
spring
Critical examination of leadership qualities, traits and principles with emphasis on military environment. Self, peer, and instructor leadership evaluation. Advanced military skills reinforced. Includes leadership laboratory and FTX. Prerequisite: permission of department chair.

**MIL 113. Developing Adaptive Leaders (MS 401) (3)**
fall
Role, authority and responsibility of military commanders and staff in personnel, logistics and training management. Staff procedures, problem solving, training methods and oral and written communications skills used in military organizations. Includes leadership laboratory and FTX. Prerequisite: permission of department chair.

**MIL 114. Leadership in a Complex World (MS 402) (3)**
spring
Development of the Profession of Arms, its fundamental values and institutions. Ethical responsibilities of military professionals in contemporary American society. Just war theory, international law of war, and American military law. Also covered are current topics to assist cadets in making the transition to the officer corps and service on active duty or in the reserve forces. Includes leadership laboratory and FTX. Prerequisite: permission of department chair.

**MIL 118. Special Topics for the Army Officer (1)**
fall, spring
Seminar covering special problems and issues dealing with responsibilities of the commissioned officer as leader, manager, and mentor, not covered in other courses. Prerequisite: permission of the department chair.

**Leadership Development and Assessment Course**
This is a five-week training program normally conducted at Fort Lewis, WA. Prerequisites are completion of the basic military science courses or their equivalent and MS 101 and 102. The summer camp experience, in coordination with respective engineering curricula, may be used to fulfill the industrial employment requirements of the engineering courses, CE 100, IE 100, and MAT 100.
Modern Languages and Literature

**Professors.** Marie Hélène Chabut, Ph.D. (U.C., San Diego), French; David W. Pankenier, Ph.D. (Stanford), Chinese; Lenora D. Wolfgang, Ph.D. (Pennsylvania), French.

**Associate Professors.** Marie-Sophie Armstrong, Ph.D. (Oregon), French; Constance Cook, Ph.D., (Berkeley), Chinese; Kiri Lee, Ph.D. (Harvard), Japanese; Linda S. Lefkowitz, Ph.D. (Princeton), Spanish; Mary A. Nicholas, Ph.D. (Pennsylvania), Chair, Russian; Antonio Prieto, Ph.D. (Princeton), Spanish; Vera S. Stegmann, Ph.D. (Indiana), German.

**Assistant Professor.** Miren Edurne Portela, Ph.D. (N.C., Chapel Hill), Spanish.

Knowledge of other languages opens the door to other cultures, traditions, and perspectives on the world, and promotes deeper insight into one's own language and culture. Proficiency in foreign languages is indispensable in a broad range of professions such as journalism, government, international affairs, law, the armed forces, and business. A bachelor of arts degree with a major in languages provides excellent preparation for professional careers in law, business, and the media. Foreign language study is required for graduate study in many disciplines, as well as for research in science and technology. International experience is personally enriching and enhances career prospects.

**Languages offered.** Lehigh offers Arabic, Mandarin Chinese, French, German, Hebrew, Japanese, Russian, and Spanish.

Courses include writing and speaking, reading and listening, literature, civilization, and professional areas such as business and health careers. A number of cultural courses are given in English, but most offerings stress classroom use of the target language. Facilities include an International Multimedia Resource Center (IMRC). Within the IMRC in Maginnes Hall are a state-of-the-art multimedia computer lab (Maginnes 470) dedicated primarily to foreign language multimedia and World Wide Web applications and the World View Room (Maginnes 490) in which is shown a regular daily schedule of foreign language news and feature programming received via international satellite TV networks.

**Language requirements.**

The honors major in international relations requires foreign language study. The college scholar program in the College of Arts and Sciences; the major in Russian and Soviet studies, the major in Asian studies, the minors in Latin American studies, Russian area studies, Asian studies, and in military science require language study.

Students taking the B.A. in international relations or in foreign careers are expected to study a language. Students choosing a foreign language at an elementary level towards their general studies requirement in the college of engineering must take a minimum of one year (two courses). Some doctoral programs also require foreign language competence, usually assessed by the Department of Modern Languages and Literature.

**Advising.**

Because of the sequential nature of language study and the variety of specializations available, the department pays special attention to student advising. Students whose experience, skills, and placement scores (Advanced Placement or College Board Achievement Test) do not give them a clear indication of their level of placement should consult with their instructor or the department chair. Faculty members responsible for more advanced advising are currently as follows: Asian studies major and minor, Cook; Chinese minor, Pankenier; French major, Chabut; French minor, Armstrong; German major and minor, Stegmann; Russian minor and area studies, major and minor, Nicholas; Spanish major, Prieto; Spanish minor, Lefkowitz.

**Major programs.**

The department offers major programs in Asian studies, French, German, Russian studies, and Spanish. The candidate for the major is expected to demonstrate adequate written and oral command of the language, as well as knowledge of its literature and culture. A period of study abroad is strongly recommended.

Double majors and arts-engineering majors including a language component are well-received by employers. Studies in the two areas are carefully coordinated by major advisers.

**Requirements for the major.**

A minimum of 32 credit hours is required beyond Intermediate II, chosen from Groups A and B below:

- Group A: one to four required courses (variable, depending on language major).
- Group B: four to seven electives chosen from 100-300 level courses with emphasis on 300-level courses.

For specific course requirements, see each language major adviser.

Language students may count one MLL course taught in English toward the major in French, German, and Spanish.

**Requirements for the departmental honors major.**

Same as for the major plus eight additional hours of advanced courses at the 300 level, dissertation or comprehensive examination (written or oral), and a 3.20 average in the major.

**Minor programs.**

The department offers minor programs in Asian studies, Chinese, French, German, Japanese, Latin American studies, Russian, Russian studies, and Spanish and coordinates these studies with a student's major requirements in any college.

**Requirements for the Minor.**

French, German, Spanish: Sixteen credit hours are required above Intermediate II; one or two courses at the 200 level, one or two courses at the 300 level.

Chinese, Japanese, Russian: A minimum of 16 credit hours.

A maximum of 8 credits may be transferred for the minor.

**Related programs.**

These are available in Asian studies, foreign careers, Jewish studies, Latin American studies, and Russian and Soviet studies. Students are urged to take elective courses on related subjects, either within or outside the department, as approved by their adviser.
Preliminary Courses.
These may be replaced by other courses when a student qualifies for advanced standing.
Elementary I (4) Intermediate I (4)
Elementary II (4) Intermediate II (4)

Advanced courses
Except where otherwise noted, 200- or 300-level courses are open to students having completed eight credit hours beyond Intermediate II. Exceptions require the consent of the instructor.

Language of instruction
All courses are taught in the target language except MLL courses listed under “Foreign Culture and Literature Taught in English.” Students thereby become accustomed to considering the language as an active means of communication and not solely as an object of study.

Courses in English
The department offers elective courses in English on literary, cultural, and social subjects listed under “Foreign Culture and Literature Taught in English”. These courses may, in most cases, be taken to fulfill preliminary distribution requirements. One of these courses may be included in the major.

Study Abroad and Foreign Study Awards
The department encourages students of foreign languages to spend a summer, a semester, or a full year on an approved program of study abroad. Exchange agreements with partner institutions are continually being developed. The department offers a limited number of travel scholarships for foreign study to qualified students. Applications should be submitted by the first week of November for the spring and summer semesters and by the first week of April for summer and fall. For credit, transfer students must consult in advance with their major adviser, foreign language adviser, other appropriate departments, the Office of International Education, and when appropriate, the Office of Financial Aid.

Lehigh offers summer programs through the Lehigh Valley Association of Independent Colleges (LVAIC). Programs are offered in Bonn (Germany), Cuernavaca (Mexico), and Seville (Spain) for eight credits each. A faculty member acting as program director accompanies the students. Courses are taught at intermediate and advanced levels by qualified instructors from host institutions. Summer programs sponsored by the Lehigh-LVAIC Center for Jewish Studies include Hebrew in Israel.

Credits and grades are fully transferable under normal LVAIC cross-registration procedures. Interested students should consult with the Department of Modern Languages and Literature, Maginnes Hall.

These courses are offered by Lehigh or under the cooperation agreement with the Lehigh Valley Association of Independent Colleges. Summer or semester study abroad at approved programs may be incorporated into foreign language majors and minors with the permission of the appropriate advisor to a maximum of 16 credits toward the major and eight credits toward the minor.

CHIN, FREN, GERM, JPNS, RUSS, SPAN 091. Language and Culture Abroad I (1-8)
Intensive study of conversation in the language of the country; reading, development of writing skills and selected aspects of the culture. (HU)

CHIN, FREN, GERM, JPNS, RUSS, SPAN 191. Language and Culture Abroad II (1-8)
Intensive study of conversation in the language of the country; rapid review of basic grammar, the reading and analysis of moderately difficult texts, development of rudimentary writing skills, supplemented study. Interested students should consult their language major adviser.

CHIN, FREN, GERM, JPNS, RUSS, SPAN 291. Language and Culture Abroad III (1-8)
Intensive practice of speaking and writing in the language of the country aimed at providing the student with extensive proficiency of expression and the ability to discriminate linguistic usage. Idiomatic expressions and an introduction to stylistics. Reading and analysis of more difficult texts, supplemented by in-depth study of selected aspects of contemporary civilization. Prerequisites: consent of chair and proficiency examination in the target country. (HU)

No course under 100 level may be retaken for credit once a higher course has been passed.

Foreign Culture and Literature Taught in English
These courses on foreign cultures and comparative topics carry no prerequisites; knowledge of the foreign language is not required.

Language majors may count one MLL course taught in English for credit toward a major requirement. Interested students should consult their language major adviser.

For course descriptions, see under each language area below.

MLL 006. (GC 006) Globalization and Cultures (3)
This course is a reflection on the processes of globalization and their consequences, both good and bad, on the world’s societies and on our concepts of culture and identity. It provides a multidisciplinary examination of what cultures gain and lose from their interaction with the rest of the world and what it means to be a citizen of a globalized yet diverse world. (HU/GC)

MLL 023. Lehigh in Russia (1-8)
MLL 027. Russian Classics (4)
MLL 028. The East European Film Experience (4)
MLL 051. Contemporary Hispanic-American Literature (4)
MLL 053. This Hispanic World and its Culture (4)
MLL 068. (ASIA 068) Japanese Language: Past and Present (4)
MLL 073. (ASIA 073, GCP 073, WS 073) Film, Fiction, and Gender in Modern China (4)
MLL 074. (ASIA 074) Chinese Cultural Program (1-8)
MLL 075. (ASIA 075, HIST 075) Chinese Civilization (4)
MLL 076. (ASIA 076, HIST 076) Understanding Contemporary China (4)

MLL 078. (ASIA 078) Asian American Studies (4)
A survey of issues concerning Asians living in the United States from the perspectives of history, language, literature, and film. (HU)

MLL 100 Introduction to International Film (4)
An introduction to international film traditions and theory. We look at the importance of cinema as both art and entertainment and consider the social, political, and economic role of film in national and global contexts. (HU)

MLL 124 Negotiating Across Cultures (4)
The world is shrinking, yet as geographical distances between peoples collapse, our misunderstandings seem to expand. Explore difference, erode barriers, and learn tactics for successfully bridging cultural gaps. Learn the ins-and-outs of cross-cultural communication from specialists in all walks of life and from a diverse array of sources. (H/S)

MLL 125. (ASIA 125) Immortal Images: Traditional Chinese Literature in Translation (4)

MLL 127. (ASIA 127) ORIENTations: Approaches to Modern Asia (4)
A survey of the rapid economic, political, and social changes occurring in East, South, and Southeast Asian countries. How do the contemporary societies and historical traditions of Asian countries differ from the West? What distinguishes our perspectives on politics, individual liberties, religious faith, the "pursuit of happiness"? How are Asians represented (or misrepresented) in the West, and how will the ongoing process of globalization change, and be changed, by Asian cultures? Pankenier. (H/S)

MLL 140. (ANTH 140, COGS 140, PSYC 140) Introduction to Linguistics (4)
Relationship between language and mind; formal properties of language; language and society; how languages change over time. (SS)

MLL 143. German Literature and Culture in Translation (4)

MLL 165. (ASIA 165, GCP 165) Love and Revolution in Shanghai (4)

MLL 177. (ASIA 177, HIST 177) China Enters the Modern Age (4)

MLL 211. (GERM 211, THTR 211) German Drama (4)

MLL 218. (GERM 218, THTR 218) Goethe's "Faust" (4)

MLL 231. (GERM 231, GCP 231) New German Cinema (4)

MLL 260. (GERM 260, GCP 260) Multicultural Germany (4)

MLL 319 (4)/MLL 419 (3). Second Language Acquisition (SLA) Theory
This course will introduce theories of second-language acquisition of English as a second language as well as other languages. Various theories of communication and language acquisition will be covered. Prerequisite: consent of instructor. (HU/ED)

MLL 320. (GERM 320) Berlin: 1920s to the Present (4)

MLL 321 (4)/MLL 421 (3). Intercultural Communication
Language is ambiguous by nature and discourse is interpreted in cultural and linguistic contexts. This course covers different cultural and linguistic strategies individuals use to communicate with each other, essential concepts for interacting with individuals from other cultural and linguistic backgrounds, and different strategies of communication as defined by specific cultures. Covering the theory and practice of intercultural interaction, this course examines assumptions about language and culture, and includes practical advice to help students develop the cultural sensitivity essential for communication today. (HU/ED)

Arabic

Undergraduate Courses

ARAB 001. Elementary Arabic I (4)
Fundamentals of Arabic, reading and simple texts, simple conversation and composition, vocabulary building. No previous knowledge of Arabic required. (HU)

ARAB 002. Elementary Arabic II (4)
Continuation of Elementary Arabic I. Fundamentals of Arabic, reading and simple texts, simple conversation and composition, vocabulary building. No previous knowledge of Arabic required. (HU)

ARAB 011. Intermediate Arabic I (4)
Review of Grammar, composition, reading of intermediate texts, vocabulary building. Prerequisite: ARAB 002 or equivalent. (HU)

ARAB 012. Intermediate Arabic II (4)
Continuation of Intermediate Arabic I. Review of grammar, composition, reading of intermediate texts, vocabulary building. Prerequisite: ARAB 011 or equivalent. (HU)

ARAB 190. Special Topics I (1-4)
Literary and linguistic topics not covered in regular classes. May be repeated for credit. (HU)

ARAB 191. Special Topics II (1-4)
Literary and linguistic topics not covered in regular classes. May be repeated for credit. (HU)

Chinese

Undergraduate Courses

CHIN 001. Beginning Chinese Reading and Writing I (2)
Introduction to the Chinese writing system and beginning character acquisition; reading practice with pinyin transcription system. (Fall) Co-requisite: CHIN 003 or permission of the instructor. Staff. (HU)

CHIN 002. Beginning Chinese Reading and Writing II (2)
Continuation of CHIN 001: continued character acquisition, reading practice in pinyin and simple character texts. (Spring) Prerequisites: CHIN 003, CHIN 004 or permission of the instructor. Staff (HU)

CHIN 003. Beginning Spoken Chinese I (2)
Introduction to Mandarin Chinese pronunciation, the pinyin transcription system, and modern colloquial
CHIN 004. Beginning Spoken Chinese II (2)
Continuation of CHIN 003; further practice with text-based dialogues in modern colloquial Chinese; emphasis on oral proficiency. Not open to native speakers. (Fall) Prerequisite: CHIN 003 or permission of the instructor. Staff (HU)

CHIN 251, may discuss this possibility with the professor. (HU)

CHIN 011. Intermediate Chinese Reading and Writing I (2)
Continued focus on vocabulary/character acquisition and text-based reading and writing exercises using Chinese characters. (Fall) Prerequisite: CHIN 013 or permission of the instructor. Staff (HU)

CHIN 012. Intermediate Chinese Reading and Writing II (2)
Continuation of CHIN 011: vocabulary/character acquisition and text-based reading and writing exercises using Chinese characters. (Spring) Prerequisite: CHIN 013, CHIN 014, or permission of the instructor. Staff (HU)

CHIN 013. Intermediate Spoken Chinese I (2)
Further development of communicative skills in Chinese using situational dialogues and class discussion; emphasis on oral proficiency. Not open to native speakers. (Fall) Prerequisite: CHIN 004, CHIN 011, or permission of the instructor. Staff (HU)

CHIN 014. Intermediate Spoken Chinese II (2)
Continuation of CHIN 013; further development of communicative skills in Chinese using situational dialogues and class discussion; emphasis on oral proficiency. Not open to native speakers. (Fall) Prerequisite: CHIN 012, CHIN 013, or permission of the instructor. Staff (HU)

CHIN 111. Advanced Chinese Reading & Writing I (2)
Reading, translation, and writing practice using text-based exercises, short stories, essays, and other selected materials. (Fall) Prerequisite: CHIN 014, CHIN 113 or permission of the instructor. Staff (HU)

CHIN 112. Advanced Chinese Reading & Writing II (2)
Continuation of CHIN 111: reading, translation, writing exercises using text-based exercises, short stories, essays, and other selected materials. (Spring) Prerequisite: CHIN 111, CHIN 113, or permission of the instructor. Staff (HU)

CHIN 113. Advanced Spoken Chinese I (2)
Topical discussions and oral presentations in Chinese. (Fall) Prerequisite: CHIN 014, CHIN 111, or permission of the instructor. Staff (HU)

CHIN 114. Advanced Spoken Chinese II (2)
Continuation of CHIN 113: topical discussions and oral presentations in Chinese. (Fall) Prerequisite: CHIN 112, CHIN 113, or permission of the instructor. Staff (HU)

CHIN 251. Special Topics (1-4)
Literary and linguistic topics not covered in regular courses. May be repeated for credit. Prerequisite: consent of the instructor. (HU)

CHIN 252. Business Chinese (1-2)
Directed readings on the Chinese business environment and business terminology. Emphasis on reading comprehension and translation. May be repeated for credit. Prerequisite: CHIN 112, CHIN 114, or permission of the instructor. Staff (HU)

CHIN 253. Chinese Fiction (1-2)
Students read modern Chinese short stories or a novel. Emphasis on reading comprehension and translation. May be repeated for credit. Prerequisite: CHIN 112, CHIN 114, or permission of the instructor. Staff (HU)

CHIN 254. Intensive Conversation (1-2)
Conversational practice based on topical readings. For advanced speakers only. May be repeated for credit. Prerequisite: CHIN 112, CHIN 114, or permission of the instructor. Staff (HU)

MLL 074. (ASIA 074) Chinese Cultural Program (1-8)
A summer program in China, taught in English. (HU)
MLL 165. (ASIA 165, GCP 165) Love and Revolution in Shanghai (4)
Project-based course examines human relationships and political-economic changes in Shanghai through the lens of literature, film, and a selection of other readings. Discussion of conflicts between and influences of pre-communist, communist, and capitalist systems as played out in the Shanghai area. Written research papers on aspects of historical or modern Shanghai, and class presentations. Blackboard and in-class discussions of assigned readings and films. (HU)

MLL 177. (ASIA 177, HIST 177) China Enters the Modern Age (4)
The collapse of the imperial order and China's agonizing transformation into a modern nation-state over the past 150 years. The impact of imperialism, war, radical social change, and protracted revolution on Chinese traditions, values, and institutions. (H/S)

French

Undergraduate Courses

FREN 001. Elementary French I (4) fall
Multimedia approach to the study of French. Introduction to French conversation, grammar, and culture. (HU)

FREN 002. Elementary French II (4) spring
Continuation of FREN 1. Prerequisite: FREN 001 or appropriate achievement test score before entrance, or consent of instructor. (HU)

FREN 011. Intermediate French I (4) fall
Further acquisition of the fundamentals of French conversation, writing, and culture. Multimedia approach. Prerequisite: FREN 002 or appropriate achievement test score before entrance, or consent of instructor. (HU)

FREN 012. Intermediate French II (4) spring
Continuation of FREN 011. Prerequisite: FREN 011 or appropriate achievement test score before entrance, or consent of instructor. (HU)

FREN 143. Advanced Written French (4)
Intensive practice in written French and introduction to literary criticism. Prerequisite: FREN 012, or achievement test score of 590, or consent of instructor. (HU)

FREN 144. Advanced Oral French (4)
Emphasis on comprehension and oral performance of the French language. Student acquires confidence in speaking French through discussions of current issues, articles, novels, movies, and other topics. Required for French majors. Prerequisite: FREN 143 or equivalent. Staff. (HU)

FREN 252. From Romance to Post-Modernism (4)
Representative works from the Middle Ages to the Twentieth Century, including Marie de France, Flaubert, Baudelaire, and Proust. Prerequisite: FREN 143, 144, or consent of instructor. (HU)

FREN 259. Getting in Touch with Today's France (4)
This course is designed to introduce students to major debates in French society today. How is France defining itself today as a European nation in a global world? Issues to be explored include: family, gender, race and religion, the education and social systems, immigration, and politics. Strongly recommended for students who plan to study abroad in France. Prerequisite: FREN 143, 144, or consent of instructor. (HU)

FREN 271. Readings (4)
Study of the works of some author or group of authors, or of a period, or of a literary theme. May be repeated once for credit. (HU)

FREN 272. Culture of Business (4)
An exciting new course on the fundamentals of business in France. We will learn about banking, marketing, advertising, the stock market, and many other aspects of business in France. We will learn about foreign ventures in France, such as Disney and McDonald's. We will learn how to open a bank account, apply for a job, and what life is like in a French company. Ideal for someone who wants to intern or work for an international company or a company with a French connection. Taught in French. Prerequisite: FREN 143 or 144 or equivalent. Wolfgang.

FREN 281. French Cultural Program (1-6)
A program in a French-speaking country offering formal language courses and cultural opportunities. (HU)

FREN 302. Medieval French Stories (4)
Stories of love, death, revenge, murder, and mayhem. Wolfgang. (HU)

FREN 303. Arthurian Romances (4)

FREN 306. Renaissance French Literature (4)
Study of the major writers of the period, including Ronsard, Rebelaix, and Montaigne. Wolfgang. (HU)

FREN 311. French Classicism
French classical drama, novel, and criticism, with emphasis on Corneille, Racine, Moliere, Pascal, Lafayette, Malherbe, and Boileau. Chabut. (HU)

FREN 313. The Age of Enlightenment (4)
The Philosophes and Encyclopedistes of the eighteenth century, with emphasis on Voltaire, Rousseau, Montesquieu, and Diderot. Chabut. (HU)

FREN 316. Nineteenth Century Literature (4)
Study of major nineteenth century novelists and poets. Armstrong. (HU)

FREN 318. (THTR 318) Drama in the Twentieth Century (4)
Contemporary French drama with an analysis of its origins and movements. Armstrong. (HU)

FREN 320. Contemporary French Fiction (4)
Reading and discussion of contemporary works of fiction (post-1980). Study of how these works fit into the context of French literature and relate more specifically to major literary currents of the twentieth century. Armstrong. (HU)

FREN 321. Twentieth-Century French Short Fiction (4)
Examines, within the framework of short fiction, of the major literary currents that have made up twentieth-century literature. Works by Sartre, Camus, de Mandiargues, Robbe-Gillet, Le Clezio, Echenoz, Sallenave, and others. Armstrong (HU)

FREN 322. Contemporary French Films (4)
French Films from the late 1950s to the present. Introduction to cinematographic language and explo-
ration of the issues of gender, power, and madness. Films by Truffaut, J-L Godard, C. Denis, A. Varda, J-J Beineix, E. Rohmer, and others. Armstrong (HU)

FREN 323. Love and the French Novel (4)
Representative French novels, such as Tristan et Iseut, La Princesse de Clèves, and Bonjour Tristesse. Style, themes, myths, and story patterns are analyzed. (HU)

FREN 324. The Outsider in French Fiction (4)
Focus on otherness/difference in French fiction from the eighteenth to the twentieth century. Reading and discussion of short stories and novels by Graffigny, Diderot, Maupassant, Gide, Camus, Duras, Beauvoir, Le Clézio and others. (HU)

FREN 327. (WS 327) Women Writing in French (4)
Reading and discussion of works written by women in French. The emphasis is on 19th- and 20th-century writers, such as G. Sand, Colette S. de Beauvoir, M. Duras, and Andrée Chédid. Chabut (HU)

FREN 369. Readings (4)
Advanced study of an author, period, or theme. Topics vary. May be repeated once for credit. Prerequisite: consent of instructor. (HU)

FREN 370. Internship (1-8)
Designed to give advanced qualified students the chance to acquire field experience and training with selected firms and governmental agencies in French-speaking countries. Assigned readings, written reports, and employer performance evaluations are required. Prerequisite: consent of instructor. (HU)

FREN 371. Independent Study (1-8)
Special topics under faculty guidance, including honors thesis. May be repeated once for credit. Prerequisite: consent of instructor. (HU)

German

Undergraduate Courses

GERM 001. Elementary German I (4)
Fundamentals of German; reading and simple texts; simple conversation and composition; vocabulary building. Three class hours plus one laboratory or drill hour each week. No previous German required. (HU)

GERM 002. Elementary German II (4)
Continuation of GERM 1, including reading of more advanced texts. Three class hours plus one laboratory or drill hour each week. Prerequisite: GERM 001 or equivalent. (HU)

GERM 011. Intermediate German I (4)
Review of grammar, composition, reading of intermediate texts, vocabulary building. Prerequisite: GERM 002, or four units of entrance German or consent of instructor. (HU)

GERM 012. Intermediate German II (4)
Continuation of GERM 011. Prerequisite: GERM 011 or consent of instructor; one hour of lab. (HU)

GERM 163. German Civilization and Culture (4)
Cultural, historical, and political evolution of Germany and German-speaking countries in Europe. Prerequisite: GERM 012 or equivalent, or consent of instructor. (HU)

GERM 167. Conversation and Composition (4)
Intensive practice in spoken and written German. Prerequisite: GERM 012 or equivalent, or consent of instructor. (HU)

GERM 169. Business German (4)
German in business, the professions, international, and social relations. Letter writing, comprehension of technical texts, specialized vocabulary, and grammar review. Prerequisite: GERM 012 or equivalent, or consent of instructor. (HU)

GERM 181. German Cultural Program (1-8)
Summer program abroad. Formal instruction in the language and the culture of a German-speaking country. (HU)

GERM 211 (MLL 211, THTR 211). German Drama (4)
Drama as a literary genre; plays from various periods of German literature. (HU)

GERM 218. (MLL 218, THTR 218) Goethe's "Faust" (4)
Study of Goethe's play with an introduction to the Faust tradition and Faustian themes in modern literature. (HU)

GERM 231. (GCP 231, MLL 231). New German Cinema (4)
Viewing, discussion, and written analysis of selected German films. (HU)

GERM 240. Contemporary Germany (4)
Readings and conversations in German about topics including the social and natural sciences, technology, the environment, politics, daily life, and sports. Practice in spoken and written German. (HU)

GERM 250. Special Topics (1-4)
Literary and linguistic topics not covered in regular courses. May be repeated for credit. (HU)

GERM 260. (MLL 260, GCP 260) Multicultural Germany (4)
A look at Germany from the perspective of its “others”—the immigrants. Literary and cultural texts, and films on ethnic diversity and integration. (HU)

GERM 267. Advanced Conversation and Composition (4)
A continuation of GERM 167. Practice of speaking and writing skills in German through readings of more complex texts. (HU)

GERM 269. Advanced Professional German (4)
A continuation of Business German with an emphasis on specific economic issues affecting contemporary Germany, Switzerland, and Austria. Preparation for the national exam "Certificate for the Professions" and the "International Business German Examination". (HU)

GERM 281. German Cultural Program (1-8)
Study abroad. Formal instruction in German and direct contact with the people and the culture during at least one month in a German-speaking country. Prerequisites: consent of German study abroad adviser. (HU)

GERM 301. Survey of German Literature (4)
An overview of German literary traditions through the nineteenth century, focusing on the Middle Ages, Renaissance, Reformation, Baroque, Enlightenment, Classicism, Romanticism, Realism, and Naturalism. (HU)
GERM 305. Modern German Literature (4)
Topics in German literature of the twentieth and twenty-first century. (HU)

GERM 320. (MLL 320.) Berlin: 1920s to the Present (4)
Literature, culture, and history of Berlin from the Weimar Republic through reunification. (HU)

GERM 341. Applied Phonetics and Linguistics (4)
Writing and speaking Standard High German. Study of regional pronunciation, contrasts, dialects. (HU)

GERM 345. German Short Stories (4)
Readings of short prose texts in German. (HU)

GERM 350. Special Topics (1-4)
Literary or linguistic topics not covered in regular courses. May be repeated for credit. Prerequisite: consent of instructor. (HU)

GERM 370. Internship (1-8)
Designed to give advanced qualified students the chance to acquire field experience and training with selected firms and governmental agencies in German-speaking countries. Assigned readings, written reports, and employer performance evaluations are required. Prerequisite: GERM 167 or consent of instructor. (HU)

Courses Taught in English

MLL 143. German Literature and Culture in Translation (4)
A period or theme in German literature or intellectual and cultural history. (HU)

MLL 231. (GCP 231, Germ 231) New German Cinema (4)
Viewing, discussion, and written analysis of German films with English subtitles. (HU)

MLL 320. (Germ 320) Berlin: 1920s to the Present (4)
Literature, culture, and history of Berlin from the Weimar Republic through reunification. (HU)

Hebrew

Undergraduate Courses

The department offers courses both separately and in the context of the Jewish studies minor (Section III).

HEBR 001. Elementary Modern Hebrew I (4) fall
Classroom and laboratory instruction to develop hearing, speaking, reading, and writing the language. Cultural, ethnic, and religious dimensions of Israeli society. Tapes, textural materials, short stories. No previous study of Hebrew required. (HU)

HEBR 002. Elementary Modern Hebrew II (4) spring
Continuation of Hebrew I utilizing the audio-lingual approach. Fundamentals of the language, structure and sounds; the Hebrew verb; reading and vocalized stories; written exercises; tapes; short stories. Prerequisite: HEBR 001 or its equivalent. (HU)

HEBR 011. Intermediate Modern Hebrew I (4) fall
Classroom and laboratory instruction to develop fundamental patterns of conversation and grammar; composition, reading of texts, laboratory work and sight reading; comprehension, speaking, reading and writing of unvocalized materials. Prerequisite: HEBR 002 or consent of instructor. (HU)

HEBR 012. Intermediate Modern Hebrew II (4) spring
Continuation of Hebrew I. Reading of texts, including selected short stories, outside reading and supplementary material; increased emphasis on oral presentation. Prerequisite: HEBR 011 or consent of instructor. (HU)

Japanese

Undergraduate Courses

See Asian Studies major and minor.

JPNS 001. Elementary Japanese I (4) fall
Introduction to the oral and written language with emphasis on spoken Japanese and syllabaries. Language laboratory. (HU)

JPNS 002. Elementary Japanese II (4) spring
Continuation of JPNS 001. Prerequisite: JPNS 001 or equivalent. (HU)

JPNS 011. Intermediate Japanese I (4) fall
Continuation of JPNS 002. Structural patterns in both spoken and written languages. 150 kanji (Chinese characters). Prerequisite: JPNS 002 or equivalent. (HU)

JPNS 012. Intermediate Japanese II (4) spring
Continuation of JPNS 011. Prerequisite: JPNS 011 or equivalent. (HU)

JPNS 141. Advanced Japanese I (4) fall
Advanced reading and oral comprehension. Conversation and writing practice. Prerequisite: JPNS 012 or equivalent. (HU)

JPNS 142. Advanced Japanese II (4) spring
Continuation of JPNS 141. Prerequisite: JPNS 141 or equivalent. (HU)

JPNS 145. Japanese Conversation and Culture I (4)
This course emphasizes oral skills and culture by discussing topics related to modern Japan. Advanced writing skills, especially the knowledge of Kanji, are introduced individually. Prerequisite: JPNS 012 or consent of instructor. (HU)

JPNS 146. Japanese Conversation and Culture II (4)
Continuation of JPNS 145. Emphasis on advanced oral and writing skills, and knowledge of the culture. Prerequisite: JPNS 145 or consent of instructor. (HU)

JPNS 290. Special Topics (1-4)
Literary or linguistics topics not covered in regular courses. May be repeated for credit. Prerequisite: consent of instructor. (HU)

JPNS 291. Advanced Japanese and Culture Abroad (1-8)

Courses Taught in English

MLL 068. (ASIA 68) Japanese Language: Past and Present (4)
Historical and contemporary aspects of the Japanese language, including the origins of Japanese in relation to Korean, the influence of Chinese, syntactic features
Russian

Undergraduate Courses

RUSS 001. Elementary Russian I (4) fall
Classroom and laboratory, audio, and video introduction to the fundamentals of conversational and grammatical patterns; practice in pronunciation, simple conversation, reading, and writing. (HU)

RUSS 002. Elementary Russian II (4) spring
Continuation of RUSS 001. Prerequisite: RUSS 001 or equivalent. (HU)

RUSS 011. Intermediate Russian I (4) fall
Classroom and laboratory practice in conversation. Development of reading and writing skills. Prerequisite: RUSS 002 or equivalent. (HU)

RUSS 012. Intermediate Russian II (4) spring
Continuation of RUSS 011. Prerequisite: RUSS 002 or 011, or equivalent. (HU)

RUSS 141. Conversation and Composition I (4) fall
Intensive practice in oral and written Russian; laboratory practice in oral comprehension. Readings and discussions on Russian literature and culture. Prerequisite: RUSS 012 or equivalent. (HU)

RUSS 142. Conversation and Composition II (4) spring
Continuation of RUSS 141. Prerequisite: RUSS 141 or equivalent. (HU)

RUSS 215. Russian Classics: Russian Literature with Variable Topic and Credit (1-4)
May be repeated for credit. (HU)

RUSS 231. Russian in the Real World I (4)
Readings and conversations about selected nonliterary topics including the social, natural sciences, business, economics, the environment, current political events in Russia and throughout the former Soviet republics. (HU)

RUSS 232. Russian in the Real World II (4)
A continuation of RUSS 231. (HU)

 RUSS 251. Special Topics (1-4) fall
Intensive study of literary or linguistic topics. Prerequisite: RUSS 142 or equivalent. May be repeated for credit. Nicholas (HU)

RUSS 252. Special Topics (1-4) spring
Intensive study of literary or linguistic topics. Prerequisite: RUSS 142 or 251 or equivalent. May be repeated for credit. Nicholas (HU)

RUSS 370. Internship (1-8)
Designed to give advanced qualified students the chance to acquire field experience and training with selected firms and governmental agencies in Russian-speaking countries. Assigned readings, written reports, and employer performance evaluations are required. Prerequisites: RUSS 141 or 142 and approval of faculty committee on internship. (HU)

RUSS 391. Special Topics (1-4)
Independent study of research under faculty guidance on a literary, linguistic, or methodological topic. May be repeated once for credit. May be used to satisfy the doctoral language requirement. Prerequisite: instructor. Nicholas (HU)

Courses Taught in English

MLL 023. Lehigh in Russia (1-8)
A summer program in Russia, taught in English. (HU)

MLL 027. Russian Classics (4)
Russian classics in translation. May be repeated for credit. (HU)

MLL 028. The East European Film Experience (4)

Spanish

Undergraduate Courses

SPAN 001. Elementary Spanish I (4) fall
Basic conversational Spanish illustrating essential grammatical principles. Reading of simple texts and writing. Lab required. (HU)

SPAN 002. Elementary Spanish II (4) spring
Continuation of SPAN 01. Lab required. Prerequisite: SPAN 001 or equivalent. (HU)

SPAN 011. Intermediate Spanish I (4) fall
Limited review of elementary grammar concepts and introduction to more advanced grammar. Emphasis on discussion, reading, and writing about significant topics in the Spanish-speaking world. Students will be required to complete one hour of independent work. Prerequisite: SPAN 002 or equivalent. (HU)

SPAN 012. Intermediate Spanish II (4) spring
Practice and application of previously learned grammar to give maximum exposure to Spanish in contemporary contexts. Materials include articles from current periodicals, video, and literature from Spain and Spanish America, plus one hour of independent work. Prerequisite: SPAN 011 or equivalent. (HU)

SPAN 131. Communicating in Spanish for Medical Personnel (4)
For prospective medical personnel communicating with Spanish-speaking patients. Dialogues, health-care vocabulary. Review of grammar. Language laboratory practice, plus hospital intensive hour. Prerequisite: SPAN 012 or equivalent. Lefkowitz. (HU)

SPAN 133. Phonetics and Pronunciation (4)
Comparison of Spanish and English sounds; descriptions of Spanish vowels and consonants in their various positions. Oral practice in language laboratory. Special emphasis on accent and intonation patterns. Prerequisite: SPAN 002. (HU)

SPAN 141. Advanced Grammar (4) fall
Intensive review of Spanish grammar with stress on finer points. Analysis of syntax and style. Improvement of grammar through composition. Prerequisite: SPAN 012 or equivalent. Dept. permission required. (HU)

SPAN 142. Advanced Conversational Spanish (4) spring
Conversational practice stressing the building of vocabulary based on literary texts and topics of general interest. Designed to stimulate fluent and spontaneous use of spoken Spanish. Enrollment limited to 15. Prerequisite: SPAN 141 or equivalent. (HU)

which reflect the hierarchical character of Japanese socie-ty, differences in female and male speech, and use of foreign loan words. Prerequisite JPN 001. (HU)
SPAN 151. Cultural Evolution of Spain (4) fall
The historical and cultural evolution of Spain.
Discussion of major literary works in their cultural and
historical contexts. Prerequisite: SPAN 141 or consent of
instructor. Lefkowitz. Dept. permission required. (HU)

SPAN 152. Cultural Evolution of Latin
America (4)
The historical and cultural evolution of Latin America.
Discussion of representative literary works in their cul-
tural and historical contexts. Prerequisite: SPAN 141 or
consent of instructor. Prieto. Dept. permission required.

SPAN 199. Special Topics (3-4)
For students who take a course, not offered at Lehigh, at
another institution. May be repeated once for credit.
Prerequisite: consent of instructor. (HU)

SPAN 211. Spanish for the Professions (4)
For students with a basic knowledge of Spanish: the lan-
guage in business, law, international and social relations.
Letter writing, comprehension of technical texts, special-
ized professional vocabulary and review of grammar.
Prerequisite: SPAN 141 or equivalent. Dept permission
required. (HU)

SPAN 212. Writing Skills (4)
Improving writing proficiency through practice in com-
pilation and translation. Prerequisite: SPAN 141 or equiva-
 lent. (HU)

SPAN 213. Approaches to Reading: Cultural
Productions in Spanish (4)
An introduction to the analysis of Latin American and
Spanish cultural productions (mainly literature and
film). Prerequisite: SPAN 151 or 152, Span 141. (HU)

SPAN 263. The Spanish American Short Story (4)
Comparative study of the literary problems posed by the
work of significant short story writers such as Quiroga,
Borges, Cortazar, Ribeiro, and others. Prerequisite:
SPAN 152 or equivalent. Prieto. Dept. permission
required. (HU)

SPAN 265. Spanish and Latin American
Cinema (4)
Oral discussion and written analysis of selected films.
Students view films independently. Prerequisite: SPAN
141 or equivalent. Dept. permission required. (HU)

SPAN 275. (WS 275) Introduction to Hispanic
Women Writers (4)
The objective of this class is to introduce students to
Hispanic contemporary female authors from Latin
America, Spain, and the United States through the
analysis of all literary genres (novel, short story, poetry,
essay, and drama). This class provides students with a
solid introduction to both Hispanic women's writing
from the last years of the Nineteenth Century to the
present, as well as to feminist literary theory. Portela.
(HU)

SPAN 290. Special Topics (2-4)
Study of an author or theme, or completion of a special
project. Topics may vary. May be repeated once for
credit. Prerequisites: SPAN 151 or 152, and consent of
instructor. (HU)

SPAN 303. Don Quixote (4)
Reading and critical analysis; two 2-hour sessions.
Prerequisite: SPAN 151 or equivalent. Lefkowitz. (HU)

SPAN 305. Spanish Literature of the Middle
Ages (4)
Reading and discussion of outstanding works such as El
Cid, El Liro de Buen Amor and La Celestina. Topics
vary. Prerequisite: SPAN 151. Lefkowitz. (HU)

SPAN 308. The Spanish Novel Since 1939 (4)
The evolution of the novel from post civil war to the
present. Reading of Cela, Laforet, Delibes, Rodoreda,
and Marse, among others. Prerequisite: SPAN 151 or
equivalent. (HU)

SPAN 320. Literature of the Spanish
Caribbean (4)
Study of representative works with emphasis on Cuba
and Puerto Rico. Writers include Barnet, Carpenter,
Sanchez, and Rodriguez Julia. Prerequisite: SPAN 152 or
equivalent. Prieto. (HU)

SPAN 321. Children and Adolescents in
Contemporary Spanish American Literature (4)
Discussion of narrative techniques and the category of
the self as they relate to the images of adolescence and
childhood in works by such authors as Vargas Llosa,
Reinaldo Arenas, Jose Blanco, Silvinia Ocampo.
Prerequisite: SPAN 152 or equivalent. Prieto. (HU)

SPAN 322. The Short Novel in Contemporary
Spanish American Literature (4)
Reading and discussion of representative works by Garcia
Marquez, Onetti, Rulto, Bloy Casares, and others.
Prerequisite: SPAN 152 or equivalent. Prieto. (HU)

SPAN 323. Literature and Revolution in
Contemporary Cuba (4)
Study of works written after 1959 by dissident, non-dis-
sident, and exiled authors (Desnoes, Norberto Fuentes,
Benitez Rojo, Cabrera Infante). Prerequisite: SPAN 152
or equivalent. Prieto. (HU)

SPAN 325. Hispanic Literature of the United
States (4)
Discussion of fiction, poetry, drama, and film from the
main groups in the U.S. Hispanic population.
Discussion of Hispanic ethnic identity, bilingualism, and
minority issues. Prerequisite: SPAN 152 or equivalent.
Prieto. (HU)

SPAN 326. (WS 326) Tradition and Resistance:
Women Writers of Latin America (4)
Study of poetry and narrative works by Latin American
women writers. Authors include Rosario Ferre, Rosario
Castellanos, Elena Poniatowska, Cristina Peri Rossi,
among others. Prerequisite: SPAN 152 or equivalent.
(HU)

SPAN 342. The New Narrative in Spanish
American Literature (4)
Critical evaluation of distinguished works of Spanish
American prose fiction of the 1960's and 70's. Readings
by Donoso, Fuentes, Garcia Marquez, and Vargas Llosa,
among others. Prerequisite: SPAN 152 or equivalent.
(HU)

SPAN 345. Testimonial Writing of the Hispanic
World (4)
This course explores the genre testimonio, which con-
fronts the official history of the Latin American and
Spanish dictatorships and portrays the experiences and
struggles of those who suffered political repression. The
course focuses on the analysis of both literary and visual
The Minor in International Film affords students the opportunity to examine a wide cross-section of world cinema. It is designed to provide a critical understanding of historical trends and current issues in film across various regions of the world. Covering national cinemas from ASIA, Europe, and Latin America, course offerings will allow students to explore diverse approaches to film that are rooted in the history, culture, and society of different countries in each region.

The minor consists of 16 credits. All students must take a required core course (MLL 100), and the remaining courses are to be chosen from the list of electives below, in consultation with the minor advisor. (One course may be taken outside of the MLL department with the minor advisor's approval.)

Core course
MLL 100 Introduction to International Film (4)

Elective courses
MLL 028 The East European Film Experience (4)
MLL/ASIA/ WS/GCP 073 Film, Fiction, and Gender in Modern China (4)
FREN 322 Contemporary French Films (4)
GERM/GCP/ MLL 231 New German Cinema (4)
SPAN 265 Spanish and Latin American Cinema (4)

Minor in International Communication

Description:
The Minor in International Communication is designed for students who have already reached the intermediate level in their language studies and wish to develop interpersonal communication skills from a global perspective.

The minor consists of 16 credits. Students must take MLL 90 or 124 as a core course, and one advanced language course in their language (above 100 level), and two other courses from the list of electives below in consultation with the minor advisor. These two courses must be chosen from a region that is different from their language area in order to broaden their communication skills. (One course may be taken outside of the MLL department with the minor advisor's approval.)

Courses:
Required:
Negotiating across cultures (MLL 90 or 124) or Globalization and Cultures (MLL/GCP 006)

One advanced language course (above 100 level)
Electives:
MLL 027 Russian Classics (4)
MLL 053 This Hispanic World and its Culture (4)
MLL/ASIA/ HIST 075 Chinese Civilization (4)
MLL/ASIA/ HIST 076 Understanding Contemporary China (4)
MLL 143 German Literature and Culture in Translation (4)
MLL/ASIA/ HIST 177 China Enters the Modern Age (4)
MLL 195 Lehigh in Spain (4)
FREN 159 The French-speaking World and its Culture (4)
GERM 163 German Civilization and Culture (4)
SPAN 151 Cultural Evolution in Spain (4)
SPAN 152 Cultural Evolution in Latin America (4)

Other courses pre-approved by the adviser.

Music

Professors. Paul Salerni, Ph.D. (Harvard), Chair; Steven Sametz, D.M.A. (Wisconsin) (Ronald J. Ulrich Chair in Music); Nadine Sine, Ph.D. (N.Y.U.)

Associate Professors. Paul Chou, M.M. (SUNY - Stony Brook) (Ronald J. Ulrich Chair in Orchestral Music); William Warfield, M.M. (Manhattan).

Professors of Practice. Eugene Albulescu, M.M. (Indiana); Debra Field, M.M. (Temple)

Lecturers. David Diggs, M.M. (SUNY - Stony Brook)
Adjunct Professors: David Bakamjian, D.M.A. (SUNY-Stony Brook); Helen Beedle, M.M. (New England); L. Scott Force, M.E. (Trenton State); Albert Neumeyer, M.M. (Trenton); Gene Perla, B.A. (Thomas Edison); Dave Riekenberg, M.M.E. (N. Texas State); Tim Schwarz, M.M. (Peabody); James Thoma, M.M. (Juilliard).

Private Instructors: Bass: Dominick Fiore, Gene Perla; Bassoon: Kim Seifert; Clarinet: Deborah Andrus; Flute: Linda Ganus, Robin Kani; French Horn: Paul Rosenberg; Guitar: (electric) Bob DeVos, Tom Guarna, Vic Juris; Harp: Andrea Wittchen; Oboe: David Digg; Organ: Tim Harrell; Piano: Eugene Albulescu, Helen Beedle, Tim Harrison (jazz), Kevin McCarter, Donna McHugh, Pat O’Connell, Irmgard Pursell; Percussion: Scott Neumann, James Thoma; Saxophone: David Brandon, Dave Riekenberg; Trombone: Michael Christianson; Trumpet: Bill Warfield (jazz), Lawrence Wright; Tuba: Scott Force; Violin and Violin: Paul Chou, Tim Schwarz; Violoncello: David Bakamjian; Voice: Eduardo Azzati, Lise Carlson, Debra Field, Jan Opalach.

The study of music develops skills which will serve the student well in any career: self-discipline, teamwork, problem solving and leadership. A student graduating with the B.A. degree in music will have a strong foundation in music theory and substantial exposure to western music from the Middle Ages to the present. This curriculum will prepare a student for graduate studies in musicology, music theory, composition, or performance. A music major or minor taken in conjunction with a business major may lead to a variety of careers in arts management or in the recording and music publishing industries. For some a double major or a minor in music will not lead to a career but to a life-long involvement with an art form that gives lasting satisfaction.

The music department also offers significant performance experiences in instrumental and vocal ensembles, large and small, and in private instruction. The Zoellner Arts Center facilities include a Listening Library, practice rooms, a composition and digital class piano studio, a fine recording studio, classrooms and rehearsal rooms. Most importantly, the center boasts its concert facility, Baker Hall. With its 1000-seat capacity and excellent acoustics, it is flexible both on the stage (concert or theater mode) and in seating arrangements. The fully adjustable pit can serve opera or musical theater, can provide additional seating, or can become an extension of the stage.

Major program

The music program offers two separate programs, each earning the Bachelor of Arts degree, the B.A. in Music and the B.A. in Music Composition.

The Bachelor of Arts in Music (36-credit minimum) is for those students who wish to have double majors, who might choose a related field (e.g., arts management, part-time performance careers in orchestras) or who simply want a concentrated exposure to music study. Students choose between five different concentrations: performance; history and literature; theory and composition; jazz; conducting. For those who intend to pursue graduate study in music or a performing career, the major program should be viewed as the minimum requirement. Such students should regularly seek the advice of department faculty in expanding their program to suit their particular needs and goals.

Performance Concentration.

Thirteen credits in theory and musicianship skills: MUS 11, 2, 82, 3, 7, 83, 4, 8. Nine credits of music history (any 3 from MUS 233, 234, 235, 236) and eleven credits in electives, lessons, and recitals, and three credits in music electives. The student must perform a half recital in the junior year, a full recital in the senior year, and juries during the sophomore and junior years.

History Concentration.

Thirteen credits in theory and musicianship skills: MUS 11, 2, 82, 3, 7, 83, 4, 8, 128, 129. A minimum of four credits in small jazz groups, MUS 49 and six in jazz performance: MUS 24, 25, Four credits in music electives. The student must undertake a senior project under faculty direction.

Jazz Concentration

Thirteen credits in music theory and musicianship skills: MUS 11, 2, 82, 3, 7, 83, 4, 8 plus three credits in Jazz Theory, MUS 139. Six credits in Jazz History: MUS 128, 129. A minimum of four credits in small jazz groups, MUS 49, and six in jazz performance: MUS 24, 25, Four credits in music electives. The student must undertake a senior project under faculty direction.

Conducting Concentration

Thirteen credits in music theory and musicianship skills: MUS 11, 2, 82, 3, 7, 83, 4, 8. Nine credits in music history (choose from MUS 233, 234, 235, 236). Four credits in conducting: MUS 321, 322 plus at least two Conducting Internships (MUS 311), of which one must be in orchestra. Six credits in performance electives (lessons and ensembles). A piano proficiency exam must be completed before the end of the sophomore year. The student must undertake a senior project under faculty direction.

The Bachelor of Arts in Music Composition is designed for students committed to pursuing music composition beyond the undergraduate level. It is an intensive composition program with a 54-credit minimum. Twenty-five credits in music theory: MUS 82, 3, 7, 83, 4, 8, 139, 245, 245, 351. Nine credits in music history: MUS 236, MUS 336 plus one from MUS 129, 233, 234, 235, 236. Fourteen credits in composition: MUS 253, 254, two semesters of MUS 353. A minimum of two semesters of MUS 51: LUVME (1 credit each), one semester of conducting, MUS 321 (2 credits) and two credits of music electives. Students will have to pass a piano proficiency exam by the end of the sophomore year. Students will compile a composition portfolio by the end of the senior year.
Minor programs

Minor in Music
The minor requires a minimum of 17 credits and may include MUS 80 and 90. The program is designed to be flexible but must include MUS 11, 2, 82, 3, and 7, one history or literature course, and two performance courses (MUS 22-79). The student may choose the remaining four credits from department offerings.

Minor in Music Industry
The music industry minor is intended to provide exposure to basic information, issues and skills useful for students who may want to pursue entry level positions in the music business or to promote their own work. There are six required courses: MUS 161: Production and Marketing of Sound Recordings; MUS 164: Management of Careers in Performing Arts; MUS 261: Recording Techniques I; MUS 11 (with MUS 2): Basic Musicianship; MUS 361: Music Internship; and either Acc 108 or 151 for a minimum of 18 credits.

Music Option
Although Music and Engineering/Science is not a major in itself, Lehigh attracts many engineering and science students who wish to continue their active involvement in music and the music department. For those students who are interested in pursuing this option, music can be taken as a dual major, minor or elective.

Concert Requirement
Majors and minors must enroll in MUS 100 and attend concerts approved by the music department for a minimum of three semesters.

Departmental Honors
A student must have a 3.5 average in courses in the major to pursue honors. Candidates for departmental honors should submit to the department chair a written proposal, prepared in consultation with a faculty project adviser by the end of the junior year. The project could result in a research paper, a composition or a performance. Upon acceptance of the proposal by the department faculty, the student should register for MUS 350 for one to six credits, which may be taken all at once or over the senior year. The awarding of departmental honors will be contingent on the quality of the completed project.

Private lessons
Lessons in most instruments and voice may be taken for one credit. They must be arranged through the department at set fees that are not included in tuition. Please note that registering for lessons cannot guarantee availability due to difficulties in scheduling.

Performing groups
Admission to performing ensembles is by audition (except Choral Union, Symphonic Band and Marching 97), and students receive one credit per semester by registering for the appropriate course number. Although there is no limit to the number of courses in this series that may be taken, students should check with their adviser to determine the number that may be applied toward graduation.

Course Offerings
Please note that many upper level courses have no prerequisites beyond MUS 10 or 11 and are open to anyone with basic knowledge of musical terminology.

MUS 2. Keyboard Harmony I (1) spring
For intended majors and minors only. Co-requisite: MUS 11. Beginning piano skills designed to enable the student to use the piano as a tool. Major and minor scales in both hands, forming chords, elementary sight reading. Students may test out upon examination. (HU)

MUS 3. Keyboard Harmony II (1) fall
Continuation of MUS 2. Diatonic progressions in major and minor; more advanced sight reading. Students may test out upon examination. Co-requisite: MUS 82. Prerequisite: MUS 2. (HU)

MUS 4. Keyboard Harmony III (1) spring
Additional keyboard skills, including progressions with secondary chords, modulations, and sight reading. Students may test out upon examination. Co-requisite: MUS 83. Prerequisite: MUS 3 (HU)

MUS 7. Aural Skills (1) fall
Sight singing and ear training through dictation exercises. Rhythm exercises. Co-requisite: MUS 82. Prerequisite: MUS 11 or equivalent. (HU)

MUS 8. Aural Skills II (1) spring
Continuation of MUS 7. Co-requisite: MUS 83. (HU)

MUS 10. Basic Skills in Music (2) fall
Prerequisite: Admission to MUS 22-62 by audition. Rudiments of musical notation, beginning skills in sight reading. Students may test out upon examination. (HU)

MUS 11. Basic Musicianship (2) spring
For intended majors and minors. Development of basic skills in using notation, sight singing and ear training. Co-requisite: MUS 2. (HU)

MUS 12. Surveys in Music (3) fall or spring
Varied topics in music for the non-major such as Italian opera, Keyboard Music, the Symphony. Emphasis on developing listening skills and acquaintance with important works in the genre. Staff (HU)

MUS 21-79.
Applied music and performance courses may be repeated for graduation credit up to six times in CEAS and CBE. Prerequisite: Admission to MUS 22-62 by audition. MUS 64-79,170 have fees.

MUS 21. Marching Band (1) fall. (ND)
MUS 22. Wind Ensemble (1) fall-spring (HU)
MUS 23. Symphonic Band (1) spring (HU)
MUS 24. Jazz Ensemble (1) fall-spring (HU)
MUS 25. Jazz Band (1) fall-spring (HU)
MUS 31. University Choir (1) fall-spring (HU)
MUS 32. Choral Union (1) fall-spring (HU)
MUS 33. Glee Club (1) fall-spring. Co-requisite: MUS 31 (HU)
MUS 34 Freshman Lab Choir (0) fall. Co-requisite: MUS 31 (HU)
MUS 48. Chamber Music Collegium (1) fall-spring. Department Permission. (HU)

MUS 49. Small Jazz Ensembles (1) fall-spring. Department Permission. (HU)

MUS 51. LUVME (1) fall-spring (HU)

MUS 61. Lehigh University Philharmonic (1) fall-spring (HU)

MUS 62. Lehigh University Chamber Orchestra (1) fall-spring (HU)

MUS 64. Class Violin for Beginners (1) fall-spring
Class instruction for beginners on violin. Repeatable for credit. Staff (HU)

MUS 65. Class guitar for Beginners (1) fall-spring
Beginning techniques and skills for guitar, either acoustic or electric. For students with less than a year of guitar instruction. Students supply their own instruments. (HU)

MUS 66. Class Voice for Beginners (1) fall-spring
Group instruction for beginning students of voice, including breathing and vocal production techniques; diction; beginning solo pieces. (HU)

MUS 67. Class Drum Set for Beginners (1) fall-spring
Rudiments of drum set playing for students with less than a year of drum instruction. (HU)

MUS 68. Class Piano for Beginners I (1) fall-spring
Instruction for beginning piano students, including rudiments of musical notation in relation to the keyboard; beginning pieces for solo piano and the group. (HU)

MUS 69. Class Piano for Beginners II (1) fall-spring
A continuation of MUS 68. After a second semester of class piano, the student should be ready to benefit from private lesson instruction. (HU)

MUS 71. Private Piano Study (1) fall-spring (HU)

MUS 72. Private Vocal Study (1) fall-spring (HU)

MUS 73. Private String Study (1) fall-spring (HU)

MUS 74. Private Woodwind Study (1) fall-spring (HU)

MUS 75. Private Brass Study (1) fall-spring (HU)

MUS 76. Private Percussion Study (1) fall-spring (HU)

MUS 77. Private Organ Study (1) fall-spring (HU)

MUS 79. Private Electric Guitar Study (1) fall-spring (HU)

MUS 82. Harmony I (3) fall
Exercises in writing in four-part chorale style. MUS 3 and 7 must be taken concurrently. Prerequisites: MUS 11 or equivalent. (HU)

MUS 83. Harmony II (3) spring
Continuation of MUS 82 including modulation, non-harmonic tones, analysis. MUS 4 and 8 must be taken concurrently. Prerequisites: MUS 82, and 7 or equivalent. (HU)

MUS 100. Concert Requirement (0) fall, spring
Concerts approved by the department (for majors and minors)

MUS 128. Jazz History I (3) fall
A study of the roots of jazz. Starting in West Africa, the course traces the synthesis of African and European elements to 1945. Musicians covered are Gottshalk, Bolden, Morton, Armstrong, Hawkins, Basie, Ellington and others. Warfield (HU)

MUS 129. Jazz History II (3) spring
A survey of modern jazz from 1945 to the present. Musicians covered include Parker, Gillespie, Monk, Davis, Coltrane, Hancock, and Coleman. Can be taken independently of Jazz History I, but the first course would be helpful. Warfield (HU)

MUS 132. Composer and Era (3) fall or spring
Life and development of a composer's style viewed in historical context. Title varies: Bach, Beethoven, Mozart, etc. May be repeated for credit as title varies. Prerequisite: MUS 10 or 11 or equivalent. Sine (HU)

MUS 139. Jazz Theory (3) spring
Study of the music theory that is the foundation of a good jazz solo, composition or arrangement. Study of the modes of the major and melodic minor scale, chord-scale theory using major, melodic minor, diminished, and whole-tone scales. Basic chord progressions, functional analysis of jazz tunes, and ear training are also included. Prerequisites: MUS 82. (HU)

MUS 151. Vocal Diction (1) fall or spring
Introduction to the use of the International Phonetic Alphabet. Application to French, Italian, German and English diction using art song repertoire. Preparation of a song in each language. Field (HU)

MUS 161. Production and Marketing of Sound Recordings (3) fall-spring
A one-semester course providing foundations for organizing a recording project to be carried out by the class, which works in teams. This course will focus especially on artist negotiations, recording techniques, music publishing and manufacturing. Perla (ND)

MUS 164. Management of Careers in Performing Arts (3) fall-spring
A one-semester course that provides an overview of what performing artists and managers experience during cycles of career development. Topics include recognition of talent, positioning in the marketplace, creating support structures and attainment of personal goals. Students will be required to apply practical techniques in furthering the career of a chosen artist. Perla (ND)

MUS 170. Private Instruction for Performance Concentrators (2)
Lesson fees apply. Repeatable for credit. Restricted to music majors concentrating in performance. (HU)

MUS 171. Accompanying (1) fall-spring
Introduction to ensemble performance including sight-reading techniques, application of chord progressions and beginning improvisation techniques at the keyboard. May be repeated for credit. (HU)

MUS 233. Medieval and Renaissance Music (3) fall, odd
Development of musical style from early Christian chant to the sacred and secular forms of the late 16th century,
viewed in cultural contexts. Prerequisite: MUS 11 or equivalent. Sine (HU)

MUS 234. Baroque and Classical Music (3)
fall, spring, even
The major genres and composers of the 17th and 18th centuries studied in their cultural context. Prerequisite: MUS 11 or equivalent. Sine (HU)

MUS 235. Romantic Music (3)
fall, even
Study of the major composers and their works from late Beethoven to Mahler and Strauss. Prerequisite: MUS 11 or equivalent. Sine (HU)

MUS 236. Twentieth-Century Music (3)
spring, odd
Beginning with the major trends at the turn of the century, a study of the important composers and works of the last century to the present. Prerequisite: MUS 11 or equivalent. Sine (HU)

MUS 243. Counterpoint (4)
fall
Writing and analyzing pieces in Renaissance and Baroque contrapuntal styles. Prerequisites: MUS 83, 4, and 8 or equivalent. Salerni (ND).

MUS 245. Classical and Romantic Forms (4)
spring
Analyzing and writing pieces in classical and romantic forms. Exercises in chromatic harmony. Prerequisite: MUS 243. (ND)

MUS 251. Special Topics (1-3)
Study of musical topics in history or composition not covered in regular courses. May be repeated for credit as title varies. Prerequisite: consent of the department chair. (HU)

MUS 253. Composition I: Electronic and Acoustic Techniques (4)
fall
Writing for acoustic and electronic instruments based on 20th-century models. Acoustic orchestration, digital synthesis, effects processing. Use of the computer for score preparation and as a compositional tool. Prerequisite: MUS 83, 4, and 8 or permission of instructor. Salerni (ND)

MUS 254. Composition II (4)
spring
Continuation of MUS 253. Prerequisite: 253. Salerni (ND)

MUS 261. Recording Techniques I (3)
fall
Recording music in various popular and classical styles using state of the art studio equipment. Topics include microphone choice, placement, mixing, effects processing, digital editing and post production. (ND)

MUS 262. Recording Techniques II (3)
spring
Continuation of Recording Techniques I. Prerequisite: MUS 261(ND)

MUS 271. Repertoire (2)
fall or spring
Survey of literature in a given medium: e.g., piano, vocal, orchestral, choral repertoire. Particular emphasis on performance issues. May be repeated for credit as title varies. (HU)

MUS 291. Independent Study (1-3)
Individually supervised work in history or composition, or continuation of projects begun in regular courses. May be repeated for credit. Prerequisite: consent of department chair. (HU)

MUS 300. Apprentice Teaching (1-3) (ND)
MUS 311. Conducting Internship (2)
Work under the direction of one of the faculty directors to learn the organization and musical tasks required of directors as they prepare ensembles for performance. Prerequisites: MUS 322 or permission. Repeatable for credit. Staff (HU)

MUS 312/412: Advanced Choral Composition (2)
summer
Intensive, week-long seminar/workshop for individual study with international faculty. Joint seminars and lab choir rehearsals on choral literature; rehearsals and premieres of student works. New works and repertoire presented in final concert conducted by faculty and participants. Sametz

MUS 321. Conducting I (2)
fall
Beginning study of conducting techniques, including score reading and preparation, analysis, conducting patterns and gestures. Prerequisite: MUS 83 or permission of the instructor. (HU)

MUS 322. Conducting II (2)
spring
Continuation of MUS 321. Prerequisite: MUS 321. (HU)

MUS 331. Advanced Analysis (4)
spring
In-depth analysis of music from the Western tradition. Compositions studied to include at least one orchestral piece, one piece with text (song cycle or opera) and one piece using serial procedures. Introduction to Schenkerian analysis. Prerequisites: MUS 243 and 245 or permission. Staff (HU)

MUS 336. Seminar in the History of Musical Style (3)
spring
Study and analysis of the development of musical language and genre from the middle ages to the present. Intended particularly for any student considering graduate school in music. May substitute for any one course in the music history sequence. Prerequisite: MUS 83. Sine (ND)

MUS 350. Senior Project (1-6) (ND)

MUS 353. Composition Seminar (3)
fall-spring
Seminar review of original compositions alternating with private lessons in composition. The seminar is intended for students doing either independent work in composition or senior projects. Prerequisites: MUS 254. Salerni, Sametz, Warfield. Repeatable for credit. Staff (HU)

MUS 361. Music Internship (3)

MUS 370. Recital (1-2)
fall-spring
Department permission. (HU)

MUS 412/312: Advanced Choral Composition (2)
summer
Same as MUS 312 description above.

Philosophy

Professors. Gordon Bearn, Ph.D. (Yale), William Wilson Selfridge Professor of Philosophy; Mark H. Bickhard, Ph.D. (Chicago), Henry R. Luce Professor in Cognitive Robotics and the Philosophy of Knowledge; Steven Louis Goldman, Ph.D. (Boston), Andrew W. Mellon Distinguished Professor in the Humanities; Roslyn Weiss, Ph.D. (Columbia), chair and Clara H. Stewardson Professor of Philosophy.
Philosophy is born of discomfort. Whether it is the need to account for the tragedies of circumstance, the incongruities between our assumptions about the world and what experience and science reveal, or the shock of being exposed to hitherto unimagined conceptual alternatives, philosophy arises in those contexts in which serious questions emerge about the adequacy of our most cherished beliefs.

Philosophy is driven by the unsettling awareness that we are not beings who act exclusively on instinct but are instead able to choose from among a variety of ways of thinking about ourselves, the world in which we find ourselves, and our relations with others. Moreover, the beliefs we hold are not merely incidental facts about us like height or eye color. What we believe is often central to our moral identity, the nature of our personal relationships, the manner in which we regard ourselves and treat others, and the happiness and unhappiness that form the emotional contours of our practical lives.

Philosophy is born out of our awareness that despite the centrality of our beliefs to our identity as moral beings, the truth of our beliefs can be uncertain, for on virtually any topic there is a variety of possible viewpoints, not all of which can be equally adequate.

In its attempt to ground our beliefs and justify them, philosophy becomes a reflective and critical conceptual activity concerned with foundational questions regarding our deepest assumptions and intuitions about the nature and extent of human knowledge (epistemology), about the nature of reality and the distinction between appearance and reality (metaphysics), about the nature, scope, and grounds of moral value (ethics), and about the nature and theoretical foundations of formal reasoning and valid inference (logic).

The major program in philosophy is designed to provide a broad exposure to all of these areas as well as a strong grounding in the history of the western philosophical tradition. The program emphasizes the close reading and critical evaluation of classic texts from ancient times to the present, and students can expect to develop sophisticated analytic and expository skills that will enable them to engage in original, critical reflection on their own. To this end, the major program involves a combination of required and elective coursework as well as the opportunity to develop and pursue individual interests under faculty supervision. In addition to its regular course offerings, the department also sponsors a variety of activities (e.g., the annual Selfridge Lecture, the Philosophy Forum, the Faculty Seminar, the Philosophy Club, and the annual Reading Party), all of which are designed to complement the course offerings and to promote a university-wide philosophical community.

The major program provides excellent preparation for graduate study in philosophy as well as a solid foundation for any career that places a premium upon clear, careful thinking and rigorous conceptual and expository skills. For additional information about the faculty, frequency of course offerings, and departmental events, please contact the department for a copy of its brochure.

The Minor Program

The minor in philosophy consists of four courses. The courses must include at least one course at the 200-level or above. Minor programs are planned in conjunction with the departmental advisor who will help the student plan a program compatible with his or her interests.

Minor programs may be, but do not have to be, focused in a particular area such as ethics or the history of philosophy or philosophy of mind.

The Major Program

The major program consists of ten courses (38 credit minimum) planned in conjunction with the student’s major advisor. In addition to a two semester (6 credits) senior thesis, each major must satisfy the following distribution requirements:

- **Ethics**
  - 1 course from PHIL. 105, 116, or 205

- **Logic**
  - 1 course from PHIL. 114, 260, 265, or 303

- **History of Philosophy**
  - 2 courses from PHIL. 131, 132, 135, 139, 231, 233, 235, 237, or 239

Three of the 10 courses (not including the senior thesis) must be at the 200 level or above.

Majors planning to pursue graduate study in philosophy are strongly encouraged to include the following specific courses:

- PHIL 105 Ethics
- PHIL 114 Fundamentals of Logic
- PHIL 131 Ancient Philosophy
- PHIL 135 Modern Philosophy

**Senior Thesis**

The Senior Thesis (PHIL 390-1) is a year-long, independent project during which philosophy majors, with the consent and under the guidance of a faculty sponsor, investigate a topic of special interest to them. The topic may be historical or non-historical, pure or applied, interdisciplinary or disciplinary; the only constraint is that the student secure the cooperation of a faculty sponsor. During the fall (PHIL 390), the student’s energies will be devoted to refining the topic under investigation, working through the bulk of the essential literature, and producing a paper roughly 20 pages in length. During the spring semester (PHIL 391), the student will investigate the same topic more intensively, expanding, revising, and refining the fall paper into a substantial senior thesis roughly 50 pages in length.

**Honors**

Departmental honors in Philosophy are awarded to those graduating seniors who satisfy the following two criteria: (a) at the time of graduation, their GPA in philosophy is 3.5 or higher, their overall GPA is 3.25 or higher, and (b) their senior thesis is judged by two members of the philosophy department to show sufficient imaginative philosophical accomplishment to merit their receiving Honors in Philosophy.

**Undergraduate Courses**

PHIL 1. The Examined Life: An Introduction to Philosophy (4)

What makes a life meaningful, what makes it worth living? In pursuit of an answer to this question this course examines many of the basic questions of philosophy: ethical questions about justice and virtue, epistemological...
questions about the limits of human knowledge, metaphysical questions about what there is. (HU)

PHIL 3 (REL 3). Global Religion, Global Ethics (4)
Introduction to philosophical and religious modes of moral thinking, with attention given to ethical issues as they arise cross-culturally in and through religious traditions. The course will reference the United Nations Millennium Goals to consider family life and the role of women, social justice, the environment, and ethical ideals. Particular focus varies but may include one or more of the following: abortion and reproductive health, the death penalty, religiously motivated violence, and problems of personal disorder (heavy drinking, anorexia, vengeance). A Global Citizenship course. Steffen (HU)

PHIL 5. Contemporary Moral Problems (4)
An examination of contemporary issues that raise questions about right and wrong, good and bad, both for individuals and for social policy, using the methods, theories, and concepts of moral philosophy. Issues addressed might include abortion, euthanasia, and physician-assisted suicide; for dying patients, punishment and the death penalty, sexual orientation, world hunger and poverty, welfare, the treatment of animals, terrorism and war, racial and sexual discrimination, affirmative action, pornography and hate speech, and the relation of humans to the natural environment. Dillon (HU)

PHIL 8. (GCP 8) Ethics in Global Perspectives (4)
Economic, political, cultural, and ideological globalization presents two ethical challenges: (1) Are there universally justifiable moral standards, principles, and values that would establish universally acceptable answers to the question of how humans should live their lives? That is, can there be a global ethics? (2) What are justifi- able responses to the variety of moral issues facing the peoples of the world as a result of current globalization? This course addresses the first question by examining the moral perspectives of a variety of different ethical outlooks, including Euro-American, Hindu, Buddhist, Confucian, African, and Islamic traditions. The second question is addressed by examining a number of serious moral problems arising from globalization, including the increasing gap between the rich so-called First World nations and the poor so-called Third World nations, global environmental degradation, and war and terrorism. Dillon (HU)

PHIL 100. (POLS 100) Introduction to Political Thought (4)
Some of the most significant ancient and modern political thinkers: Plato, Aristotle, Machiavelli, Hobbes, Marx, and others. Matthews (ND)

PHIL 101. (POLS 101) Ancient Political Heritage (4)
Important Political thinkers from the pre-Socratics to early, modern political theorists like Machiavelli. Matthews (SS)

PHIL 102. (POLS 102) Modern Political Heritage (4)
 Begins where POLS 101 ends; from early modern theorists (e.g. Hobbes) up to contemporary thinkers (e.g.Marcuse). (SS)

PHIL 105. Ethics (4)
Examination of right and wrong, good and bad, from classic sources such as Plato, Aristotle, Hume, Kant, Mill and Nietzsche. (HU)

PHIL 114. Fundamentals of Logic (4)
Introduction to formal deductive logic, involving the construction of logical proofs in a system of natural deduction with some attention to the philosophy of logic. (MA)

PHIL 116. (REL 116) Bioethics (4)
Moral issues that arise in the context of health care and related biomedical fields in the United States today, examined in the light of the nature and foundation of moral rights and obligations. Topics include: confidentiality, informed consent, euthanasia, medical research and experimentation, genetics, the distribution of health care, etc. (HU)

PHIL 117. (AMST 117) Race and Philosophy (4)
An introduction to the philosophy born of struggle against racism and white supremacy. We will read the work of philosophers, mostly European, who quietly made modern racism possible by inventing the category of race, but we will concentrate on the work of philosophers, mostly of African descent, who for 200 years have struggled to force a philosophical critique of the category of race and the practice of white supremacy. (HU)

PHIL 121. Philosophy in Literature (4)
Exploration of philosophical themes through the study of literature and film. Authors may include: Homer, Euripides, Dante, Rimbaud, Sterne, George Eliot, Valery, Joyce, Melville, T.S. Eliot, Rilke, Proust, Musil, Stevens, Cummings, Camus, Sartre, Beckett, Morrison, Barthelme. (HU)

PHIL 122. Philosophy of Law (4)
Analysis of the conceptual foundations of our legal system. Special attention devoted to the nature of law and legal obligation, liberty and privacy in constitutional litigation, justice and contractual obligation, theories of punishment in criminal law, and the nature and scope of responsibility in criminal law. (HU)

PHIL 123. Aesthetics (4)
Theories, classical and modern, of the nature of beauty and the aesthetic experience. Practical criticism of some works of art, and examination of analogies between arts, and between art and nature. (HU)

PHIL 124. (REL 124) Reason and Religious Experience (4)
Critical examination, from a philosophical perspective, of some fundamental problems of religion, the nature of religious experience and belief, reason and revelation, the existence and nature of God, the problem of evil, and religious truth. (HU)

PHIL 126. (Hum 126, REL 126) Professional Ethics (4)
An examination of the moral rules and action criteria that govern various professions. Professions to be examined will include health (physician and nursing); legal; counseling and psychiatry; engineering; military; clergy; teaching. Attention will be given to modes of ethical reasoning and how those modes are practically applied in professional life and activity. Among issues to be discussed, will be the limits of confidentiality; employer authority; power relationships; obligations to the public; professional rights; sexual boundaries; whistle-blowing; safety and risk; computer ethics; weapons development; discrimination; professional review of ethical infractions. Course will include guest lectures and case studies. Steffen (HU)
PHIL 127. Existentialism (4)
Investigation of the historical development of existentialism from its origins in the 19th century (Kierkegaard, Nietzsche) through its marriage to phenomenology in the early 20th (Heidegger, Sartre, Merleau-Ponty), and out the other side as a vigorous dimension of much literary, psychological, and artistic work produced in the last 50 years. (HU)

PHIL 128. Philosophy of Science (4)
Introduction to the structure and methods of scientific investigation. The nature of explanation, confirmation, and falsification. Scientific progress; What is it? Would it be suffocated by obedience to completely rational methods? (HU)

PHIL 129. (REL 129) Jewish Philosophy (4)
Consideration of how major Jewish thinkers from the first to 20th centuries confronted questions at the intersection of religion and philosophy: the existence and nature of God, free will, evil, divine providence, miracles, creation, revelation, and religious obligation. (HU)

PHIL 131. (CLSS 131) Ancient Philosophy (4)
Historical survey of selected texts and issues in the classical world, from the pre-Socratics through Aristotle, with emphasis on the origins of the western philosophical traditions in ethics, metaphysics, and epistemology. (HU)

PHIL 132. (CLSS 132) Hellenistic Philosophy (4)
Historical survey of selected texts and issues in Post-Aristotelian Greek and Roman philosophy from the fourth century B.C. to the third century A.D. Areas of focus may include epicureanism, stoicism, academic and pyrrhonian scepticism, and neoplatonism. (HU)

PHIL 133. Medieval Philosophy (4)
Historical survey of selected texts and issues in western philosophy from the fourth to 14th centuries. Attention will be given to the relation between developments in medieval philosophy and major currents in ancient and modern thought. Figures may include Augustine, Eriugena, Anselm, Aquinas, Ockham, and Nicholas of Autrecourt. (HU)

PHIL 135. Modern Philosophy (4)
Historical survey of selected texts and issues in 17th and 18th century European philosophy with particular emphasis on developments in epistemology and metaphysics. Attention will be given to the relation of the "modern period" to developments in late medieval philosophy and the rise of the experimental sciences. Figures may include Descartes, Leibniz, Locke, Hume, and Kant. (HU)

PHIL 137. (Hum 137, REL 137) Ethics in Practice (1-4)
A variable content course focusing on ethical issues arising in a particular profession, such as law health, business, engineering, military. Variable credit. May be taken more than once. Steffen (HU)

PHIL 139. Contemporary Philosophy (4)
Philosophical thought from the late-19th century to the present: pragmatism, linguistic analysis, existentialism, and Marxism. Truth and knowledge, values and moral judgment, meaning, the place of the individual in the physical world and society, and the impact of the scientific method upon all of these. (HU)

PHIL 140. (ASIA 140) Eastern Philosophy (4)
Survey of selected texts and issues in the eastern philosophical traditions. Attention will be given to the development and interrelations of these traditions as well as a comparison of western and eastern treatments of selected issues. Areas of focus may include Confucianism, Taoism, and Zen Buddhism. (HU)

PHIL 205. Contemporary Ethics (4)
Examination of significant questions addressed by contemporary moral philosophers. Topics vary, but might include: What is a good person? Can a woman be good in the same way as a man? Is morality relative or absolute? Is morality all that important? Prerequisite: PHIL 105 or consent of the instructor. (HU)

PHIL 217. (AMST 217) Figures/Themes in Race and Philosophy (4)
An investigation of a significant figure in the philosophy of race (e.g. David Walker, W.E.B. DuBois, Alain Locke, Marcus Garvey, Jean-Paul Sartre, Franz Fanon, Aimé Césaire, Cornel West) and/or an investigation of a significant theme in the philosophy of race (Racial Exploitation, Colonialism, Negritude, Afrocentrism, Black Nationalism, African Philosophy, Black Athena). Content Varies. May be taken more than once for credit. (HU)

PHIL 220. Knowledge and Justification (4)
Recent work in epistemology. Questions addressed include: If you can't know whether you are dreaming, how can you know you have two hands? Does knowledge require answers to all possible doubts or only all reasonable doubts? How should we determine the horizon of the reasonable—psychologically or philosophically? (HU)

PHIL 223. Figures/Themes in Aesthetics (4)
An investigation of a significant figure in aesthetics (e.g., Burke, Kant, Hegel, Benjamin, Adorno, Goodman, Kivy, Derrida, Deleuze) and/or an investigation of a significant theme in aesthetics (e.g., sensuality, representation, politics, expressionism, cinematic gore, minimalism, architecture, post-modernism). Content varies. May be taken more than once for credit. (HU)

PHIL 224. (REL 224) Topics in the Philosophy of Religion (4)
Selected problems and issues in the philosophy of religion. Content varies. May be repeated more than once for credit. (HU)

PHIL 226. (WS 226) Feminism and Philosophy (4)
Analysis of the nature, sources, and consequences of the oppression and exploitation of women and justification of strategies for liberation. Topics include women's nature and human nature, sexism, femininity, sexuality, reproduction, mothering. Prerequisite: At least one previous course in philosophy or women's studies. (HU)

PHIL 228. Topics in the Philosophy of Science (4)
Themes in the natural, life and social sciences. May be repeated for credit as topic varies. Prerequisite: PHIL 128 or consent of the department chair. (HU)

PHIL 231. (CLSS 231) Figures/Themes in Ancient Philosophy (4)
This seminar course will involve in-depth focus upon a major ancient thinker (e.g. Plato, Aristotle, Sextus Empiricus, Plotinus, etc.) or the classical treatment of a particular theme (e.g., "human nature," "the good life," ethical or political theory, etc.). Content varies. May be repeated more than once for credit. (HU)
PHIL 232 (CLSS 232) Figures/Themes in Hellenistic Philosophy (4)
This seminar course will involve an in-depth focus upon a major movement in Hellenistic Philosophy (roughly 4th century B.C.E. to the 2nd Century C.E.) such as Epicureanism, Stoicism, Ancient Scepticism, or Neoplatonism, or the Hellenistic treatment of a particular theme (e.g. freedom from anxiety, the nature of the Cosmos and our place within it, or human nature). Content varies. May be repeated more than once for credit. Mendelson (HU)

PHIL 233. Figures/Themes in Medieval Philosophy (4)
This seminar course will involve in-depth focus upon a major medieval thinker (e.g. Augustine, Boethius, Maimonides, Bonaventure, Dante, etc.) or the medieval treatment of a particular theme (e.g. the relation of "will" and "intellect," the "problem of universals," ethical or political theory, etc.). Content varies. May be repeated more than once for credit. (HU)

PHIL 235. Figures/Themes in Modern Philosophy (4)
This seminar course will involve in-depth focus upon a major 17th or 18th century thinker (e.g. Descartes, Leibniz, Berkeley, Kant, etc.) or the modern treatment of a particular theme (e.g. the nature of "ideas," the roles of experience, reason, and revelation, ethical or political theory, etc.). Content varies. May be repeated more than once for credit. (HU)

PHIL 237. Figures/Themes in Nineteenth Century Philosophy (4)
This seminar course will involve in-depth focus upon a major 19th century thinker (e.g. Hegel, Marx, Kierkegaard, Mill, Peirce, Frege, Nietzsche, James, etc.) or the 19th century treatment of a particular theme (e.g. the end of history, revolution, nihilism, authenticity, origins of mathematical logic, infinity, etc.). Content varies. May be repeated more than once for credit. (HU)

PHIL 239. Figures/Themes in Contemporary Philosophy (4)
This seminar course will involve in-depth focus upon a major contemporary thinker (e.g. Russell, Whitehead, Husserl, Heidegger, Wittgenstein, Quine, Habermas, Rawls, Rorty, Derrida, Davidson, Foucault, Deleuze, Irigaray, etc.) or the contemporary treatment of a particular theme (e.g. logical positivism, naturalism, non-foundationalism, existential phenomenology, return to virtue, neo-pragmatism, hermeneutics, post-structuralism, post-modernism, neo-kantian political theory, the politics of identity, etc.). Content varies. May be repeated more than once for credit. (HU)

PHIL 240. (ASIA 240) Figures/Themes in Eastern Philosophy (4)
This seminar course will involve in-depth focus upon a major figure in Eastern thought or upon the Eastern treatment of a particular theme or set of themes. Content varies. May be repeated more than once for credit. (HU)

PHIL 250. The Minds of Robots and Other People (4)
Is the nature of thinking illuminated by what computers can do? Is the brain just a complex computer? Could a robot feel pain? Be angry? Recent work in artificial intelligence, psychology, and philosophy. (HU)

PHIL 260. Philosophy of Language (4)
Analysis of the nature of the correspondence between the words we use and the world in which we live. Our unifying theme is the quest for an understanding of truth, conceived as a peculiar relation between language and reality. We examine such central notions as meaning and reference, as understood in historically influential philosophical theories of language. (HU)

PHIL 265. Philosophy of Mathematics (4)
Survey of metaphysical and epistemological issues from the philosophy of mathematics, with emphasis on the arguments on behalf of mathematical platonism, conventionalism, and psychologism. It is highly recommended that students take PHIL 114 and a year of calculus, or otherwise acquire comparable formal background, prior to this course. (HU)

PHIL 273, Ariadne: Internship (2)
An internship devoted to the construction and maintenance of Ariadne, an on-line, web-based, undergraduate journal of philosophy. Responsibilities will include research; publicizing the project nationally and locally; reviewing, selecting, and formatting manuscripts for publication; and various other administrative and editorial activities. Some students may also be involved in the initial states of constructing Dionysos, an externally refereed, on-line, web-based professional journal of the history of philosophy. Prerequisite: Department permission required: previous coursework in philosophy expected. May be repeated more than once for credit. (ND)

PHIL 290. Independent Study (1-4)
Individual philosophical investigation of an author, book, or topic designed in collaboration with a faculty sponsor. Tutorial meetings; substantial written work. May be repeated more than once for credit. Consent of faculty sponsor required. (ND)

PHIL 303. (MATH 303) Mathematical Logic (3-4)
A course, on a mathematically mature level, designed not only to acquaint the student with logical techniques used in mathematics but also to present symbolic logic as an important adjunct to the study of the foundations of mathematics. Prerequisite for non-math majors: PHIL 114 (MA)

PHIL 347. (REL 347 and AMST 347) American Religious Thinkers (4)
An examination of the writings of key figures in the history of American religious thought (such as Edwards, Emerson, Bushnell, Peirce, James, Royce, Dewey and the Niebuhrs). Attention will be directed both to the historical reception of these writings and to their contemporary significance. Raposa (HU)

PHIL 364. (POLS 364) Issues in Contemporary Political Philosophy (4)
Selected topics in contemporary political philosophy, such as the Frankfort school, existentialism, legitimation, authenticity, participatory democracy, and the alleged decline of political philosophy. May be repeated for credit with consent of the political science chair. (SS)

PHIL 367. (POLS 367) American Political Thought (4)
Critical examination of American political thought from the founding of the Republic to the present. Writings
from Madison, Hamilton, and Jefferson to Emma Goldman, Mary Daly, Malcolm X, Henry Kariel, and others will be discussed. (SS)

PHIL 371. Advanced Independent Study (1-4)
Individual philosophical investigation of an author, book, or topic designed in collaboration with a faculty sponsor. Tutorial meetings; substantial written work. May be repeated more than once for credit. Consent of faculty sponsor required. (ND)

PHIL 373. (Hum 373, REL 373) Independent Ethics Project (4)
Supervised ethics research into a topic approved by the advisor for the Humanities Minor in Ethics. An option for completing the ethics minor. For ethics minors only. (HU)

PHIL 390. Senior Thesis (2)
The first part of two semesters of intensive research and writing guided by a faculty sponsor in anticipation of completing a senior thesis in philosophy. Individual tutorials; substantial written work. Senior standing as philosophy major and consent of faculty sponsor required. (ND)

PHIL 391. Senior Thesis (4)
Continuation and completion of PHIL 390 under the guidance of a faculty sponsor. Prerequisites: PHIL 390; consent of faculty sponsor required. (ND)

Physics

Professors, Michael Stavola, Ph.D. (Rochester), chairperson; Garold J. Borse, Ph.D. (Virginia), associate chairperson; Gary G. DeLeo, Ph.D. (Connecticut); Robert T. Folk, Ph.D. (Lehigh); James D. Gunton, Ph.D. (St. Petersburg); A. Peet Hickman, Ph.D. (Rice); John Robert T. Folk, Ph.D. (Lehigh); James D. Gunton, chairperson; Thomas L. Koch, Ph.D. (Cal. Tech.), director, Center for Optical Technologies; Yong W. Kim, Ph.D. (Michigan); Arnold H. Kritz, Ph.D. (Yale); Alvin S. Kanofsky, Ph.D. (Pennsylvania); Thomas L. Koch, Ph.D. (Cal. Tech.).

Associate professors, Ivan Biaggio, Ph.D., (ETH-Zurich); Volkmar Dierolf, Ph.D. (Utah); Jerome C. Licini, Ph.D. (M.I.T.); Russell A. Shaffer, Ph.D. (Johns Hopkins).

Assistant professor, Slava V. Rotkin, Ph.D., (Ioffe Inst.-St. Petersburg).

Physics students study the basic laws of mechanics, heat and thermodynamics, electricity and magnetism, optics, relativity, quantum mechanics, and elementary particles. The students also study applications of the basic theories to the description of bulk matter, including the mechanical, electric, magnetic, and thermal properties of solids, liquids, gases, and plasmas, and to the description of the structure of atoms and nuclei. In addition, the student develops the laboratory skills and techniques of the experimental physicist, skills that can be applied in the experimental search for new knowledge or in applications of the known theories.

A majority of physics graduates go to graduate school in physics, often earning the Ph.D. degree. These graduates take university or college faculty positions, or work on research in a variety of university, government, or industrial laboratories. Some students choose employment immediately after the bachelor's degree. They use their many approved and free electives to supplement their science background with applied courses, such as engineering, to develop the skills needed for a position in a particular area.

Because of the fundamental role of physics in all the natural sciences, students also use the physics major as an excellent preparation for graduate study in many other scientific areas, such as: optical engineering, applied mathematics, computer science, biophysics, molecular biology, astrophysics, geology and geophysics, materials science and engineering, meteorology, or physical oceanography. Attractive engineering areas with a high science content include optical communications, aeronautical engineering, nuclear engineering, including both fission and fusion devices; electrical engineering, including instrumentation, electronics and solid-state devices, electrical discharges and other plasma-related areas; and mechanical engineering and mechanics, including fluids and continuum mechanics. The broad scientific background developed in the physics curriculum is also an excellent background for professional schools, such as law (particularly patent law), medicine, and optometry.

Lehigh offers three undergraduate degrees in physics and two undergraduate degrees in astronomy or astrophysics. The three physics degrees are the bachelor of arts with a major in physics and the bachelor of science in physics in the College of Arts and Sciences, and the bachelor of engineering physics in the College of Engineering and Applied Science. The B.A. with a major in astronomy and the B.S. in astrophysics are in the College of Arts and Sciences and are described in the Astronomy and Astrophysics section of this catalog.

In addition, there are several five-year, dual-degree programs involving physics: The arts-engineering program (see the Arts-Engineering section of this catalog), the combination of the bachelor of science program in the College of Arts and Sciences with Electrical Engineering (described below), and the combination of electrical engineering and engineering physics (see the Electrical Engineering and Engineering Physics section of this catalog).

The bachelor of science curriculum in the College of Arts and Sciences requires somewhat more physics and mathematics than the bachelor of arts major, while the latter provides more free electives and three fewer hours for graduation. By making good use of the electives in these programs, either can prepare a student for graduate work in physics or the physical aspects of other sciences or engineering disciplines, or for technical careers requiring a basic knowledge of physics. The bachelor of arts curriculum is particularly useful for those planning careers in areas where some knowledge of physics is needed or useful, but is not the main subject, such as science writing, secondary school teaching, patent law, or medicine.

The bachelor of science in engineering physics curriculum in the College of Engineering and Applied Science requires an engineering concentration in either solid state electronics or optical sciences, in addition to regular physics and mathematics courses. This four-year program prepares students to do engineering work in an overlap area between physics and engineering, which
may be engineering in a forefront area in which it is desirable to have more physics knowledge than the typical engineer has, or may be experimental physics which either relies heavily on forefront engineering or in which the nature of the problem dictates that scientists and engineers will accomplish more working together rather than separately.

A comparison of the curricula in terms of credit hours (minimum credits indicated in major courses and approved electives) in various broad categories is given below.

<table>
<thead>
<tr>
<th>College of Arts &amp; Sciences</th>
<th>College of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration in</td>
<td>Solid-State Electronics</td>
</tr>
<tr>
<td>Physics</td>
<td>B.A.</td>
</tr>
<tr>
<td>Astronomy</td>
<td>B.A.</td>
</tr>
<tr>
<td>Fedman English</td>
<td>6</td>
</tr>
<tr>
<td>Coll. Ment. &amp; Sem</td>
<td>4</td>
</tr>
<tr>
<td>Dist. Courses</td>
<td>*16 *16 *16 *16</td>
</tr>
<tr>
<td>Required Prelim</td>
<td>56</td>
</tr>
<tr>
<td>&amp; major courses</td>
<td>66</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>16</td>
</tr>
<tr>
<td>Electives</td>
<td>23 15 30 20</td>
</tr>
<tr>
<td>Total</td>
<td>121</td>
</tr>
<tr>
<td>*Not including mathematics or science</td>
<td></td>
</tr>
</tbody>
</table>

The recommended sequences of courses are:

**Physics Degree Programs**

**Bachelor of Arts**

<table>
<thead>
<tr>
<th>College of Arts &amp; Sciences</th>
<th>Bachelor of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>ENGL 1 (3)</td>
<td>ENGL 2, 4, (3)</td>
</tr>
<tr>
<td>PHY 10 or 11 (4)</td>
<td>CHM 25 (4)</td>
</tr>
<tr>
<td>PHY 12 (1)</td>
<td>CHM 26 (1)</td>
</tr>
<tr>
<td>MATH 21 (4)</td>
<td>MATH 22 (4)</td>
</tr>
<tr>
<td>Col. Sem. (3)</td>
<td>Dist. Req. (5)</td>
</tr>
<tr>
<td>Coll. Ment. (1)</td>
<td>Cal. Ment (1)</td>
</tr>
<tr>
<td>[16]</td>
<td>[15] [16] [15]</td>
</tr>
</tbody>
</table>

**Sophomore Year**

<table>
<thead>
<tr>
<th>PHY 13 or 15 (4-2)</th>
<th>PHY 31 (3)</th>
<th>PHY 21 (4)</th>
<th>PHY 31 (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 22 (1)</td>
<td>Addr.PHY</td>
<td>Addr.PHY</td>
<td>Addr.PHY</td>
</tr>
<tr>
<td>MATH 23 (4)</td>
<td>MATH 25(3)</td>
<td>MATH 23 (4)</td>
<td>MATH 25(3)</td>
</tr>
<tr>
<td>Elective (3)</td>
<td>Elective (3)</td>
<td>Elective (3)</td>
<td>Elective (3)</td>
</tr>
</tbody>
</table>

**Senior Year**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist. Req. (3)</td>
<td>Elective (3)</td>
<td>MATH 322 (3)</td>
</tr>
<tr>
<td>Elective (3)</td>
<td>Jr. Writing (3)</td>
<td>PHY 215 (4)</td>
</tr>
<tr>
<td>[16]</td>
<td>[15]</td>
<td>[16]</td>
</tr>
</tbody>
</table>

*or an equivalent course in scientific computing

For the Bachelor of Arts curriculum:

At least one of the two advanced physics laboratories (PHY 190, PHY 262) is required. A total of 18 credits of advanced physics courses (200 or 300 level). At least two of these courses must be at the 300 level.

Approved Electives are subject to the approval of the student's advisor, and should be chosen to provide a coherent program to satisfy the student's goals, such as an interdisciplinary area of science, medical school, law school, teaching certification, science writing, etc.

No more than 6 credit hours of military science may be applied towards the degree.

For the Bachelor of Science curriculum:

Approved electives include at least 17 credit hours of physics, physical science, or technical courses. Included in this group must be three of the following courses: PHY 363, 369, (352 or 355), and (348 or 365) and 380. Students planning graduate work in physics are advised to include PHY 273 and 369 among their electives.

No more than 6 credit hours of military science may be applied towards the degree.

P.C. Rossin College of Engineering & Applied Sciences

**Bachelor of Engineering Physics**

with a concentration in

<table>
<thead>
<tr>
<th>Solid State Electronics</th>
<th>Optical Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>ENGL 1 (3)</td>
<td>ENGL 2, 4, (3)</td>
</tr>
<tr>
<td>PHY 11 (4)</td>
<td>PHY 11 (4)</td>
</tr>
<tr>
<td>MATH 21 (4)</td>
<td>MATH 22 (4)</td>
</tr>
<tr>
<td>PHY 12 (1)</td>
<td>PHY 12 (1)</td>
</tr>
<tr>
<td>MATH 21 (4)</td>
<td>MATH 21 (4)</td>
</tr>
<tr>
<td>ENGR 1 (3)</td>
<td>ENGR 1 (3)</td>
</tr>
</tbody>
</table>

**Sophomore Year**

| PHY 21 (4)             | PHY 31 (3)       |
| ECO 1 (4)              | MATH 208 (3)    |
| ECE 81 (4)             | ECE 108 (4)     |
| [17]                   | [16] [17] [16]  |

**Junior Year**

| PHY 212 (3)            | PHY 213 (3)     |
| ECE 35 (4)             | PHY 262 (3)    |
| ECE 123 (3)            | PHY 215 (4)    |
| MATH 322 (3)           | ECE 126 (3)    |
| HSS (4)                | HSS (3)        |
| Elective (3)           | Elective (3)   |
| [17]                   | [18] [18] [18] |

**Senior Year**

| PHY 340 or 355 (3)    | HSS (6)        |
| ME 104                | ME 104         |
| PHY 365 (3)           | PHY 352 (3)    |
| PHY 362 (5)           | PHY 365 (5)    |
| SSE - Elec. (6)       | Electives (6)  |
| [131]                 | [131] [131]    |

*The 11 credit hours of SSE (Solid State Engineering) electives must include ECE 257 or 258 or PHY 273.
**The 18 credit hours of OE (Optical Engineering) electives must include ECE 257 or 258 or PHY 273. Must include at least two of ECE 347, ECE 348, ECE 371, ECE 372.**

Other advanced physics or engineering courses may be included among the SSE or OE electives with the approval of the student's advisor.

### Combined B.S.(Physics)/B.S.(Electrical Engineering)

The combined arts/engineering programs resulting in bachelors degrees in both physics and electrical engineering may be arranged so that either of the two degrees is completed within the first four years. The suggested curricula are:

<table>
<thead>
<tr>
<th>Physics-Elec. Engr (Physics First)</th>
<th>Elec. Engr-Physics (Electrical Engineering First)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>ENGL 1</td>
<td>ENGL 1, (3) ENGL 1, (3)</td>
</tr>
<tr>
<td>6.8 or 10</td>
<td>6.8 or 10</td>
</tr>
<tr>
<td>PHY 11</td>
<td>PHY 11 (4) CHM 25 (4)</td>
</tr>
<tr>
<td>6.8 or 10</td>
<td>PHY 11 (4) CHM 25 (4)</td>
</tr>
<tr>
<td>PHY 12</td>
<td>PHY 12 (1) CHM 26 (1)</td>
</tr>
<tr>
<td>MATH 21</td>
<td>MATH 22 (4) MATH 21 (4)</td>
</tr>
<tr>
<td>ENGR 1</td>
<td>ENGR 1 (3) ENGR 1 (3)</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Sophomore Year</td>
<td></td>
</tr>
<tr>
<td>PHY 21</td>
<td>PHY 21 (4) PHY 21 (4)</td>
</tr>
<tr>
<td>PHY 22</td>
<td>PHY 22 (1) ECO 1 (4)</td>
</tr>
<tr>
<td>MATH 23</td>
<td>MATH 205 (3)</td>
</tr>
<tr>
<td>ECE 35</td>
<td>MATH 208 (3)</td>
</tr>
<tr>
<td>ECE 81</td>
<td>ECE 81 (4) ECE 81 (4)</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
</tr>
<tr>
<td>PHY 212</td>
<td>PHY 212 (3) PHY 212 (3)</td>
</tr>
<tr>
<td>PHY 362</td>
<td>PHY 362 (5) PHY 362 (5)</td>
</tr>
<tr>
<td>PHY Appr.</td>
<td>PHY Appr. (3) ECE 121 (2)</td>
</tr>
<tr>
<td>Elective</td>
<td>ECE 126 (3) ECE 126 (3)</td>
</tr>
<tr>
<td>MATH 322</td>
<td>MATH 208 (3)</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS (4) ECO 1 (4)</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
</tr>
<tr>
<td>PHY 340</td>
<td>PHY 340 (3) Electro (3)</td>
</tr>
<tr>
<td>PHY Appr.</td>
<td>PHY Appr. (3) ECE Appr. (5)</td>
</tr>
<tr>
<td>Elective</td>
<td>ECE Appr. (5) Electro</td>
</tr>
<tr>
<td>ELECTIVE</td>
<td>ELECTIVE Electro</td>
</tr>
<tr>
<td>ECE 121</td>
<td>ECE 121 (2) Electro (2)</td>
</tr>
<tr>
<td>ECE 123</td>
<td>ECE 123 (3) Electro (3)</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS (5) Electro</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Fifth Year</td>
<td></td>
</tr>
<tr>
<td>ECE 237</td>
<td>ECE 237 (2) Electro (2)</td>
</tr>
<tr>
<td>ECE Appr.</td>
<td>ECE Appr. (3) Electro</td>
</tr>
<tr>
<td>Elective</td>
<td>ECE Appr. (3) Electro</td>
</tr>
<tr>
<td>ELECTIVE</td>
<td>ELECTIVE Electro</td>
</tr>
<tr>
<td>ECE 238</td>
<td>ECE 238 (3) Electro (3)</td>
</tr>
<tr>
<td>MATH 231</td>
<td>MATH 231 (3) Electro (3)</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS (5) Electro</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Physics approved electives: three courses selected from PHY 363, 369, (352 or 355), and (346 or 365) and 380. Students must satisfy both the HSS requirements of the College of Engineering and Applied Science and the distribution requirements, including the junior writing intensive requirement, of the College of Arts and Sciences. Courses appropriate for both may be counted in both categories.

Approved electives are subject to the approval of the student's advisor. Students planning graduate work in physics are advised to include PHY 273 and 369 among their electives.

No more than 6 credit hours of military science may be applied towards the degree.

### Astronomy/Astrophysics Degree Programs

(See the Astronomy section in this catalog.)

### Research opportunities

A majority of physics, astronomy, and engineering physics majors take advantage of opportunities to participate in research under the direction of a faculty member. Research areas available to undergraduates are the same as those available to graduate students; they are described below under the heading For Graduate Students. Undergraduate student research is arranged informally as early as the sophomore (or, occasionally, freshman) year at the initiation of the student or formally as a senior research project. In addition, a number of students receive financial support to do research during the summer between their junior and senior years, either as Physics Department Summer Research Participants or as Sherman Fairchild Scholars.

**The use of electives.** The electives available in each of the physics and astronomy curricula provide the student with an opportunity to develop special interests and to prepare for graduate work in various allied areas. In particular, the many available upper-level physics, mathematics, and engineering courses can be used by students in consultation with their faculty advisors to structure programs with special emphasis in a variety of areas such as optical communications, solid-state electronics, or biophysics.

### Departmental Honors

Students may earn departmental honors by satisfying the following requirements:

- Grade point average of at least 3.50 in physics courses.
- Satisfactorily completing the following courses (these may be included in the list of approved electives):
  - PHY 369; two of PHY 348, 363 and (352 or 355) and 380; one 400-level physics course. Other advanced courses may be substituted with departmental approval.
- Completion of department approved special topics courses in physics that include written reports, or completion of 6 credits of PHY-273 (research), or completion of a summer research project with written report and oral presentation.

For students majoring in astronomy or astrophysics, see the Astronomy and Astrophysics section of this catalog.

### Five-year combined bachelor/master’s programs

Five-year programs that lead to successive bachelor and master’s degrees are available. These programs satisfy all of the requirements of one of the five bachelor's degrees in physics (B.A., B.S., B.S.E.P.) and astronomy/astrophysics (B.A., B.S.), plus the requirements of the M.S. in physics in the final year. Depending upon the undergraduate degree received, one summer in residence may be required. Interested students should contact the asso-
PHYSICS MINOR

The minor in physics consists of 15 credits of physics courses, excluding Physics 5 and 7. No more than one physics course required in a student’s major program may be included in the minor program. The minor program must be designed in consultation with the physics department chair.

Undergraduate Courses in Physics and Astronomy

PHY 5. Concepts in Physics (4) spring
Fundamental discoveries and concepts of physics and their relevance to current issues and modern technology. For students not intending to major in science or engineering. Lectures, demonstrations, group activities, and laboratories using modern instrumentation and computers. This is a non-calculus course; no previous background in physics is assumed. Three class meetings and one laboratory period per week. No prerequisites. Staff (NS)

PHY 7. (ASTR 7) Introduction to Astronomy (3) fall
Introduction to planetary, stellar, galactic, and extragalactic astronomy. An examination of the surface characteristics, atmospheres, and motions of planets and other bodies in our solar system. Properties of the sun, stars, and galaxies, including the birth and death of stars, stellar explosions, and the formation of stellar remnants such as white dwarfs, neutron stars, pulsars, and black holes. Quasars, cosmology, and the evolution of the universe. May not be taken by students who have previously completed ASTR/PHY 105, 201, or 202. (NS)

PHY 8. (ASTR 8) Introduction to Astronomy Laboratory (1) fall
Laboratory to accompany PHY 7 (ASTR 7). (NS)

PHY 9. Introductory Physics I Completion (1-2)
For students who have Advanced Placement or transfer credit for 2 or 3 credits of PHY 11. The student will be scheduled for the appropriate part of PHY 11 to complete the missing material. The subject matter and credit hours will be determined by the Physics Department for each student. Students with AP Physics C credit for electricity and magnetism will take the optics and modern physics part of PHY 21 for one credit. Prerequisite: 4 credits of PHY 10 or 11, MATH 23, 32, or 52 previously or concurrently. Hickman/Kim (NS)

PHY 10. General Physics I (4) fall
Statics, dynamics, conservation laws, thermodynamics, kinetic theory of gases, fluids. Primarily for architecture, biological science, earth and environmental science students. Prerequisite: calculus (MATH 21, 31, or 51, previously or concurrently). Ou-Yang (NS)

PHY 11. Introductory Physics I (4)
Kinematics, frames of reference, laws of motion in Newtonian theory and in special relativity, conservation laws, as applied to the mechanics of mass points; temperature, heat and the laws of thermodynamics; kinetic theory of gases. Two lectures and two recitations per week. Prerequisite: MATH 21, 31 or 51, previously or concurrently. DeLeo/Licini (NS)

PHY 12. Introductory Physics Laboratory I (1)
A laboratory course taken concurrently with PHY 11. Experiments in mechanics, heat, and DC electrical circuits. One three-hour laboratory period per week. Prerequisite: PHY 10 or PHY 11, preferably concurrently. Kanofsky (NS)

PHY 13. General Physics (3)
A continuation of PHY 10, primarily for biological science and earth and environmental science students. Electrostatics, electromagnetism, light, sound, atomic physics, nuclear physics, and radioactivity. Prerequisites: PHY 10 or 11 and MATH 21, 31, or 51. Staff (NS)

PHY 19. Introductory Physics II Completion (1-2)
For students who have Advanced Placement or transfer credit for 2 or 3 credits of PHY 21. The student will be scheduled for the appropriate part of PHY 21 to complete the missing material. The subject matter and credit hours will be determined by the Physics Department for each student. Students with AP Physics C credit for electricity and magnetism will take the optics and modern physics part of PHY 21 for one credit. Prerequisite: 4 credits of PHY 10 or 11, MATH 23, 32, or 52 previously or concurrently; and consent of the department. (NS)

PHY 21. Introductory Physics II (4)
A continuation of PHY 11. Electrostatics and magnetostatics; DC circuits; Maxwell’s equations; waves; physical and geometrical optics; introduction to modern physics. Two lectures and two recitations per week. Prerequisite: PHY 11; MATH 23, 32, or 52, previously or concurrently. Hickman/Kim (NS)

PHY 22. Introductory Physics Laboratory II (1)
A laboratory course to be taken concurrently with PHY 21. One three-hour laboratory period per week. Prerequisite: PHY 12; PHY 21, preferably concurrently. Folk (NS)

PHY 31. Introduction to Quantum Mechanics (3) spring
Experimental basis and historical development of quantum mechanics; the Schroedinger equation; one-dimensional problems; angular momentum and the hydrogen atom; many-electron systems; selected applications. Three lectures per week. Prerequisite: PHY 31 or 21; MATH 205, previously or concurrently. Hickman (NS)

PHY 91. Measurement and Transducers (1)
Computer-assisted laboratory course, dealing with physical phenomena in mechanics, electricity and magnetism, optics, spectroscopy and thermodynamics. Measurement strategies are developed and transducers devised. Computer simulation, analysis software, digital data acquisition. Prerequisites: PHY 21 and 22 or their equivalent or consent of chairperson. Kim (NS)

PHY 105. (ASTR 105, EES 105) Planetary Astronomy (4) fall
Structure and dynamics of planetary interiors, surfaces, and atmospheres. Models for the formation of the solar system and planetary evolution. Internal structure, surface topology, and composition of planets and other bodies in our solar system. Comparative study of planetary atmospheres. Organic materials in the solar system. Properties of the interplanetary medium, including dust and meteoroids. Orbital dynamics. Extrasolar planetary systems. Prerequisites: PHY 10 or 11 and EES 21, or departmental permission. DeLeo (NS)
PHY 110 (ASTR 110) Methods of Observational Astronomy (1)
Techniques of astronomical observation, data reduction, and analysis. Photometry, spectroscopy, CCD imaging, and interferometry. Computational analysis. Examination of ground- based and spacecraft instrumentation, and data transmission, reduction, and analysis. McCluskey (NS)

PHY 190. Electronics (3) spring
DC and AC circuits, diodes, transistors, operational amplifiers, oscillators, and digital circuitry. Two laboratories and one recitation per week. Prerequisites: PHY 21 and 22, or PHY 13 and 14. Stavola (NS)

For Advanced Undergraduates And Graduate Students

PHY 201. (ASTR 201) Modern Astrophysics I (4) fall

PHY 202. (ASTR 202) Modern Astrophysics II (4) spring
The Milky Way Galaxy, galactic morphology, and evolutionary processes. Active galaxies and quasars. Observed properties of the universe. Relativistic cosmology, and the origin, evolution and fate of the universe. Elements of General Relativity and associated phenomena. Prerequisites: PHY 10 and 13, or PHY 11 and 21, MATH 22 or 52. McCluskey (NS)

PHY 212. Electricity and Magnetism I (3) fall
Electrostatics, magnetostatics, and electromagnetic induction. Prerequisites: PHY 21 or 13; MATH 205, previously or concurrently. Staff (NS)

PHY 213. Electricity and Magnetism II (3) spring
Maxwell's equations, Poynting's theorem, potentials, the wave equation, waves in vacuum and in materials, transmission and reflection at boundaries, guided waves, dispersion, electromagnetic field of moving charges, radiation, Lorentz invariance and other symmetries of Maxwell's equations. Prerequisite: PHY 212. Toulouse (NS)

PHY 215. Classical Mechanics I (4) spring
Kinematics and dynamics of point masses with various force laws; conservation laws; systems of particles; rotating coordinate systems; rigid body motions; topics from Lagrange's and Hamilton's formulations of mechanics; continuum mechanics. Prerequisites: PHY 21 or PHY 13 and MATH 205, previously or concurrently. DeLeo (NS)

PHY 262. Advanced Physics Laboratory (2) spring
Laboratory practice, including machine shop, vacuum systems, and computer interfacing. Experiment selected from geometrical optics, interference and diffraction, spectroscopy, lasers, fiber optics, and quantum phenomena. Prerequisites: PHY 21 and 22 or PHY 13 and 14. Dierolf (NS)

PHY 273. Research (2-3)
Participation in current research projects being carried out within the department. Intended for seniors majoring in the field. May be repeated once for credit. (NS)

PHY 281. Basic Physics I (3)
A course designed especially for secondary-school teachers in the master teacher program. Presupposing a background of two semesters of college mathematics through differential and integral calculus and of two semesters of college physics, the principles of physics are presented with emphasis on their fundamental nature rather than on their applications. Open only to secondary-school teachers and those planning to undertake teaching of secondary-school physics. (NS)

PHY 282. Basic Physics II (3)
Continuation of PHY 281. (NS)

PHY 322. (ASTR 322) High-Energy Astrophysics (3) spring, odd numbered years.
Observation and theory of X-ray and gamma-ray sources, quasars, pulsars, radio galaxies, neutron stars, black holes. Results from ultraviolet, X-ray and gamma ray satellites. Prerequisites: MATH 23 or 33, previously or concurrently, and PHY 21. McCluskey (NS)

PHY 340. Thermal Physics (3) fall
Basic principles of thermodynamics, kinetic theory, and statistical mechanics, with emphasis on applications to classical and quantum mechanical physical systems. Prerequisites: PHY 13 or 21, and MATH 23, 32 or 52. Toulouse (NS)

PHY 342. (ASTR 342) Relativity and Cosmology (3) spring, even numbered years.
Special and general relativity. Schwarzschild and Kerr black holes. Super massive stars. Relativistic theories of the origin and evolution of the universe. Prerequisites: MATH 23 or 33, previously or concurrently, and PHY 21. McCluskey (NS)

PHY 348. Plasma Physics (3)
Single particle behavior in electric and magnetic fields, plasmas as fluids, waves in plasmas, transport properties, kinetic theory of plasmas, controlled thermonuclear fusion devices. Prerequisites: PHY 21, MATH 205, and senior standing or consent of the chairman of the department. Kritz (NS)

PHY 352. Modern Optics (3)
Paraxial optics, wave and vectorial theory of light, coherence and interference, diffraction, crystal optics, and lasers. Prerequisites: MATH 205, and PHY 212 or ECE 202. Dierolf (NS)

PHY 355. Lasers and Non-linear Optics (3)
Basic principles and selected applications of lasers and non-linear optics. Topics include electromagnetic theory of optical beams, optical resonators, laser oscillation, non-linear interaction of radiation with atomic systems, electro- and acousto-optics, optical noise, optical wave-guides, and laser devices. Prerequisites: PHY 31; PHY 215 or ECE 203, previously or concurrently. Biagio (NS)

PHY 362. Atomic and Molecular Structure (3) fall
Review of quantum mechanical treatment of one-electron atoms, electron spin and fine structure, multi-electron atoms, Pauli principle, Zeeman and Stark effects, hyperfine structure, structure and spectra of simple molecules. Prerequisite: Phys 31 or CHM 341. Licini (NS)
PHY 363. Physics of Solids (3) fall
Introduction to the theory of solids with particular reference to the physics of metals and semiconductors. Prerequisite: PHY 31 or Mat 316 or CHM 341, and PHY 340 or equivalent, previously or concurrently. Folk (NS)

PHY 364. Nuclear and Elementary Particle Physics (3)
Models, properties, and classification of nuclei and elementary particles; nuclear and elementary particle reactions and decays; radiation and particle detectors; accelerators; applications. Prerequisites: PHY 31 and MATH 205. Folk (NS)

PHY 365. Physics of Fluids (3) spring
Concepts of fluid dynamics; continuum and molecular approaches; waves, shocks and nozzle flows; nature of turbulence; and experimental methods of study. Prerequisites: PHY 212 or ECE 202, and PHY 340 or ME 104 or equivalent, previously or concurrently. Kim (NS)

PHY 369. Quantum Mechanics I (3) fall
Principles of quantum mechanics: Schroedinger, Heisenberg, and Dirac formulations. Applications to simple problems. Prerequisites: PHY 31, MATH 205; PHY 215, previously or concurrently. Rotkin (NS)

PHY 372. Special Topics in Physics (1-3)
Special topics in physics not sufficiently covered in the general courses. Lecture and recitations or conferences. (NS)

PHY 380. Introduction to Computational Physics (3) spring
Numerical solution of physics and engineering problems using computational techniques. Topics include linear and nonlinear equations, interpolation, eigenvalues, ordinary differential equations, partial differential equations, statistical analysis of data, Monte Carlo, and molecular dynamics methods. Prerequisite: MATH 205 previously or concurrently. Borse (NS)

For Graduate Students
The department of physics has concentrated its research activities within several fields of physics, with the result that a number of projects are available in each area. Current departmental research activities include the following:

Condensed matter physics. Areas of interest include the optical and electronic properties of defects in semiconductors and insulators, quantum phenomena in semiconductor devices, collective dynamics of disordered solids, structural phase transitions in ferroelectrics and superconducting crystals, theory of quantum charge transport in nanotubes and single molecule systems, physics of nano devices.

Atomic and molecular physics. Research topics include atomic and molecular spectroscopy and collision processes. Recent work has addressed velocity-changing collisions, diffusion, energy-pooling collisions, charge exchange, fine structure mixing, light-induced drift and radiation trapping.

Nonlinear Optics and Photonics. Research topics include nonlinear light-matter interaction that enable the control of light with light, four-wave mixing, phase conjugation, resonant Brillouin scattering, ferroelectric domain patterning for quasi phase matching, wave-guides, photonic crystals, holey and other specialty fibers, and the application of photonics to biological systems.

Plasma physics. Computational studies of magnetically confined toroidal plasmas address anomalous thermal and particle transport, large scale instabilities, and radiofrequency heating. Laboratory studies address collisional and collisionless phenomena of supercritical laser-produced plasmas.

Statistical physics. Investigation is underway of nonequilibrium fluctuations in gases, chaotic transitions and 1/f dynamics, light-scattering spectroscopy, colloidal suspensions, the nonlinear dynamics of granular particles, and pattern formation in nonequilibrium dissipative systems, including the kinetics of phase transitions and spatiotemporal chaos.

Soft Condensed Matter and Biological Physics. Current research topics include both the experimental and theoretical studies of complex fluids including biological polymers, colloids, and biological cells and tissues. Laser tweezers, Raman scattering, photoluminescence and advanced 3-D optical imaging techniques are integrated for investigating the structures and dynamical properties of these systems. Theoretical studies focus on the kinetics of phase transitions, including the crystallization of globular and membrane proteins and also the modeling of interactions of proteins and nanotubes.

Complex fluids. Polymers in aqueous solutions, colloidal suspensions, and surfactant solutions are investigated using techniques such as "laser tweezers,” video-enhanced microscopy, and laser light scattering. Areas of interest include the structures of polymers at liquid-solid interfaces and micro-rheology of confined macromolecules. Recent work addresses systems of biological significance.

Computational physics. Several of the above areas involve the use of state-of-the-art computers to address large-scale computational problems. Areas of interest include the structures of polymers at liquid-solid interfaces and the multi-scale modeling of nano-bio systems.

Candidates for advanced degrees normally will have completed, before beginning their graduate studies, the requirements for a bachelor’s degree with a major in physics, including advanced mathematics beyond differential and integral calculus. Students lacking the equivalent of this preparation will make up deficiencies in addition to taking the specified work for the degree sought.

At least eight semester hours of general college physics using calculus are required for admission to all 200- and 300-level courses. Additional prerequisites for individual courses are noted in the course descriptions. Admission to 400-level courses generally is predicated on satisfactory completion of corresponding courses in the 200- and 300-level groups or their equivalent.

Facilities for Research
Research facilities are housed in the Sherman Fairchild Center for the Physical Sciences, containing Lewis Laboratory, the Sherman Fairchild Laboratory for Solid State Studies, and a large connecting research wing.
Well-equipped laboratory facilities are available for experimental investigations in research areas at the frontiers of physics. Instruments used for experimental studies include a wide variety of laser systems ranging from femtosecond and picosecond pulsed lasers to stabilized single-mode cw Ti-sapphire and dye lasers. There is also a Fourier-transform spectrometer, cryogenic equipment that achieves temperatures as low as 0.05K and magnetic fields up to 9 Tesla, a facility for luminescence microscopy, and a laser-tweezer system for studies of complex fluids. A 3MeV van de Graaff accelerator is used to study radiation-produced defects in solids. The Easchell Laboratory also contains a processing laboratory where advanced Si devices can be fabricated and studied. All laboratories are well furnished with electronic instrumentation for data acquisition and analysis.

Several professors are members of the interdisciplinary Center for Optical Technologies that offers a wide range of state-of-the-art facilities including a fiber drawing tower, waveguide and fiber characterization labs, and a new epitaxy facility for the growth of III-V semiconductor structures and devices. Extensive up-to-date computer facilities are available on campus and in the department. All computing resources can be accessed directly from graduate student and faculty offices through a high speed backbone. Researchers have access to the national Research Internet (Internet 2) via a 155 Mbps gateway.

Graduate Courses in Physics

PHY 411. Survey of Nuclear and Elementary Particle Physics (3)
Intended for non-specialists. Fundamentals and modern advanced topics in nuclear and elementary particle physics. Topics include: nuclear force, structure of nuclei, nuclear models and reactions, scattering, elementary particle classification, SU(3), quarks, gluons, quark flavor and color, leptons, gauge theories, GUT, the big bang. Prerequisite: PHY 369. Staff

PHY 420. Mechanics (3) fall
Includes the variational methods of classical mechanics, methods of Hamilton and Lagrange, canonical transformations, Hamilton-Jacobi Theory. Kim

PHY 421. Electricity & Magnetism I (3) spring
Electrostatics, magnetostatics, Maxwell's equations, dynamics of charged particles, multipole fields. Huennekens

PHY 422. Electricity & Magnetism II (3) fall
Electrodynamics, electromagnetic radiation, physical optics, electromagnetics in anisotropic media. Special theory of relativity. Prerequisite: PHY 421. Folk

PHY 424. Quantum Mechanics II (3) spring
General principles of quantum theory; approximation methods; spectra; symmetry laws; theory of scattering. Prerequisite: PHY 369 or equivalent. Borse

PHY 425. Quantum Mechanics III (3)
A continuation of Phys 424. Relativistic quantum theory of the electron; theory of radiation. Staff

PHY 428. Methods of Mathematical Physics I (3) fall
Analytical and numerical methods of solving the ordinary and partial differential equations that occur in physics and engineering. Includes treatments of complex variables, special functions, product solutions and integral transforms. Gunton

PHY 429. Methods of Mathematical Physics II (3) spring
Continuation of Phys 428 to include the use of integral equations. Green's functions, group theory, and more on numerical methods. Prerequisite: PHY 428.

PHY 431. Theory of Solids (3)

PHY 442. Statistical Mechanics (3) spring
General principles of statistical mechanics with application to thermodynamics and the equilibrium properties of matter. Prerequisites: PHY 340 and 369. Gunton

PHY 443. Nonequilibrium Statistical Mechanics (3)
A continuation of PHY 442. Applications of kinetic theory and statistical mechanics to nonequilibrium processes; non-equilibrium thermodynamics. Prerequisite: PHY 442. Staff

PHY 446. Atomic and Molecular Physics (3)
Advanced topics in the experimental and theoretical study of atomic and molecular structure. Topics include time and hyperfine structure, Zeeman effect, interaction of light with matter, multi-electron atoms, molecular spectroscopy, spectral line broadening atom-atom and electron-atom collisions and modern experimental techniques. Prerequisite: PHY 424 or consent of the department. Huennekens

PHY 455. Physics of Nonlinear Phenomena (3)
Basic concepts, theoretical methods of analysis and experimental development in nonlinear phenomena and chaos. Topics include nonlinear dynamics, including period-multiplying routes to chaos and strange attractors, fractal geometry and devil's staircase. Examples of both dissipative and conservative systems will be drawn from fluid flows, plasmas, nonlinear optics, mechanics and waves in disordered media. Prerequisite: graduate standing in science or engineering, or consent of the chairman of the department. Staff

PHY 462. Theories of Elementary Particle Interactions (3)
Relativistic quantum theory with applications to the strong, electromagnetic and weak interactions of elementary particles. Prerequisite: PHY 425. Staff

PHY 467. Nuclear Theory (3)
Theory of low-energy nuclear phenomena within the framework of nonrelativistic quantum mechanics. Borse

PHY 471. (MECH 411) Continuum Mechanics (3)
An introduction to the continuum theories of the mechanics of solids and fluids. This includes a discussion of the mechanical and thermodynamical bases of the subject, as well as the use of invariance principles in formulating constitutive equations. Applications of theories to specific problems are given.

PHY 472. Special Topics in Physics (1-3)
Selected topics not sufficiently covered in the more general courses. May be repeated for credit.
PHY 474. Seminar in Modern Physics (3)
Discussion of important advances in experimental physics. May be repeated for credit when a different topic is offered.

PHY 475. Seminar in Modern Physics (3)
Discussion of important advances in theoretical physics. May be repeated for credit when a different topic is offered.

PHY 482. Applied Optics (3)
Review of ray and wave optics with extension to inhomogenous media, polarized optical waves, crystal optics, beam optics in free space (Gaussian and other types of beams) and transmission through various optical elements, guided wave propagation in planar waveguides and fibers (modal analysis), incidence of chro-matic and polarization mode dispersion, guided propagation of pulses, nonlinear effects in waveguides (solitons), periodic interactions in waveguides, acousto-optic and electro-optics. Prerequisite: PHY 352 or equivalent.

Toulouse

PHY 491. Research (3)
Research problems in experimental or theoretical physics.

PHY 492. Research (3)
Continuation of PHY 491. May be repeated for credit.

Political Science

Professors. Frank T. Colon, Ph.D. (Pittsburgh); Richard K. Matthews, Ph.D. (Toronto), NEH Distinguished University Professor; Edward P. Morgan, Ph.D. (Brandeis), Distinguished University Professor; Laura Katz Olson, Ph.D. (Colorado); Chairperson; Hannah Stewart-Gambino, Ph.D. (Duke).

Associate professors. Frank L. Davis, Ph.D. (North Carolina); Albert H. Wurth Jr., Ph.D. (North Carolina).

Assistant professors. Janet M. laible, Ph.D. (Yale); Brian K. Pinaire, Ph.D. (Rutgers); Breena Holland, Ph.D. (U. of Chicago).


The major in political science is designed to promote understanding of political ideas, institutions and processes and to develop skills in analyzing and evaluating political problems.

A balanced program within the discipline, one that exposes the student to various areas of inquiry in political institutions and political processes as well as in the comparative and philosophical perspectives of political analysis, has been the way in which the goals of the major program generally have been achieved. While the major program outlined below will prove adequate for most student needs, it may be that because of some special factors such as late transfer or unusual interests and/or abilities the outlined program does not accommodate some students. In that case the students may, in consultation with their advisers, develop a major program that in their judgment will more adequately fulfill those needs.

The faculty adviser to the student majoring in political science is designated by the department. The adviser consults with the student and approves the major program. The adviser attempts to help the student relate courses offered by the department to the student's educational goals. The adviser also may act as a resource for the student, and may suggest courses in other disciplines, language courses, and courses in research techniques that may be of benefit.

A variety of experiential opportunities are available to undergraduates majoring in political science. The department, for example, offers a Community Politics Internship every semester that includes opportunities for internship placements in either local government, private agencies or law offices. Students are also encouraged to apply for off-campus internship opportunities, e.g., American University's Washington Semester Program and The Philadelphia Center's Internship in Philadelphia.

Completion of the political science major is considered suitable training for the undergraduate who wishes to go on to law school, to become a social science teacher, or to work as a governmental official, party or civic leader, public affairs commentator, or staff member of a government research bureau. In addition, the business sector continues to provide opportunities in areas such as banking, insurance, and marketing for bachelor of arts graduates with training in the social sciences. Graduate study is advisable for students contemplating certain careers: college teaching, research, or public management, for example.

The three core courses are required. Individual exceptions may be made, for good reasons, by the major adviser with the approval of the department chairman.

Major Requirements

POLS 1 American Political System (4)
POLS 2 Comparative Politics (4)
POLS 100 Introduction to Political Thought (4) or
POLS 101 Ancient Political Heritage (4) or
POLS 102 Modern Political Heritage (4)

Electives

Six elective courses with at least one course from each of the two fields listed below. One of the electives may, with the consent of the department, be in a cognate field.

American Politics, Public Law and Interdisciplinary
POLS 104 Political Sociology (4)
POLS 111 The Politics of the Environment (4)
POLS 115 Technology As Politics (4)
POLS 179 Politics of Women (4)
POLS 230 Movements and Legacies of the 1960s (4)
POLS 232 The Vietnam War in Politics, Media, and Memory (4)
POLS 240 Law and Order (4)
POLS 274 Political Parties and Elections (4)
POLS 302 Comparative State Politics (4)
POLS 306 Public Policy Process (4)
POLS 317 The American Presidency (4)
POLS 326 Democracy Workshop (4)
POLS 328 U.S. Politics and the Environment (4)
POLS 329 Propaganda, Media, and American Politics (4)
POLS 331 Community Politics Internship (4)
POLS 333 Social Psychology of Politics (4)
POLS 351 Constitutional Law (4)
POLS 352 Civil Rights and Civil Liberties (4)
POLS 358 Interest Groups, Factions, and Coalitions in Politics (4)
### Undergraduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 359</td>
<td>U.S. Congress (4)</td>
</tr>
<tr>
<td>POLS 360</td>
<td>Public Administration (4)</td>
</tr>
<tr>
<td>POLS 368</td>
<td>Political Economy (4)</td>
</tr>
<tr>
<td>POLS 375</td>
<td>Seminar: Green Policy (4)</td>
</tr>
<tr>
<td>POLS 376</td>
<td>Seminar: National Social Policy (4)</td>
</tr>
<tr>
<td>POLS 377</td>
<td>Urban Politics (4)</td>
</tr>
<tr>
<td>POLS 378</td>
<td>Honors Thesis in Political Science (4)</td>
</tr>
<tr>
<td>POLS 379</td>
<td>Honors Thesis in Political Science (4)</td>
</tr>
</tbody>
</table>

#### Political Theory and Comparative Politics

- **POLS 100. Introduction to Political Thought (4)**
- **POLS 101. Ancient Political Heritage (4)**
  Important political thinkers from the pre-Socratics to early, modern political theorists like Machiavelli. Matthews (SS)
- **POLS 102. (PHIL 102) Modern Political Heritage (4)**
  Begins where POLS 101 ends: from early, modern theorists (e.g., Hobbes) up to contemporary thinkers (e.g., Marcuse). Matthews (SS)
- **POLS 104. (SSP 104). Political Sociology (4)**
  An introduction to political sociology through an examination of the major sociological questions concerning power, politics, and the state. Covers historical questions concerning state formation, nationalism, social movements, globalization, political culture and participation, and civil society. Includes examples such as racism, welfare reform, campaign financing, coal mining in Appalachia, revolution in Latin America, and the rise of the Nazi party in Germany, and the place of the United States in a global society. Munson (SS)
- **POLS 108 (Global) Citizenship and its Discontents (4)**
  The purpose of the course is to consider the nature— and desirability—of citizenship, both as an ideal and as applied (if possible) in the global context. What exactly does it mean to be a “citizen?” Does citizenship require particular actions, thoughts, or values? What are the legal, political, and moral obligations of this designation? What exactly do you owe to your neighbor, or to someone on the other side of the world? Readings range from Socrates to the Manafesto of the Unabomber. Pinaire (SS/GC)
- **POLS 111. The Politics of the Environment (4)**
  A survey of the major environmental, resource, energy and population problems of modern society, focusing on the United States. The politics of man’s relationship with nature, the political problems of ecological scarcity and public goods, and the response of the American political system to environmental issues. Wurth (SS)
- **POLS 115. Technology as Politics (4)**
  Relationship of technology and technological change with politics and public policy. Review of theories of political significance of technology, including technological determinism, technology assessment, technological progress and appropriate technology. Specific issues in technology with emphasis on U.S. Wurth (ND)
- **POLS 125. (IR 125) International Political Economy (4)**
  Principles governing the interaction between the economic and political components of international phenomena. Political causes and consequences of trade and investment. Foreign economic policy in its relationship to domestic economic policy and other aspects of foreign policy. Determinants of foreign economic policy. Prerequisites: Economics 1 or 11 or 12; IR 10. Moon, Barkey (SS)
- **POLS 132. (Eco., HIST., IR) An Introduction to Canada (4)**
  An interdisciplinary, team-taught course focusing on history, politics, economics and international relations. Topics covered will include Canada’s historical development, recent politics and foreign policy, and economic and trade issues. Special attention will be given to con-
temporary affairs and to Canada's relations with the United States. (SS)

POLS 179. (WS 179) Politics of Women (4)
Selected social and political issues relating to the role of women in American society. Focuses on such questions as economic equality, poverty, and work roles, the older woman, gender gap, political leadership, reproduction technology, and sexual violence. Olson (SS)

POLS 230. Movements and Legacies of the 1960s (4)
The lessons and legacies of 1960s social and political movements. Students engage with civil rights, black power movements, the New Left, campus protests, the Vietnam war and antiwar movement, the counterculture, women's and ecology movements and assess their connection to democracy, today's world and their own lives. Morgan (SS)

POLS 232. The Vietnam War in Politics, Media, and Memory (4)
Examines the meaning of the American war in Vietnam as interpreted and disputed in American politics, the mass media, and private and public memory. Reviews the political history and context of the war, personal experiences and critical perspectives on the war, and characterizations of the war in mainstream news media and popular film. Morgan (SS)

POLS 240. Law and Order. The Politics of Crime and Punishment (4)
This course explores the legal and political consequences of various theories of crime, punishment and social control in the United States. Topics include policing, racial profiling, trial court proceedings and the administration of justice, growing incarceration rates and the prison industry, capital punishment, the jury system, and the nature of legal obligation. Pinaire. (ND)

POLS 274. Political Parties and Elections (4)
Study of the organization, functions and behavior of political parties in the United States. Includes voting behavior, campaigns and elections, polling, interest groups, public opinion and the role of the media. Colon (SS)

For Advanced Undergraduates and Graduate Students

POLS 301. Current Political Controversies (4)
Selected topical policy issues and alternative approaches to understanding them. Includes the major domestic questions facing the U.S. Emphasis is on debating the current issues of the day. Olson (SS)

POLS 302. Comparative State Politics (4)
Analysis of major questions relating to the role of the states in the American federal system and their relationship with the national government. Colon (SS)

POLS 306. Public Policy Process (4)
Power relations and their impacts on selected public policy issues, specifically taxation, housing, environment, poverty, energy, the military, and health. Olson (SS)

POLS 307. The American Presidency (4)
Role of the executive in the American political process. Includes an analysis of the historical development, selection process, and scope of executive power. Emphasizes domestic and foreign policy initiatives of selected presidents from FDR to today. Prerequisite: POLS 1. Olson (SS)

POLS 321. Research in Political Science (4)
Models in the explanation of political phenomena, appropriateness of measurement techniques; construction of research designs; rationale and application of statistical analyses; individual projects involving the construction and testing of models employing a major social science data set. Prerequisite: Consent of the instructor. Davis (ND)

POLS 323. Public Policy of the European Union (4)
The institutions and policy-making processes of the European Union. Topics include the creation of the single market and the euro, environmental and agricultural policy, regional development and the policy challenges of eastward enlargement. Prerequisite: POLS 3 or IR 10. Laible

POLS 324. Politics of Western Europe (4)
Comparative discussion of systems of government in Western Europe and of major policy questions facing these states in the post-war era. Topics include the evolution of welfare states, relations with the former Eastern bloc, immigration, and the regionalization and Europeanization of central state authority. Prerequisite: POLS 3. Laible

POLS 325. Nationalism in Comparative Perspective (4)
Examination of major theoretical and policy debates in contemporary studies of nationalism. Focus on the emergence and endurance of nationalist movements in the modern era. Discussion of efforts to evaluate the legitimacy of nationalist claims and to resolve nationalist conflict. Prerequisite: POLS 3. Laible

POLS 326. Democracy Workshop (4)
Student teams enhance the political voice of under-resourced community groups through organization-building, outreach, and policy input at the local level. Weekly seminars on theory and practice of community organizing and its relationship with democracy and power in the United States complement semester-long field placements with community groups and local organizations. Prerequisite: consent of instructor. Morgan (ND)

POLS 328. U.S. Politics and the Environment (4)
An examination of contemporary American politics and policy dealing with environmental issues. Current controversies in the legislative and regulatory areas will be covered to examine environmental issues and the political process. Significant portions of the course readings will be taken from government publications. Wurth (SS)

POLS 329. Propaganda, Media, and American Politics (4)
The role of propaganda and mass media in sustaining hegemony in the United States. Emphasis on television, advertising and mass culture, public relations, news media, and political propaganda pertaining to U.S. foreign and domestic policy. Students compare critical counter-hegemonic theories to political speeches, documents, news reports, and media encounters that shape much of American political life. Morgan (SS)
POLS 331. Community Politics Internship (4)
Integrated fieldwork and academic study. Seminar, research paper, and journal; internship with government and social service agencies, political groups, elected officials, and law offices. May be repeated for credit. Prerequisite: consent of instructor. (ND)

POLS 333. (PSYC 333, SSP 333) Social Psychology of Politics (4)
Political behavior viewed from a psychological and social psychological perspective. Prerequisite: Any one of the following introductory courses: ANTH 1, ANTH 11, ANTH 12, SSP 5, SSP 21, or department permission. Rosenwein (SS)

POLS 335. Latin American Political Systems (4)
Democratic, authoritarian and revolutionary paths to contemporary political issues. Political, economic and social implications of contemporary “democratic” regimes and neo-liberal economic policies. Discussion groups and student presentations on prospects for democratic peace and prosperity in the future. Prerequisite: POLS 3. Stewart-Gambino (ND)

POLS 336. U.S. Foreign Policy and Latin America (4)
U.S. historical relationship with Central America, Caribbean and South America with emphasis on economic and military dominance. Contemporary issues such as U.S. invasions of Panama and Grenada, U.S. Cuban relations, the militarization of the “drug war,” counterinsurgency. Written analysis of competing U.S. interests across time and regions. Prerequisite: POLS 3. Stewart-Gambino (ND)

POLS 337. Religion and Politics in Latin America (4)
Indigenous and “imported” religious structures, the prominent role of the Catholic Church in Latin America, and the recent explosion of Protestant/ Pentecostal churches. Emphasis on the intersection of religious belief and power (i.e., gender, local politics, national development, etc.). Short papers integrate material with students’ knowledge of religious/political phenomena. Discussion groups analyze philosophical foundations of belief. Prerequisite: POLS 3 and 336. Stewart-Gambino (ND)

POLS 342. (WS 342) Gender and Third World Development (4)
Focus on gender implications of contemporary strategies for Third World economic growth, neo-liberalism. How do economic theories affect men vs. women? What is the role of people who want to ‘help’? Some background in economic theories and/or Third World politics desired, but not required. Prerequisite: POLS 1 or WS 1. Stewart-Gambino (SS)

POLS 351. Constitutional Law (4)
An examination of the development of American constitutional law considered in historical and political context. Emphasis is on decisions of the U.S. Supreme Court. Topics include the growth of the Supreme Court’s institutional power and the Court’s changing interpretation of the federalism, the separation of powers, and constitutional rights. Pinaire (ND)

POLS 352. Civil Rights and Civil Liberties (4)
A survey of Supreme Court policymaking pursuant to the Bill of Rights, the Fourteenth Amendment, and federal civil rights statutes. Among the covered topics are changing Supreme Court doctrine concerning freedom of speech and press, religious liberty, criminal procedure, and the due process and equal protection clauses. Pinaire (ND)

POLS 356. Seminar: Political Philosophy (4)
Critical examination of several of the “great books” and/or “great ideas” in political thought. Students will help select the material for critical discussion. Course may be repeated with permission of the instructor. Matthews (SS)

POLS 358. Interest Groups, Factions, and Coalitions in American Politics (4)
The rise of interest group power. Social, economic, and political reasons for groups’ increasing influence. Value of different group resources and influence in particular national policy arenas. Types of more, and less, powerful interests, and the implications of this distribution of power for American politics. Davis (SS)

POLS 359. U.S. Congress (4)
Elections for the House and Senate and their significance for the way in which Congress functions. The formal structure of party leadership and committees, House and Senate organizational and functional differences, and informal and formal power of legislation and oversight. Congressional relations with the president, bureaucracy, and Supreme Court. Prerequisite: POLS 1. Davis (SS)

POLS 360. Public Administration (4)
The nature of administration: problems of organization and management; public personnel policies; budgeting and budgetary system; forms of administrative responsibility. Colon (ND)

POLS 364. (PHIL 364) Issues in Contemporary Political Philosophy (4)
Selected topics in contemporary political philosophy, such as the Frankfurt school, existentialism, legitimation, authenticity, participatory democracy, and the alleged decline of political philosophy. May be repeated for credit with the consent of instructor. Matthews (SS)

POLS 367. (PHIL 367) American Political Thought (4)
A critical examination of American political thought from the founding of the Republic to the present. Writings from Madison, Hamilton, and Jefferson to Emma Goldman, Mary Daly, Malcolm X, Henry Kariel, and others will be discussed. Matthews (SS)

POLS 368. Political Economy (4)
Relationship of democratic politics to government and market, and significance of economic power in the American polity. Economic rationale for the place of the market and economic institutions in polity. Emphasis on information in comparison of economic approaches to public policy and organization (public goods, market failure, and collective action) with traditional political science approaches (group mobilization and conflict, non-decisions and symbolic action). Wurth (SS)

POLS 370. Seminar: The Citizen versus the Administrative State (4)
Administrative power and policy. Constitutional and judicial control of administration. Remedies against improper administrative acts. Major emphasis will be on the United States, with some attention given to analogous issues in other countries. (SS)
POLS 374. Seminar: Third World Issues (4)
Focus on Nancy Sheper-Hughes' Death Without Weeping: The Violence of Everyday Life in Brazil with discussion of "objectivity" in field research, separation between advocacy and observation, and gendered subjects. Student presentations of research topics in latter part of course, emphasizing professional form and collegial cooperation. Prerequisites: POLS 322, 335, 356, 337, or consent of instructor. Stewart-Gambino (SS)

POLS 375. Seminar: Green Policy (4)
Development of guidelines and applications for public policy and political action directed toward environmental sustainability and political feasibility. Focus on problem-solving and policy design, connecting sustainable environmental goals with workable and responsive institutional designs. Prerequisites: POLS 111, 368, or consent of instructor. Wurth (SS)

POLS 376. Seminar: National Social Policy (4)
A readings/research seminar on current social policy questions. Course analyzes, from alternative political perspectives, such issues as Social Security, Medicare, health care, welfare reform, income inequality, and taxation. Students research a specific social issue of their choice. Class discussion on individual research and common readings. Olson (SS)

POLS 377. Urban Politics (4)
The structure and processes of city government in the United States; city-state and federal-city relationships; the problems of metropolitan areas; political machines and community power structures; the urban politics of municipal reform; city planning and urban renewal. Colon (SS)

POLS 378. Honors Thesis in Political Science (4)
Opportunity for undergraduate majors in Political Science to pursue an extended project for senior honors. Department permission required. (ND)

POLS 379. Honors Thesis in Political Science (4)
Continuation of POLS 378. Prerequisite: POLS 378. Department permission required. (ND)

POLS 381, 382, 383, 384. Special Topics (1-4)
A seminar on a topic of special interest in a particular political institution, process, or policy. Prerequisite: consent of the department chairperson. (ND)

For Graduate Students the department of political science offers a graduate program leading to the master of arts degree. The applicant for admission is required to demonstrate adequate undergraduate preparation. Those seeking full time graduate study must submit Graduate Record Examination results.

Master of Arts

The master of arts in political science is a 30-credit-hour program that can be accomplished in 12 months by full-time students. A comprehensive examination or thesis is required. The student may take 24 hours of course work and six hours of thesis or may take all 30 credit hours in course work. A graduate-level course in research methods, the American Politics Core, and Comparative Politics Core are required of all candidates for the master of arts degree.

The master of arts program is intended for the student with liberal arts or natural science preparation who has a professional interest in government. The master of arts may be a preparatory step toward doctoral work at another institution or research positions in governmental, institutional or industrial settings or a final degree preparatory for teaching in junior and community colleges.

Graduate Courses

POLS 405. The Budgetary Process (3)
The public budgetary process: concepts, conflicts among interest groups, policy outcomes, intergovernmental relations, and consequences for policy implementation. Davis

POLS 408. American Politics Core (3)
A survey of American politics utilizing readings reflecting a variety of methodological approaches and theoretical perspectives. Readings include but are not limited to works widely regarded as "classics" in American political science.

POLS 413. Modern Political Philosophy (3)
A study of selected modern political philosophers and their continuing effect on politics and political philosophy. Matthews

POLS 415. State and Local Government (3)
Comparative state government, urban politics, intergovernmental relations, regional and local government. Colon

POLS 416. American Environmental Policy (3)
Formation, implementation and impact of environmental policies in the U.S. An examination of the scope of environmental problems, the development of environment as an issue, the role of interest groups and public opinion, the policy-making process, and the various approaches to implementing environmental policy. Special attention to current issues and administrative approaches and to the distinctive character of environmental protection as a political issue. Wurth

POLS 419. Theoretical Issues in American Politics (3)
American contributions to main currents in political philosophy from colonial times to present. Matthews

POLS 421. Research Methods (3)
Models in the explanation of political phenomena, appropriateness of measurement techniques; construction of research designs; rationale and application of statistical analyses; individual projects involving the construction and testing of models employing a major social science data set. Davis

POLS 423. Public Policy of the EU (3)
The institutions and policy-making processes of the EU. Topics include the creation of the single market and the euro, environmental and agricultural policy, regional development and the policy challenges of eastward enlargement. Laible

POLS 424. Politics of Western Europe (3)
Comparative discussion of systems of government in Western Europe and of major policy questions facing these states in the post-war era. Topics include the evolution of welfare states, relations with the former Eastern bloc, immigration, and the regionalization and Europeanization of central state authority. Laible

POLS 425. Nationalism in Comparative Perspective (3)
Examination of major theoretical and policy debates in contemporary studies of nationalism. Focus on the emergence and endurance of nationalist movements in the
modern era. Discussion of efforts to evaluate the legitimacy of nationalist claims and to resolve nationalist conflicts. Liible

POLS 426. Democracy Workshop (3)
Student teams enhance the political voice of under-resourced community groups through organization-building, outreach, and policy input at the local level. Weekly seminar on theory and practice of community organizing and its relationship with democracy and power in the United States complements semester-long field placements. Prerequisite: consent of instructor. Morgan

POLS 429. Propaganda, Media & American Politics (3)
The role of propaganda and mass media in sustaining hegemony in the United States. Emphasis on television, advertising and mass culture, public relations, news media, and political propaganda pertaining to U.S. foreign and domestic policy. Students compare critical, counter-hegemonic theories to political speeches, documents, news reports, and media encounters that shape much of American political life. Morgan

POLS 430. Movements & Legacies of 1960s (3)
The lessons and legacies of 1960s social and political movements. Students engage with civil rights, black power movements, the New Left, campus protests, the Vietnam war and antiwar movement, the counterculture, women’s and ecology movements and assess their connection to democracy, today’s world, and their own lives. Morgan

POLS 431. Public Management (3)
The study of bureaucracy and nonprofit organization and management; executive leadership; personnel management systems and regulatory administration. Colon

POLS 432. Public Policy Process (3)
Impacts of power relationships on selected public policy areas such as the military, agriculture, housing, environmental, energy, poverty, health, and taxation. May be repeated for credit. Olson

POLS 434. Internship (3)
Internship in private or public agency. May be repeated for credit.

POLS 442. Gender and Third World Development (3)
Issues of international economic development with a particular focus on how gender informs both the academic discourse of development as well as how development policies are gendered in their conception and implementation. Stewart-Gambino

POLS 451. Comparative Politics Core (3)
Theory and concepts in comparative politics. Analysis of applications in studies of Western and non-Western political systems.

POLS 453. Seminar: Media, Propaganda and Democracy (3)
Research seminar on theoretical and applied issues related to democracy vs. political hegemony, as affected by propaganda, the mass media, popular culture, and the capitalist economy. Students will pursue individual research topics linked to common class readings. Weekly paper presentations and critical responses. Morgan

POLS 456. Seminar: Political Philosophy (3)
Critical examination of several of the “great books” and/or “great ideas” in political thought. Students will be required to write a major paper and present their work to the class. Matthews

POLS 458. Seminar: Interest Groups, Factions, and Coalitions in American Politics (3)
The rise of interest group power. Social, economic, and political reasons for groups’ increasing influence. Value of different group resources and influence in particular national policy arenas. Types of more, and less, powerful interests, and the implications of this distribution of power for American politics. Davis

POLS 462. Seminar: American Political Thought (3)
Focus on a narrow topic or theorist in the field, e.g., the work of Jefferson, Madison, Hamilton, or Tocqueville. Students will be required to write a major paper and present it to the class. Matthews

POLS 464. Community Fellowship I (3) Fall
15 hours/week in regional agency on specific project relating to regional redevelopment with regularly scheduled contact hours with the faculty advisor. Stewart-Gambino

POLS 465. Community Fellowship II (3) Spring
15 hours/week in regional agency on specific project relating to regional redevelopment with regularly scheduled contact hours with the faculty advisor. Stewart-Gambino

POLS 466. Seminar: American Political Parties (3)
Study of the organization, functions, and behavior of political parties in the United States. Includes voting behavior, campaigns and elections, polling, interest groups, public opinion and the role of the media. Colon

POLS 467. Legal Problems (3)
This course involves an examination of the role of legal rules, agents, institutions, and values in our society. Primary emphasis will be given to the American legal system, though we will evaluate U.S. principles and politics through a comparative lens as well. Piña-Re

POLS 468. Political Economy (3)
Relationship of democratic politics to government and market, and significance of economic power in the American polity. Economic rationale for the place of the market and economic institutions in policy. Emphasis on information in comparison of economic approaches to public policy and organization (public goods, market failure and collective action) with traditional political science approaches (group mobilization and conflict, non-decisions and symbolic actions). Wurth

POLS 473. Seminar: Public Administration (3)
Public and nonprofit administrative agencies. Focus on the national government administration, but state, municipal, and nonprofit agencies included. Problems of organization and management; personnel policies; budgeting and financial systems; and forms of administrative responsibility. Colon

POLS 474. Seminar: Third World Issues (3)
Focus on Nancy Sheper-Hughes’ Death Without Weeping: The Violence of Everyday Life in Brazil with discussion of “objectivity” in field research, separation between advocacy and observation, and gendered subjects. Student presentations of research topics in latter
part of course, emphasizing professional form and collegial cooperation. Prerequisites: consent of instructor.

Stewart-Gambino

POLS 475. Seminar: Green Policy (3)
Development of guidelines and applications for public policy and political action directed toward environmental sustainability and political feasibility. Focus on problem-solving and policy design, connecting sustainable environmental goals with workable and responsive institutional designs. Prerequisites: Both POLS 111 and 368 or consent of instructor. Warth

POLS 476. Seminar: National Social Policy (3)
A readings/research seminar on current social policy questions. Course analyzes, from alternative political perspectives, such issues as Social Security, Medicare, health care, welfare reform, income inequality, and taxation. Students research a specific social issue of their choice. Class discussion on individual research and common readings. Olson

POLS 477. (SR 477) Advanced Computer Applications (3)
Uses of computers in social sciences, including data collection, management, analysis, presentation, and decision-making; includes weekly lab.

POLS 481. Special Topics (1-3)
Individual inquiry into some problem of government. Reading, field work, and other appropriate techniques of investigation. Conferences and reports. May be repeated for credit.

POLS 482. Special Topics (1-3)
Continuation of POLS 481.

Psychology

Professors. Mark H. Bickhard, Ph.D. (Chicago), Henry R. Luce Professor in Cognitive Robotics and the Philosophy of Knowledge; Diane T. Hyland, Ph.D. (Syracuse); Barbara C. Malt, Ph.D. (Stanford), chair.

Associate professors. Susan Barrett, Ph.D. (Brown); Michael J. Gill, Ph.D. (Texas, Austin); Gordon B. Moskowitz, Ph.D. (NYU); Ageliki Nicolopoulou, Ph.D. (Berkeley); Padraig G. O’Seaghdha, Ph.D. (Toronto).

Assistant professors. Catherine M. Arrington, Ph.D. (Michigan State); Laura M. Gommerman, Ph.D. (USC); Heidi Grant, Ph.D. (Columbia); Deborah J. Laible, Ph.D. (Nebraska, Lincoln).

Professors of Practice. Timothy Lomauro, Ph.D. (St. John’s); Frances Musto, Psy.D. (Philadelphia College of Osteopathic Medicine).

Emeritus professors. George K. Shortess, (Brown); Martin L. Richter, Ph.D. (Indiana); William Newman, Ph.D. (Stanford).

The Psychology Department offers B.A. and B.S. undergraduate degrees, undergraduate minors in general psychology and clinical psychology, and a Ph.D. program.

B.A. Major Program in Psychology

The bachelor of arts in psychology is a social science major requiring approximately 40 credit hours in psychology as described below. Students must also fulfill college and university degree requirements. This flexible program permits development of one or more minors in other fields or the undertaking of a double major. Freshmen who have completed PSYC 1 can enroll in 100-level courses.

Required Core Courses
PSYC 1 Introduction to Psychology (4)
PSYC 107 Child Development (4)
PSYC 109 (SSP 109) Adulthood and Aging (4)
PSYC 121 (SSP 121) Social Psychology (4)
PSYC 153 (SSP 153) Personality (4)
PSYC 117 Cognitive Psychology (4)
PSYC 176 Mind and Brain (4)

Required Breadth Courses
Four 100-level courses, spanning at least three of the following four categories.
A) PSYC 107 Child Development (4)
PSYC 109 (SSP 109) Adulthood and Aging (4)
B) PSYC 121 (SSP 121) Social Psychology (4)
PSYC 153 (SSP 153) Personality (4)
C) PSYC 117 Cognitive Psychology (4)
D) PSYC 176 Mind and Brain (4)

Required Advanced Psychology Seminars
Two Advanced Psychology Seminars are required. Advanced Psychology Seminars are 300-level courses that are offered in a small seminar format. These courses include a significant writing component and utilize primary source readings. Courses that can be used to fulfill this requirement have the Advanced Psychology Seminar designation at the end of the course description.

Additional 300-level Course Requirement
Two additional 300-level courses are required. Students cannot NOT use PSYC 310, 391, 392, 393 or 394 to fulfill this requirement. All other 300-level psychology courses can be used to fulfill this requirement. Students may opt to take a third or fourth Advanced Psychology Seminar or they may take any of the following courses. These courses fulfill 300-level requirements but NOT the Advanced Seminar requirement:

PSYC 301 Industrial Psychology
PSYC 305 Abnormal Psychology
PSYC 312 Interpersonal Behavior in Small Groups
PSYC 323 The Child in Family and Society
PSYC 327 Health Psychology
PSYC 328 Educational Psychology
PSYC 333 Social Psychology of Politics
PSYC 335 Animal Behavior
PSYC 338 Phenomenology and Theory of Childhood Disorders
PSYC 354 Psychological Assessment
PSYC 382 Endocrinology of Behavior

Recommended Electives
The bachelor of arts program in psychology is a flexible preparation for a number of fields. With suitable selection of additional courses, students can prepare themselves for graduate study in any subfield of psychology or for careers in areas for which psychology is a desirable and relevant major such as law, social work, marketing, and education.

For graduate programs in developmental, social/personality, cognitive, and clinical psychology, additional coursework in research and statistics is desirable, as is participation in the honors program.

Depending on the specific subfield of interest, many courses in the Departments of Biological Sciences (especially the Behavioral Neuroscience program) and Sociology and Anthropology, in the College of Education, and in the interdisciplinary programs of
Cognitive Science, Women's Studies, and Africana Studies may be relevant.

Preparation for programs in health-related areas such as nursing, medicine, and dentistry will include additional coursework in biology, chemistry, and physics. Students should consult with the appropriate pre-professional advisers to determine specific requirements.

Students interested in applying psychology to fields such as law, marketing, social work, or education should consult with faculty in those areas to discuss relevant courses.

The B.S. in Psychology

The bachelor of science in psychology is intended for students seeking a structured behavioral science major.

This comprehensive program of study is especially suited as preparation for advanced graduate study in psychology and related fields. The program offers broad scientific training with a concentration in cognitive, developmental, sociocultural, or clinical psychology. The program may also be attractive to students who are preparing for careers in medicine or health-related fields because it combines the mathematics and natural science courses required for professional study in these fields with exposure to ethics and a specialization in a concentration area such as clinical psychology. Progression through this program is best served through early commitment. This program requires a minimum of 109 credits of the 121 credits required for a bachelors degree.

Requirements for the B.S. in Psychology

University and College Requirements (at least 26 credits):

- Arts and Science 1 (1 credit)
- College Seminar (3-4 credits)
- English Composition (2 courses, 6 credits)
- Distribution requirements in two of the following categories (Natural Science, Social Science, or Humanities) (16 credits)
- Courses taken for major and collateral requirements can only be used to fulfill one of the three distribution categories (Natural Science, Social Science or Humanities, if two philosophy courses are used to fulfill the Philosophy and Cognitive Science collateral requirement). Students must take additional courses to fulfill the university requirements in the two remaining categories. Collateral courses in mathematics can be used to fulfill the mathematical science distribution category.

The B.S. Program in Psychology: Collateral Requirements (at least 35 credits)

Mathematics: Select 2 courses from MATH 12, 43, or any of the calculus courses (7-8 credits)

Computation and Formal Systems: Select either COGS 140 or PHIL 114 or CSE 12 or 15 (3-4 credits)

Natural Science: Select 3 courses from CHM 21, CHM 75, BIOS 41, EES 31, BIOS 115, BIOS 177, BIOS 276, or PHY 10 (at least 10 credits)

Philosophy and Cognitive Science: Select two courses from COGS 7, PHIL 7, 105, 116, 128, 139, 220, 228, 250, 260 (8 credits)

Social Science: Select two courses from ECO 1, STS 11, 124, 145, 252, WS 101, and ANTH or SSP course which is not cross-listed with psychology (7-8 credits)

Psychology Requirements (48 credits)

Psychology Core Requirements

- PSYC 1 Introduction to Psychology (4)
- PSYC 110 Statistical Analysis of Behavioral Data (4)
- PSYC 210 Experimental Research Methods and Laboratory (4)

Required Breadth Courses

Four 100-level courses, one from each of the four categories:

A) PSYC 107 Child Development (4)
B) PSYC 109 (SSP 109) Adulthood and Aging (4)
C) PSYC 121 (SSP 121) Social Psychology (4)
D) PSYC 153 (SSP 153) Personality (4)

Psychology Concentration

Complete the following courses for one of the following concentrations:

A) Cognitive Psychology Concentration

COGS 7 (may not also be used to fulfill collateral requirement)
Select any Advanced Psychology Seminar.
Select any 300-level course except 310, 391, 392, 393, or 394.
Select two courses from the following list:
PSYC 307 (Higher Order Cognition)
PSYC 320 (Psychology of Language)
PSYC 322 (Language in Atypical Populations)
PSYC 351 (Cognitive Development in Childhood)
PSYC 369 (Memory)
PSYC 373 (Sensation and Perception)

B) Social Psychology Concentration

Complete both 121 and 153
Select any Advanced Psychology Seminar.
Select any 300-level course except 310, 391, 392, 393, or 394.
Select two courses from the following list:
PSYC 308 (Seminar in Social Psychology)
PSYC 311 (The Psychology of Stereotyping, Prejudice, and Discrimination)
PSYC 313 (Person Perception)
PSYC 314 (Social Cognition)
PSYC 318 (Seminar in Gender and Psychology)
PSYC 363 (Personality and Social Development in Childhood)

Developmental Psychology Concentration

Complete both 107 and 109
Select any Advanced Psychology Seminar.
Select any 300-level course except 310, 391, 392, 393, or 394.
Select two courses from the following list:
PSYC 321 (Language Development)
PSYC 351 (Cognitive Development)
PSYC 358 (Seminar in Infant Development)
PSYC 361 (Personality and Social Development in Adulthood)
PSYC 363 (Personality and Social Development in Childhood)
PSYC 364 (Narratives, Culture, and Development)
Undergraduate Courses

PSYC 1. Introduction to Psychology (4)
- Psychology as a science of behavior. Natural science aspects such as learning, sensation-perception, and physiological bases; and social science aspects such as human development, intelligence, and personality. Methodologies appropriate to these areas, and related societal problems. (SS)

PSYC 107. Child Development (4)
- Survey of theories and research concerning perceptual, cognitive, social, and personality development through infancy and childhood. Prerequisite: PSYC 1 or SSP 1. May not be taken pass/fail. (SS)

PSYC 109. (SSP 109) Adolescence and Aging (4)
- Social science approaches to the latter two-thirds of life. Cognitive and personality development; attitudes toward aging; social behavior of older adults; widowhood; retirement. Prerequisite: PSYC 1 or SSP 1. May not be taken pass/fail. Hyland (SS)

PSYC 110. Statistical Analysis of Behavioral Data (4)
- Principles of experimental design and statistical analysis: characteristics of data and data collection; descriptive statistics; hypothesis testing theory and practice; correlation, chi-square, t-test, analysis of variance. Three hours lecture and one hour computer lab. (ND)

PSYC 117. Cognitive Psychology (4)
- The architecture and dynamics of the human mind: How we acquire knowledge through perception, represent and activate it in memory, and use it to communicate, make decisions, solve problems, and reason creatively. Prerequisite: PSYC 1 or COGS 7. May not be taken pass/fail. (SS)

PSYC 121. (SSP 121) Social Psychology (4)
- Theories, methods of investigation, and results of research on the way social and psychological processes interact in human behavioral settings. Topics include analysis of self and relationships, dynamics of small groups, attitudes and persuasion, prejudice, prototypical and antisocial behavior. Prerequisite: ANTH 1, ANTH 11, SSP 1 or PSYC 1. (SS)

PSYC 125. (SSP 125) Social Psychology of Small Groups (4)
- Theories and empirical research regarding interpersonal behavior in small groups. Classroom exercises and group simulations. Prerequisite: consent of instructor. Rosenwein (SS)

PSYC 135. (SSP 135, Jour 135) Human Communication (4)
- Processes and functions of human communication in relationships and groups. Rosenwein (SS)

PSYC 140. (ANTH 140, COGS 140, MLL 140) Introduction to Linguistics (4)
- Relationship between language and mind; formal properties of language; language and society; how languages change over time. No pass/fail option. (SS)

PSYC 142. (AAS 142) The Psychology of African Americans (4)
- Presentation of a range of writings on the psychology of African Americans; exploration of significant perspectives in understanding the psychological dynamics, popular culture, current research, and cultural implications of Black Americans entering the 21st century. Lectures and discussion. Prerequisite: By the consent of the instructor. (SS)
PSYC 153 (SSP 153) Personality (4)
Examination of the major theoretical frameworks psycholo-
gists use to understand human thought, feeling, and behavior. Whereas these frameworks each emphasize very different concepts (e.g., the unconscious mind vs. culture vs. neurotransmitters), they are united in their effort to answer the question: Why does a given individ-
ual think, feel, or behave as she does? Prerequisite: PSYC 1 or SSP 1. Gill (SS)

PSYC 160. Independent Study (1-3)
Readings on topics selected in consultation with a staff
member. Prerequisites: PSYC 1 and consent of the
department chair. May be repeated for credit. (SS)

PSYC 161. Supervised Research (1-3)
Apprenticeship in ongoing faculty research program.
Literature review, experimental design, data collection
and analysis, and professional writing under faculty supervision. May be repeated for a maximum of 9 cred-
its. Restricted to pass-fail grading. Prerequisites: PSYC 1 or COGS 7 and consent of sponsor. (SS)

PSYC 162. Psychological Field Work (1-3)
Work-study practice including supervised experience in
one of several local agencies. Development of familiarity
with the operations of the agency and working with individual patients or students. Prerequisites: PSYC 1 plus two additional psychology courses and consent of
instructor. (SS)

PSYC 176. Mind and Brain (4)
Perception and cognitive neuroscience as the link
between mental processes and their biological bases.
Visual and auditory perception; the control of action;
neuropsychological syndromes of perception, language,
memory and thought; neural network (connectionist)
models of mental processes. Prerequisite: PSYC 1 or
COGS 7. May not be taken pass/fail. (NS)

PSYC 210. Experimental Research Methods and
Laboratory (4)
Designing, conducting, and reporting psychological experiments. Laboratory exercises, report writing, and a
group research project. Prerequisites: PSYC 1 and 110
and consent of department chair. (ND)

PSYC 301. Industrial Psychology (4)
Psychological concepts and methods applied to business
and industrial settings. Personnel selection, placement
and training, leadership, work motivation, job satisfac-
tion and consumer behavior. Prerequisite: PSYC 1. (SS)

PSYC 305. Abnormal Psychology (4)
Examines research and theory on the patterns, causes,
and treatment of various forms of abnormal behavior.
Prerequisite: PSYC 153 or consent of instructor. (SS)

PSYC 307. Higher Order Cognition (4)
In depth exploration of selected areas of higher level cog-
nition such as thinking and reasoning, metacognition,
expertise, executive processes, language and thought.
Prerequisites: PSYC 117 or PSYC 176 or COGS 7 or
consent of instructor. O’Seaghdha, Malt. (Advanced
Psychology Seminar) (SS)

PSYC 308. (SSP 308) Seminar in Social
Psychology (4)
Intensive consideration of selected topics in current theo-
ry and research in social psychology. The subject matter
varies from semester to semester, and includes such top-
ics as the social psychology of education, the applications
of perception and learning theory to social psychological
problems, the social psychology of science, and the social
environment of communication. May be repeated for
credit. Prerequisite: ANTH 1 or SSP 1 or department
permission. (Advanced Psychology Seminar) (SS)

PSYC 310. Advanced Research Methods in
Psychology (4)
Experimental and nonexperimental research design;
Sampling and selection from populations; Data explo-
ration; Quantitative and qualitative measurement and
analysis; Computer-based data collection; and other spe-
cialized topics. Prerequisite: PSYC 210. (ND)

PSYC 311. The Psychology of Stereotyping,
Prejudice, and Discrimination (4)
We will start by examining the basic cognitive processes
that make stereotyping a functional aspect of everyday
cognition, and then we will turn toward examining emo-
tional, motivational, and personality differences that
affect one’s level of prejudice. Finally, we will study the
role of social forces in transmitting prejudice (parents,
schools, religion, media) and the impact of societal prej-
udice (discrimination) on those who are the targets of
prejudice. The changing face through the decades of how
types, prejudice, and discrimination are measured,
expressed, and understood is the focus of the course.
Prerequisites: PSYC/SSP 153 or PSYC/SSP 121.
Moskowitz. (Advanced Psychology Seminar) (SS)

PSYC 312. (SSP 312) Interpersonal Behavior in
Small Groups (4)
Intensive consideration of theoretical and methodologi-
cal issues in the analysis of the development of small
groups. Prerequisite: Any one of the following introduc-
tory courses: ANTH 1 or SSP 1 or department
prerequisite. (Advanced Psychology Seminar) (SS)

PSYC 313. Person Perception (4)
Psychological processes involved in forming impressions
of others. Survey of the factors that influence the way in
which we think about the people who make up our social
environment and of the laboratory methods with
which experimental social psychology investigates person
perception. The emphasis is on demonstrating the joint
impact of the behaviors performed by others and the
biases/expectancies that we bring into the social setting.
Prerequisites: PSYC/SSP 153 or SSP/PSYC 121.
Moskowitz (Advanced Psychology Seminar) (SS)

PSYC 314 (SSP 314) Social Cognition (4)
Examines the cognitive processes through which people
make sense of social groups, individual others, them-

PSYC 315. History of Modern Psychology (4)
Origin and development of major theories within per-
ception, cognition, biological, clinical, personality,
developmental, learning, 19th and 20th century thought
to provide an overview of psychology as a discipline.
Prerequisites: two 300-level PSYC courses. (Advanced
Psychology Seminar) (SS)

PSYC 317. Psychology of Emotion (4)
A selective overview of the scientific study of emotion.
Topics will include: historical and modern theories of
emotion, physiological and neuropsychological aspects of
emotions, evidence that facial expressions of emotion may be universal among humans, and the role of emo-
tion in cognition. Prerequisite: PSYC 110 or consent of the instructor. (Advanced Psychology Seminar) (SS)

PSYC 318. (WS 318) Seminar in Gender and Psychology (4)
Gender as shaped by psychological and social psychologi-
cal processes. Socialization, communication and power, gender stereotypes, methodological issues in sex differ-
ences research. Prerequisite: PSYC 210 completed or concurrent or permission of instructor. Hyland. (Advanced Psychology Seminar) (SS)

PSYC 320. Psychology of Language (4)
Psychological processes involved in language comprehen-
sion, production, and use. Topics include the relation of language to thought; word meaning; speech perception;
language acquisition; sign language. Prerequisite: PSYC: 117 or 176 or COGS 7 or consent of instructor. Malt, O’Seaghdha. (Advanced Psychology Seminar) (SS)

PSYC 321. Language Development (4)
Descriptive and theoretical accounts of the development of language. Primary focus is on the development of spo-
lan language in infancy and early childhood. Involves observation of children at various stages of language develop-
ment. Prerequisite: PSYC 107 or 117. (Advanced Psychology Seminar) (SS)

PSYC 322. Language in Atypical Populations (4)
Analysis of language function in atypical populations and circumstances. Language deficits throughout the life-
span will be considered, with particular emphasis on their relevance to current linguistic and cognitive science theory. Topics covered include atypical language develop-
ment (e.g., in Specific Language Impairment, Autism, Down Syndrome, Williams Syndrome) as well as lan-
guage impairment after brain damage (e.g., stroke) or as a result of progressive degenerative disorders (e.g.,
Alzheimer’s Disease). Prerequisites: PSYC 117 or 176 or COGS 7 or COGS 140. Gronnerman. (Advanced Psychology Seminar) (SS)

PSYC 323. (SSP 323) The Child in Family and Society (4)
Influences such as marital discord, family violence, poverty and prejudice on the development of the child from birth through adolescence. Prerequisite: ANTH 1 or SSP1 or department permission. Herrenkohl (SS)

PSYC 325. Theories in Social Psychology (4)
This course will compare the contributions and limita-
tions of major theoretical perspectives on social behavior, and examine the nature of theory-construction and theo-
ory-testing in psychology generally. We will discuss broad theories of social behavior (Behaviorism, Gestalt,
Psychodynamics, Symbolic Interactionism), as well as more specific theories of social phenomena, such as social perception, self-perception, and social influence. Prerequisite: Psyc 121 or consent of instructor. Grant (SS) (Advanced Psychology Seminar)

PSYC 327. Health Psychology (4)
An overview of the topic of health psychology. The course presupposes a preventative intervention approach to the problem of assisting healthy individuals to under-
stand the relationship between behavior and health, and to engage those behaviors that promote health. This course will be underpinned with basic science and research on health psychology, but will include an appli-
cation focus. Prerequisite: PSYC 110. (SS)

PSYC 328. Educational Psychology (4)
Overview of historical, contemporary, and emerging issues in the field of educational psychology; Implications of various social, cognitive and behavioral educational-psychological theories for teaching and learning in the classroom. Prerequisite: PSYC 107 or 109 or 117. (SS)

PSYC 331. Humanistic Psychology (4)
The literature of and metaphors underlying the humanis-
tic point of view in psychology. These "models of man" are contrasted with models underlying other modes of psychological inquiry. Prerequisites: PSYC 153. (Advanced Psychology Seminar) (SS)

PSYC 333. (SSP 233, POLS 333) Social Psychology of Politics (4)
Political behavior viewed from a psychological and social psychological perspective. Prerequisite: ANTH 1, 11, or 12; SSP 1, 5, or 21; PSYC 1, or department permission. Rosenwein (SS)

PSYC 335. (BIOS 335) Animal Behavior (3)
Discussion of the behavior of invertebrates and verte-
brates and analysis of the physiological mechanisms responsible for behavioral actions, and adaptive value of specific behavior patterns. Prerequisite: BIOS 31 or EES 51. (NS)

PSYC 338. Phenomenology and Theory of Childhood Disorders (4)
The nature, classification, and treatment of childhood disorders. Prerequisite: PSYC 107 (SS)

PSYC 342. Motivation (4)
This seminar emphasizes theory and research on motiva-
tional approaches to social psychology. We will focus on the ways in which goals, motives, and needs guide behavior. We will explore such key issues as the nature of achievement, well-being, self-regulation and self-control; emotions, values, and belief-protection as sources of social action; and the role of motivated cognition in understanding the self and others. Prerequisite: PSYC 153 or PSYC 121. Grant (Advanced Psychology Seminar) (SS)

PSYC 351 Cognitive Development (4)
Covers Piaget, Vygotsky, and contemporary theoretical perspectives on cognitive development as well current research in areas such as memory, conceptual under-
standing of biological and physical concepts, mathematics, problem-solving and literacy. The implica-
tions of research in cognitive development for instructional practices will be discussed. Prerequisite: Psyc 107, 117, or COGS 7. Barrett (SS) (Advanced Psychology Seminar)

PSYC 354. Psychological Assessment (4)
Basic concepts in the construction, selection, administra-
tion, scoring, and interpretation of assessment procedures commonly used in psychology. Selection and evaluation of assessment procedures. Supervised experi-
ence administering, scoring, and interpreting assessment procedures. Prerequisites: PSYC 110. (SS)

PSYC 356. (SSP 356) Seminar in Personality Psychology (4)
Topics in personality psychology: the self, personality consistency, motivation, psychological adjustment. Prerequisite: PSYC 153 or consent of instructor. (Advanced Psychology Seminar) (SS)
PSYC 358. Seminar in Infant Development (4)
Theories and current research focusing on development in the first two years of life. Topics include cognitive, perceptual, language, social, and emotional development, and methods used in infancy research. Prerequisites: PSYCH 107 and consent of department chair. Barrett. (Advanced Psychology Seminar) (SS)

PSYC 359. Seminar on Psychological Issues in the Legal System (4)
Contributions of psychological research to understanding the legal system. Social science data on juries, eyewitnesses, mental illness, and the death penalty will be discussed. Conflicts between psychological and legal approaches will be highlighted. Prerequisite: PSYC 110 or consent of instructor. Barrett (Advanced Psychology Seminar) (SS)

PSYC 360. Memory (4)
The paradoxical power and fallibility of memory in the light of observational, experimental, clinical, and neuroscience evidence. Potential topics include expert memory; false memory; recovered memory; social transmission; amnesia; memory and personal identity. Prerequisite: PSYC 117 or PSYC 176 or COGS 7 or consent of instructor. O’Searoidh (Advanced Psychology Seminar) (SS)

PSYC 361. (SSP 361) Personality and Social Development in Adulthood (4)
Theories and current research. Prerequisite: SSP/PSYC 109 or consent of instructor. Hyland (Advanced Psychology Seminar) (SS)

PSYC 362. (SSP 362) Personality and Social Development in Childhood (4)
Issues related to social development (e.g., attachment, social competence), social contexts (e.g., family, day care), and personality development (e.g., sex roles, aggression, temperament) from infancy through adolescence. Prerequisite: PSYC 107 or consent of instructor. (Advanced Psychology Seminar) (SS)

PSYC 363. Narratives, Culture, and Development (4)
Examines the complex role of narratives - told to and by children, and enacted by children in play - in children’s experience and development. Compares and seeks to integrate different approaches in psychology and other disciplines. In the process, we will also be addressing three basic questions: what is narrative, how is it significant, and how should we study it? Prerequisite: PSYC 107. Nicolopoulou (Advanced Psychology Seminar) (SS)

PSYC 364. Human Development in Cross-Cultural Perspective (4)
The formation of mind and personality is shaped in profound ways by the sociocultural contexts within which individuals develop. This course introduces students to basic theoretical and methodological issues and explores important examples of cross-cultural variation and diversity, using comparisons between different societies and between different subcultures within American society. Topics include cognition, language, personality, moral development, socio-emotional development, identity, attachment, and socialization. Materials drawn from anthropology, sociology, and education in addition to psychology. Prerequisites: One of the following courses or consent of instructor: PSYC 107, PSYC 109, PSYC/SSP 121, ANTH 1. (Advanced Psychology Seminar) (SS)

PSYC 365. Seminar in Cognitive Aging (4)
Information processing by older adults: perception, attention, memory, speech and text processing and comprehension. The course will also examine the effects on cognitive processing of such diseases as Alzheimer’s and Parkinson’s. Prerequisite: PSYC 105; PSYC 117 not required but strongly recommended. (Advanced Psychology Seminar) (SS)

PSYC 366. Clinical Psychology (4)
The science and profession of helping people overcome psychological problems. Theories of human personality and abnormality in relation to techniques for assessing and treating psychosocial problems and in the light of empirical evidence of validity and effectiveness. Professional issues are also covered. Prerequisites: PSYC 153 and PSYC 305 or consent of instructor. (Advanced Psychology Seminar) (SS)

PSYC 367. Children, Psychology, and the Law (4)
Covers psychological research on child witnesses, child victims, juvenile crime, children’s rights and decision-making capabilities, divorce and custody. Implications of psychological research for social policy and legal reform will be discussed. Prerequisite: Psyc 107. Barrett. (SS) (Advanced Psychology Seminar)

PSYC 368. Sensation and Perception (4)
Receptor processes of vision, audition, touch, taste, and smell. Psychological dimensions of such processes leading to consideration of perception as characteristic of organisms. Prerequisite: PSYC 117 or 176 or COGS 7. (Advanced Psychology Seminar) (SS)

PSYC 369. Attention and Attentional Failures (4)
Attention allows us to function in complex environments where there is more information than we could possibly process all at once and failures of attention can have drastic consequences. Experimental and neuropsychological evidence will be surveyed for topics including basic attentional phenomena, the role of attention in everyday tasks, and the impact of attentional failures from mind wandering to neuropsychological deficits like ADHD. Prerequisite: PSYC 117 or PSYC 176 or COGS 7. Arrington (SS) (Advanced Psychology Seminar)

PSYC 370. Special Topics in Psychology (4)
Topics vary from semester to semester. Topics are presented at an advanced level. Previous course work in psychology is required. May be repeated for credit. (SS)

PSYC 382. (BIOS 382) Endocrinology of Behavior (3)
Hormonal effects upon animal and human behavior. Emphasis on neuroendocrinology of steroid hormone involvement in reproductive behaviors. Prerequisite: BIOS 177. (NS)

PSYC 383. Attachment Theory & Research: The Study of Close Relationships Across the Lifespan (4)
This course will examine the influence of close relationships across the lifespan on personality development. We will examine the influence of parents, peers, siblings, and romantic relationships using traditional attachment theory. In addition, we will also explore how attachment quality is measured and the clinical applications of attachment theory. Prerequisite: PSYC 107. Deborah Laible. (SS) (Advanced Psychology Seminar)
PSYC 391. Thesis (3)  
Written report: Literature review and design of project in selected area of psychology. Only open to students in the honors program. Requires consent of the Honors Program Coordinator. (ND)

PSYC 392. Thesis. (3)  
Execution of project designed in PSYC 391. Final report and oral presentation. Only open to students in the honors program. Prerequisites: PSYC 391 and consent of the Honors Program Coordinator. (ND)

PSYC 393. Independent Research (1-3)  
Individual research projects designed and executed in collaboration with faculty sponsor. Regular meetings with sponsor to give progress reports and receive feedback. Student reads relevant literature and writes report in APA format. May be repeated for a maximum of 6 credits. Prerequisites: PSYC 210 or 161 and consent of sponsor. (ND)

PSYC 394. Senior Research Project (3)  
Literature review, design and execution of project in selected area of psychology. Intended for senior majors in psychology. May be repeated for up to 6 credits. Prerequisites: Department permission required. (ND)

For Graduate Students

The Department of Psychology offers a distinctive Ph.D. program centered in areas of Human Cognition and Development with specializations in cognition and language, development, and social cognition and personality. Students are trained primarily for positions at universities and in basic or applied research settings. For the most complete and current information visit www.lehigh.edu/inpsy/gradprogram.html.

In addition we offer two non-degree Certificate Programs in collaboration with other departments and programs.

The Graduate Certificate in Stereotypes, Prejudice, Discrimination, and Intergroup Relations is administered by the Psychology Department. Information is available via www.lehigh.edu/inpsy/gradprogram.html.


Requirements for a Ph.D. in the Department of Psychology:

Research  
All graduate students are expected to be involved in research throughout their graduate careers. There are also several formal research requirements of the program.

First-Year-Project (PSYC 412). First-year students are expected to choose an adviser and begin to work on a research project as early as possible. A written and oral report of the student's research activities is made to the department. Students entering with an approved Master's thesis are exempt from this requirement.

Master's Thesis. A master's thesis (usually empirical or data-based) is required. An oral presentation of the thesis is made to the department. Students entering with a master's thesis may instead conduct an equivalent non-degree Pre-dissertation Project.

Doctoral Dissertation. This is an original piece of scholarly work usually involving empirical research, although original theoretical or historical research is possible with faculty approval.

Course work

Core courses. All students are required to take one-semester graduate core courses in Cognitive Psychology (PSYC 403), Developmental Psychology (PSYC 402), and Social Cognition (PSYC 406).

PSYC 421 and 422. Statistical Analysis of Psychological Data. These courses represent a two-semester sequence of theoretical and applied statistics and research methodology.

PSYC 430. Graduate Seminars. Students must take at least three graduate seminars, and one additional course approved by the adviser.

PSYC 409 and 410. Professional Seminar. Bookend seminars that cover professional development issues for new and advanced students.

Teaching  
Students are encouraged to participate in teaching as appropriate for their training throughout their graduate years. Normally, students begin as teaching assistants and progress to teaching independently.

General Examination  
This is required for all doctoral candidates and must be passed at least seven months prior to the awarding of the degree. The sub areas to be covered on the exam are selected by the student in consultation with the student's general exam committee.

Evaluation  
Graduate students are evaluated on their performance in coursework, research, teaching, assistantship assignments, and the general examination. The faculty provides each student with a written evaluation of progress in the graduate program annually.

Financial Support  
Support is available in the form of teaching and research assistantships, fellowships, and scholarships.

How to Apply  
Applications for admission and financial aid may be obtained from the Department of Psychology. While a good undergraduate background in psychology is desirable, promising students with majors other than psychology are encouraged to apply. Completed application forms plus transcripts, letters of recommendation, and a report of scores on the Graduate Record Examination and advanced tests in psychology should be returned no later than February 1 of the year of admission. New students are normally accepted for entrance into the program only for the fall semester.

Graduate-Level Courses

PSYC 402. Developmental Psychology (3)  
Survey of theories and research concerning perceptual, cognitive, social, and personality development through infancy and childhood. Prerequisite: Graduate standing or consent of instructor.

PSYC 403. Cognitive Psychology (3)  
Survey of theories and research in cognitive psychology. Prerequisite: Graduate standing or consent of instructor.
PSYC 404. (BIOS 404) Behavioral Neuroscience (3)
Theoretical and empirical issues in biopsychology. Prerequisite: Graduate standing or consent of instructor.

PSYC 406. Social Cognition (3)
Theory and research on cognitive processes in personality and social functioning. The self, personality consistency, change, causal attributions, social judgment, and self-regulation. Prerequisite: PSYC 402 or consent of instructor.

PSYC 409. Professional Seminar I (1)
For students entering the Ph.D. program: Acculturation to graduate school and the Psychology Ph.D. program in particular; professional issues of relevance to individuals at the outset of a research career in psychology. Requirement: Department permission.

PSYC 410. Professional Seminar II (1)
For students nearing graduation: Professional issues of special relevance to Psychology Ph.D. students preparing for academic or nonacademic post-doctoral employment. Requirement: Department permission.

PSYC 412. First Year Research Project. (1-3)
Research project or paper to be completed by June of the first year of the Ph.D. program under the direction of a faculty advisor. May be repeated in second semester of program.

PSYC 415. History of Modern Psychology (3)
Origin and development of major theories in various areas of psychology. Review of 19th and 20th century thought to provide perspective on psychology as a discipline. Newman

PSYC 421. Statistical Analysis of Psychological Data I. (3)
First of a two-semester sequence covering essential issues in statistical analysis as practiced by psychologists. Topics include data description, probability, z and t-tests, general linear model, simple correlation/regression, univariate analysis of variance, chi-square. Emphasis on connecting research designs to appropriate statistical tests, data interpretation, and implementation in statistical packages. Department permission required.

PSYC 422. Statistical Analysis of Psychological Data II. (3)
Second course of the two-semester statistics sequence. Topics include advanced analysis of variance designs, analysis of covariance, multivariate analysis, multiple regression, and analysis of categorical data. Emphasis on connecting research designs to appropriate statistical tests, data interpretation, and implementation in statistical packages. Requirement: PSYC 421.

PSYC 423. (COGS 423) Foundations of Cognitive Science (3)
Survey of fundamental theory and methodologies from artificial intelligence, linguistics, cognitive psychology, philosophy, and neuroscience, as well as salient research problems such as knowledge acquisition and representation, natural language processing, skill acquisition, perception and action, and the philosophical question of intentionality.

PSYC 434. Seminar in Personality (3)
Selected topics in personality theory and research, including personality change, the self, personality consistency, and the relationships among thought, emotion, and behavior. Prerequisite: PSYC 406.

PSYC 443. Seminar in Language Acquisition (3)
Special topics in language acquisition. Content will vary each time the seminar is offered. Prerequisite: PSYC 402 or PSYC 403 or consent of instructor.

PSYC 446. Developmental Theories and Special Populations (3)
Traditional developmental theories focus on normative development. Children with disabilities have a unique set of experiences that pose special challenges for these theories. In the developmental literature, children with disabilities have sometimes been the focus of studies because they provide a "test case" for specific theoretical predictions. In this course, we will consider some of these theoretical issues and the insights that have been gained by focusing on special populations. Prerequisite: PSYC 402 or consent of instructor. Barrett

PSYC 448. Seminar in Psychology of Language (3)
Topics in language comprehension and production. Content will vary from year to year. Prerequisite: PSYC 403 or consent of instructor.

PSYC 450. Special Topics in Mathematical Models and Statistics (3)
Selected topics in the application of mathematics to psychological research. May be repeated for credit.

PSYC 460. Special Study (1-9)
Study of some special topic not covered in the regular course offerings. May be repeated for credit.

PSYC 461. Research Seminar (1-9)
Original research designed and executed in collaboration with the faculty. May be repeated for credit.

PSYC 462. Stereotypes, Prejudice, and Discrimination (3)
An in-depth survey of the social psychological literature on stereotypes, prejudice, and discrimination. Topics will include: Origin of stereotypes, mental representation of stereotypes, cognitive and behavioral consequences of stereotypes, inevitability of stereotyping, nature of prejudice in contemporary American society, context-specificity of discriminatory behavior, and theories of intergroup conflict reduction. Prerequisite: PSYC 406 or consent of instructor. Gill

PSYC 464. Naive Realism in Social Judgment (3)
This seminar examines the variety of unconscious influences that impact on social judgment, with a focus on the cognitive processing mechanisms through which influence is exerted. These influences include contributions to judgment from attitudes, goals, accessible constructs, mind-sets, stereotypes, expectations, heuristics, and theories about social objects. Prerequisite: PSYC 406 or consent of instructor. Moskowitz

PSYC 476. Seminar in Cognition (3)
Selected topics in human information processing, including such areas as attention, memory, language and comprehension, and decision-making. Area of emphasis will vary from year to year. Prerequisite: PSYC 403 or consent of instructor.
PSYC 478. (COGS 478) Ontological Psychology (3)
Principles and constraints for the modeling of psychological phenomena: perception, memory, knowing, emotions, consciousness, language, and rationality. Bickhard

PSYC 480. Seminar in Cognitive Development (3)
Selected topics in cognitive development in infancy and childhood, including such areas as conceptual development, memory development, the development of reasoning abilities, and language acquisition. Emphasis will vary from year to year. Prerequisite: PSYC 402 or consent of instructor.

PSYC 481. Selected Topics in Social and Personality Development (3)
Topics include emotional and sex-role development, peer relations, and social competence. Emphasis will vary from year to year. Prerequisite: PSYC 402 or consent of instructor.

PSYC 482. Seminar in Adult Development (3)
Application of lifespan developmental theory and methodology to personality, social, and cognitive development in adulthood. Prerequisite: PSYC 402 or consent of instructor. Hyland

PSYC 483. Seminar in Cultural Psychology (3)
Major theoretical approaches and empirical debates in cultural psychology, with a focus on the interplay of individual and sociocultural elements in the formation of mind, the emergence of the self, and the definition and reproduction of culture. Prerequisite: PSYC 402 or consent of instructor. Nikolopoulos

PSYC 484. Psychology of Gender (3)
Major theoretical approaches and empirical debates in the psychology of gender, with a focus on the interplay of nature and nurture in producing gender similarities, gender differences and gender variation in personality, social behaviors, cognitive abilities, achievement, sexuality, and mental health. Methodological issues in gender research. Prerequisite: graduate standing. Departmental permission required. Hyland

PSYC 490. Thesis Research (1-6).
Master’s Thesis or Pre-dissertation Project research directed by committee.

Ph.D. dissertation research directed by dissertation committee.

Quality Engineering

Program. The Master of Science degree in Quality Engineering (MSQE) is offered by the Department of Industrial and Systems Engineering (ISE). A list of the faculty and descriptions of the courses are included in the catalog description (see catalog index) of the ISE department. The program is designed to accommodate students who are employed full time. Courses are transmitted via satellite to work sites anywhere in the continental USA.

Admission. To be considered for admission to the MSQE program, applicants must have a Bachelor's of Science degree in engineering (any discipline) or in science.

University Requirements. All of the university rules that apply to the awarding of Master's degrees at Lehigh apply to the MSQE, except for the following: no thesis or report or general examination is required. The university rules that do apply to the MSQE are spelled out in the catalog, under the heading “Degree Information” (see catalog index).

Departmental Requirements. All candidates must complete thirty hours of course work—fifteen hours of core courses and fifteen hours of electives. The core courses, which all candidates take, are listed below:

- IE 328 Engineering Statistics (3)
- IE 332 Quality Control (3)
- IE 410 Design of Experiments (3)
- IE 422 Measurement and Inspection Systems (3)
- IE 442 Manufacturing Management (3)

Any offered IE or MSE course, if not a core course, is an acceptable elective, and at least nine hours of the electives must be courses, which have prefix IE or MSE. Up to six hours of the electives may be any graduate course or courses that the candidate's advisor approves. Up to nine hours of credits earned at other institutions may be used to satisfy degree requirements, if transfer of credits is approved by the registrar.

Religion Studies

Professors. Norman J. Girardot, Ph.D. (Chicago), University Distinguished Professor; Kenneth L. Kraft, Ph.D. (Princeton); Michael L. Raposa, Ph.D. (Pennsylvania) Fairchild Chair of American Studies; Laurence J. Silberman, Ph.D. (Brandeis), Philip and Muriel Berman Professor of Jewish Studies, and Director of the Philip and Muriel Berman Center for Jewish Studies; Lloyd H. Steffen, Ph.D. (Brown); Lenore E. Chava Weisler, Ph.D. (Pennsylvania), Philip and Muriel Berman Chair of Jewish Civilization; Benjamin G. Wright, III, Ph.D. (Pennsylvania) Chair.

Assistant Professor. Robert Rozehnal, Ph.D. (Duke).

The religion studies department is committed to the academic investigation of religion as an intrinsic and vital dimension of human culture. The scholarly study of religion is an integral facet of a liberal arts education. The study of religion is engaged in the critical and interpretive task of understanding patterns of religious thought and behavior as aspects of the human cultural experience. Religion studies is interdisciplinary in that it draws upon humanistic and social scientific modes of inquiry. These include historical, philosophical, sociological, anthropological, and psychological perspectives. Religion studies is a cross-cultural, comparative discipline concerned with the character and significance of the major religious traditions of the world. The student of religion confronts ethical problems and basic issues of value and meaning raised by modern multicultural and technological society.

Major in Religion Studies

The major in religion studies consists of 32 credit hours of coursework (eight courses). Requirements include:

- In consultation with a major advisor from the departmental faculty, students will devise a balanced plan of study responsive to individual needs and interests. The curriculum for each major will demonstrate exposure to a diversity of approaches to the interdisciplinary, transcultural field of religion studies.
At least four courses at the 100 level or above.

REL 374 Seminar for Majors.

The department recommends that in consultation with a major advisor, students concentrate in one of the major religious traditions, or in a comparative or thematic approach to the study of religion. The concentration should include at least four courses. Language study appropriate to the concentration is also desirable.

Students are particularly encouraged to consider a joint or double major with another major field from any of the three colleges in the university.

Departmental Honors

Religion studies majors are admitted to honors by invitation of the departmental faculty toward the end of the student's junior year. To be eligible, a student must have attained at least a 3.25 average in his or her major program by the end of the junior year. Upon admittance to honors, the student will work out a special program of studies for the senior year with the major advisor, culminating in the writing of a senior essay.

Minor in Religion Studies

The minor in religion studies consists of a total of 16 credits. The specific courses to be taken by each student are to be decided upon jointly by the student and the departmental advisor. Ordinarily, the student will be expected to take one introductory course unless specifically exempted by the department chair.

Course Offerings

REL 1. Sacred Scriptures in Religious Traditions (4)

An encounter with the different sacred books of the world's major religions. Both the books and differing attitudes in these traditions towards sacred books are examined. Books investigated include the Bhagavad Gita, the Analects of Confucius, the Qur'an and the Jewish and Christian Bibles. Wright (HU)

REL 2. Death in Religious Traditions (4)

Introduces students to the study of religion through an exploration of what different religious traditions have to say about the great mystery that we all face, death. Because we all must die, all religions must deal with the challenge and sense of crisis provoked by the deaths of those close to us, of innocent victims of disaster, disease, and crime, and our own imminent deaths. Death thus provides an excellent point of comparison among the various religious traditions. Weissler (HU)

REL 3. (GCP 3, PHIL 3) Global Religion, Global Ethics (4)

Introduction to philosophical and religious modes of moral thinking, with attention given to ethical issues as they arise cross-culturally in and through religious traditions. The course will reference the United Nations Millennium Goals to consider family life and the role of women, social justice, the environment, and ethical ideals. Particular focus varies but may include one or more of the following: abortion and reproductive health, the death penalty, religiously motivated violence, and problems of personal disorder (heavy drinking, anorexia, vengeance). A Global Citizenship course. Steffen (HU)

REL 4. How to Study Religion (4)

How do sociologists, psychologists and philosophers answer such questions as: Why and how do religions arise? Why and how do people develop beliefs in God? Where do religious scriptures come from? Why do people ascribe authority to religious traditions? Why has religious faith declined in modern society? Silberstein (HU)

REL 5. Spiritual Exercises in Religious Traditions (4)

Explores a variety of religious disciplines developed in various traditions, ranging from the practice of yoga and the martial arts to various forms of prayer, meditation, and asceticism. Raposa (HU)

REL 6. Religion and the Ecological Crisis (4)

Past and present responses to nature in world religions. Contemporary topics include the animal rights debate, ecofeminism, and the development of environmental ethics. Is “the end of nature” at hand? Why is the environment a religious issue? Kraft (HU)

REL 7. Jesus, Buddha, Mao, and Elvis (4)

Comparative and cross-cultural exploration of the nature and meaning of “religious founders” in the history of religions. Girardot (HU)

REL 8. (WS 8) Prehistoric Religion, Art, and Technology (4)

Origins and early development of religions, with focus on interactions of religion, art, and technology in the Paleolithic and Neolithic periods. Special attention to the emergence of patriarchal social forms and the figure of the goddess. Interdisciplinary methods with a consideration of feminist theories of cultural development. Girardot (HU)

REL 9. Spiritual Journeys (4)

A comparative survey of spiritual traveling—from overland pilgrimages to inward journeys in search of truth. Through autobiographies, diaries, poetry and films, students encounter the experiences of seekers from diverse religious traditions, including Hinduism, Buddhism, Christianity and Islam. Rozehnal (HU)

REL 22. (ART 22) Visions of God: 2000 Years of Christian History and Art (4)

An Interdisciplinary course that combines art history and the history of Christianity. From the beginnings of their tradition, Christians have represented their theologies and religious sentiments in visual arts and architecture, and for the same two millennia, a myriad of Christians have learned their Christianity through visual representations. Provides a one-semester survey of the history of Christianity as expressed in the visual arts. Wright/Priester (HU)

REL 42. (ART 42) Representing the Sacred: Art and Religious Experience in Italy [Lehigh in Rome and Florence Program, alternate years] (6)

This course explores the interaction between artistic expression and religious experience from the earliest traces of Christian art in the catacombs to the sensual and theatrical churches in the Baroque. All classes are conducted on site; in museums, churches and in the streets of Rome, Florence, and Assisi. Wright/Priester (HU)

REL 60. (ASIA 60) Religions of South Asia (4)

A thematic introduction to the foundational religious traditions of South Asia: Hinduism, Jainism, Buddhism, Sikhism and Islam. Students explore the social and spiritual dimensions of these religious worlds through
scripture, ritual practices, narrative and teaching traditions, music and art. Rozehnal (HU)

REL 64. (ASIA 64) Religions of China (4)
History and meaning of the major forms of Chinese religion—especially Confucianism and Neo-Confucianism, Taoist mysticism, Buddhism (Ch'an/Zen), and popular religion. Girardot (HU)

REL 65. (ASIA 65) Religions of Japan (4)
A survey of Japan's diverse religious heritage and its impact on contemporary culture. Japanese approaches to the self, the world, and the sacred are considered in comparative perspective. Topics covered include: Shinto, Buddhism, Zen, Confucianism, the way of the warrior, folklore, and postwar movements. Kraft (H/U)

REL 67. (ASIA 67) Japanese Civilization (4)
The history and culture of Japan from its origins to the present. Special consideration will be given to the rise and fall of the warrior class, developments in art and religion, the dynamics of family life, and Japan's "economic miracle." Kraft (H/S)

REL 68. Practical Justice: From Social Systems to Responsible Community (4)
Examination of the role of moral and religious values in social systems, including education, the economic system, criminal justice, with particular attention to the problems of poverty, literacy, homelessness and domestic violence. Students engage in volunteer efforts to gain practical experience with those who deliver and receive services in these systems. An action-reflection model (with reference to liberation theology and religious thinkers like M.L. King, Dorothy Day, and Walter Rauschenbusch) is employed to urge reflection on how social systems can be affected and transformed by visions of justice, ethics, religion and social responsibility. Steffen (HU)

REL 73. The Jewish Tradition (4)
Judaism is both a textual tradition and a lived religion. Students read basic Jewish texts—Bible, Talmud, Midrash—and study the ways Jews sanctify the life cycle through rites of passage, and the round of the year through the festival cycle. Silberstein, Weissler (HU)

REL 75. The Christian Tradition (4)
Introduction to the Christian tradition from its early variety and subsequent classical definition in the church councils up to the enlightenment. Special emphasis will be placed on the multiformal interpretations of the Christian message. (HU)

REL 76. Reading the Bible in the Contemporary World (4)
Reading passages from the Bible with an eye toward distinguishing and understanding different sorts of questions that can be asked of them and various perspectives that can be adopted when reading them. What are these stories about? What do they mean, when, and to whom? Wright (HU)

REL 77. (ASIA 77) The Islamic Tradition (4)
A thematic introduction to Islamic history, doctrine and practice. Topics include: Qur'an; prophecy and sacred history; ritual practices; community life; legal interpretation; art and aesthetics; mysticism; politics and polemics. Rozehnal (HU)

REL 111. Jewish Scriptures/Old Testament (4)
The religious expression of the Hebrews, Israelites, and Jews as found in the Jewish Scriptures (TANAK/Christian Old Testament). Near Eastern context of Hebrew religion, the Patriarchs, the Exodus, the monarchy, prophecy, Exile and Return. Emphasis on historico-literary, critical problems, and newer socio-historical methods. Wright (HU)

REL 112. The Beginnings of Judaism and Jewish Origins: Jewish Diversity in the Greco-Roman World (4)
The variety of approaches to Judaism in the period following the Babylonian exile through the second century C.E. The literature studied will include Apocrypha, Pseudepigrapha, and the Dead Sea Scrolls. Wright (HU)

Concerns the development of Christianity from its beginnings until the end of the second century. Includes the Jewish and Hellenistic matrices of Christianity, traditions about the life of Jesus and his significance, and the variety of belief and practice of early Christians. Emphasis on encountering primary texts. Wright (HU)

REL 116. (PHIL 116) Bioethics (4)
Moral issues that arise in the context of health care and related biomedical fields in the United States today, examined in the light of the nature and foundation of moral rights and obligations. Topics include: confidentiality, informed consent, euthanasia, medical research and experimentation, genetics, the distribution of health care, etc. (HU)

REL 121. Sources for the Life of Jesus: the Jewish and Christian Context (4)
Ancient sources that claim to provide information about Jesus of Nazareth. Approaches taken to Jesus' life and career; early Christian interpretations of the significance of Jesus; methodology in assessing evidence for the historical Jesus and his message. Wright (HU)

REL 124. (PHIL 124) Reason and Religious Experience (4)
A critical look, from a philosophical perspective, at some fundamental problems of religion: The nature of religious experience and belief, reason and revelation, the existence and nature of God, the problem of evil, and religious truth. Raposa (HU)

REL 125. Heresy and Orthodoxy: Varieties of Christianity in the First Three Centuries (4)
Examines the development of Christianity until the end of the third century. Compare the views of different groups about the significance of Jesus. Who were the proto-orthodox? Jewish Christians? Gnostics? What did they think? Why were some branded heretics by others? Wright (HU)

REL 126. (HUM 126, PHIL 126) Professional Ethics (4)
An examination of the moral rules and action guides that govern various professions. Professions to be examined will include health (physician and nursing); legal; counseling and psychiatry; engineering; military; clergy; teaching. Attention will be given to modes of ethical reasoning and how those modes are practically applied in professional life and activity. Among issues to be discussed will be the limits of confidentiality; employer authority; power relationships; obligations to the public; professional rights; sexual boundaries; whistle-blowing; safety and risk; computer ethics; weapons development;
discrimination; professional review of ethical infractions. Course will include guest lectures and case studies. Steffen (HU)

REL 129. (PHIL 129) Jewish Philosophy (4) How major Jewish thinkers from the first to the 20th centuries confronted questions at the intersection of religion and philosophy: the existence and nature of God, free will, evil, divine providence, miracles, creation, revelation, and religious obligation. (HU)

REL 132. Hasidic Tales (4) Examines the mysterious and beautiful tales told by Hasidim, participants in the movement of spiritual revival which arose within 18th century Judaism. Compares Hasidic tales to European fairy tales, and shows how later writers transformed Hasidic narratives to express their own religious or literary meanings. Weissler (HU)

REL 133. Alternative Religions in the 21st Century (4) An exploration of alternative religious beliefs and practices in the 21st century. Topics include the new pluralism, adaptations of Asian traditions, goddess religion, and spiritual environmentalism. What distinguishes a religion from a cult? What goes awry when violence is perpetrated in the name of religion? Kraft (HU)

REL 137. (HUM 137, PHIL 137) Ethics in Practice (1-4) A variable content course focusing on ethical issues arising in a particular profession, such as law, health, business, engineering, military. Variable credit. May be taken more than once. Steffen (HU)

REL 138. (WS 138) Women in Jewish History (4) Contributions of, and limitations on, women at different stages of Jewish history, using both primary sources and secondary material. Experience of modern Jewish women, and the contemporary feminist critique of traditional gender roles. Weissler (HU)

REL 139. (ANTH 139) Jewish Folklore (4) Examines the transformation of folk and popular Judaism from the Old World, through the period of immigration to America, to ethnic and later forms of American Jewish culture. Attention paid to concept of folklore revivals and their meanings. Four case studies: folk tales and storytelling, klezmer music, life-cycle rituals, and food. Weissler (SS)

REL 144. (ART 144) Raw Vision: Creativity and Ecstasy in the Work of Shamans, Mystics, and Artist Outsiders (4) Comparative exploration of the nature and meaning of religious and artistic experience as reflected in shamanism (both prehistoric and tribal), mystic traditions (especially Taoism and Christianity), and contemporary self-taught artistic visionaries (e.g., Jean Dubuffet, Howard Finster, Mr. Imagination, Lonnie Holley, Norbert Kox). Various disciplinary perspectives will be employed including comparative religions, anthropology, art history, and psychology. Girardot (HU)

REL 145. (ASIA 145, GCP 145) Islam in the Modern World (4) Examines how numerous Muslim thinkers-religious scholars, modernists, and Islamists-have responded to the changes and challenges of the colonial and post-colonial eras. Special emphasis is placed on the public debates over Islamic authority and authenticity in contemporary South Asia. Rozehnal (HU)

REL 146. (ASIA 146) Islam in South Asia (4) A survey of the dynamic encounter between Islamic and Indic civilizations. Topics include: Islamic identity, piety and practice; art and aesthetic traditions; inter-communal exchange and conflict; the colonial legacy; and the politics of contemporary religious nationalism. Rozehnal (HU)

REL 148. (GCP 148) Islam Across Cultures (4) Explores the Muslim world’s diversity and dynamism in multiple cultural contexts—from the Middle East and North Africa, to Asia and America—through literature, ethnography, and films. Topics include: travel and trade networks; education; women and gender; Islam and cultural pluralism; colonialism; and identity politics. Rozehnal (HU)

REL 150. Judaism in the Modern World (4) Fundamental themes in the experience of modern Jews: confrontation with secular culture; crisis of religious faith; Zionism and the renewal of Jewish nationalism; the problem of Jewish identity in America; and the impact of the Holocaust. Silberstein, Weissler (HU)

REL 152. American Judaism (4) Diverse cultural and social forms through which American Jews express their distinct identity. Is American Jewry an example of assimilation and decline or creative transformation? What, if anything, do American Jews share in common? Compatibility of Judaism with individualism, pluralism, and voluntarism. How have the Holocaust and the State of Israel shaped the self-understanding of American Jews? Silberstein (HU)

REL 153. The Spiritual Quest in Contemporary Jewish Life (4) What factors explain the current growth of spirituality in American Jewish life? How does spirituality differ from conventional religion? What is the impact of Jewish spirituality on contemporary Jewish worship? How does the growth of Jewish spirituality relate to the broader issues of Jewish identity? What accounts for the growing interest in Buddhism among Jews? What is the impact of feminism on Jewish spirituality? How does the growth of spirituality among Jews relate to the growth of spirituality in general American culture? Silberstein (HU)

REL 154. (HIST 154) The Holocaust: History and Meaning (4) The Nazi Holocaust in its historical, political and religious setting. Emphasis upon moral, cultural and theological issues raised by the Holocaust. (HU)

REL 155. Responses to the Holocaust (4) A multi-media study of the ways in which writers, artists, film makers, cartoonists, composers, and comics have responded to the horrors of the Holocaust. Among the questions to be considered are: How is it possible to describe and represent the Holocaust in writing? In art? In film? What distinguishes the ways in which this is done by different generations? How is the memory of these events being effectively preserved and transmitted through monuments and museums? What role does the memory of the Holocaust play in the life of contemporary Jews? Silberstein (HU)
REL 156. Israel, Zionism, and the Renewal of Judaism (4)
New interpretations of Judaism, the Jewish community and Jewish history developed by Zionist thinkers. Diverse currents within Jewish nationalist thought and critical responses to Zionist ideology. Silberstein (HU)

REL 157. (HIST 157) Europe in the Age of the Reformation (4)
The breakup of the religious culture of medieval Christian Europe in the reformation movements of the sixteenth century. The origins and varieties of Protestantism; the intersection of religious ideas and politics in Germany, Switzerland, Britain, France, and the Netherlands; the “wars of religion” and the emergence of the European state system. Baylor (HU)

REL 158. (WS 158) Sex and Gender in Judaism (4)
Writings by Jewish feminists reflecting the encounter between Judaism and feminism: prayer and ritual, women rabbis, God, and God language, communal power, the marriage and divorce. Silberstein (HU)

REL 159. Roman Catholicism in the Modern World (4)
A survey of the various intellectual, cultural, political and ecclesiastical developments that have shaped contemporary Roman Catholic life and thought. Raposa (HU)

REL 160. (ASIA 160) The Taoist Tradition (4)
Consideration of the religious and cultural significance of Taoism in its various historical forms. Primary attention will be given to a close reading of some of the most important texts of the early philosophical tradition (e.g. Tao Te Ching, Chuang Tzu) and of the later religious tradition (e.g. Pao P'u Tzu and other selections from the Tao Tsang). Contemporary implications of Taoist thought will also be considered (e.g. “The Tao of Physics”, “a Taoist on Wall Street”, and “the Tao of Japanese Management”). Girardot (HU)

REL 162. (ASIA 162) Zen Buddhism (4)

REL 164. (ASIA 164, IR 164) Japan’s Response to the West (4)
A survey of Japanese history and culture from 1500 to the present, following the theme of Japan’s contact with the West. What enabled Japan to modernize and Westernize so successfully? Topics covered include: the expulsion of Christianity, the first samurai mission to the U.S., the postwar American occupation, and contemporary issues. Readings include Japanese novels and short stories (in translation). Kraft (H/S)

REL 165. Jews, Christians, and Buddhism: The Turn to the East in American Culture (4)
In recent decades, a growing number of Americans raised as Jews and Christians have embraced the teachings and practices of Buddhism. Through a study of contemporary Buddhist writings, personal accounts, and other readings, we shall examine what Jews and Christians find attractive in Buddhism. We shall also explore the areas of conflict between Buddhism and Western religions as well as cultural conditions that are contributing to Buddhism’s growing appeal. Silberstein (HU)

REL 167. (ASIA 167) Engaged Buddhism (4)
Examines a contemporary international movement that applies Buddhist teachings and practices to social, political, and environmental issues. Topics include: important thinkers, forms of engagement, and areas of controversy. Kraft (HU)

REL 168. (ASIA 168) Buddhism in the Modern World (4)
Explores contemporary Buddhism in Asia, America, and Europe. Topics include the plight of Tibet, Buddhist environmentalism, and the emergence of a socially engaged Buddhism. How are Westerners adapting this ancient tradition to address present-day concerns? Kraft (HU)

REL 169. (ASIA 169) Classics of Asian Religion (4)
Sacred scriptures of Asia and an introduction to the religions they represent. What do these texts teach about reality, humanity, divinity, and society? How is the path of spiritual practice presented in the different traditions? Prerequisite: one prior course in Religion or Asian studies. Kraft, Girardot (HU)

REL 171. (SSP 171) Religion and Society (4)
An introduction to the sociology of religion. Covers classical and contemporary approaches to defining and studying the role of religion in society. Emphasis on understanding religious beliefs and practices in the United States, the sources and contours of religious change, and the effects of religion on individuals and society. Specific topics include religious fundamentalism, religious conversion, religious practices and authority, secularization, religion in public life, religion in social change, religious terrorism, and the ways in which religion impacts our personal health, educational attainment, and family life. Munson (SS)

REL 174. Contemporary Theology (4)
Major 20th century movements within Christian and Jewish theology understood as responses to the problems of modern times. May be repeated for credit as the subject matter varies. Raposa (HU)

REL 180. (HIST 180) Religion and the American Experience (4)
The historic development of major American religious groups from colonial times to the present; their place in social and political life, and the impact of the national experience upon them. Raposa (HU)

REL 184. (WS 184) Religion, Gender, and Power (4)
Gender differences as one of the basic legitimations for the unequal distribution of power in Western society. Feminist critiques of the basic social structures, cultural forms, and hierarchies of power within religious communities, and the ways in which religious groups have responded. Silberstein (HU)

REL 186. Judaism in Israel and the United States (4)
Explores the differences/similarities in the ideologies, myths and symbols which shape the views of Jews in Israel and the United States on such issues as: the meaning of Judaism, the interpretation of Jewish history, the relationship of religion and peoplehood, and the relationship of democracy and Jewish values. Readings include Amos Oz, A.B. Yehoshua, Haim Hazaz, Leonard Fein, Mordecai Kaplan, Silberstein (HU)
Impact of the scientific and technological culture on the Western religious imagination. Roots of science and technology in religious ideas and images. Ways of knowing and concepts of experience in religion and science. Raposa (HU)

REL. 188. Religion and Literature (4)
Religious themes in the modern novel or the spiritual autobiography. Melville, Tolstoy, Camus, Updike, Walker, and Morrison; or Woolman, Tolstoy, Malcolm X, Wiesel, Frederick Douglass, Sojourner Truth, Kukai. Steffen (HU)

REL. 189. Religion and the Visual Arts (4)
To what extent does the process and production of artistic images relate to visionary experience in the history of world religions, and expose a religious dimension in life? In what sense is an artistic vocation similar to the religious vocation of a shaman, prophet, or saint? In what way do artists and religious figures respond to, change, and create the “real” world? Girardot (HU)

REL. 213. (CLSS 213, HIST 213) Ancient Roman Religion (4)

REL. 221. (ASIA 221) Topics in Asian Religions (4)
Selected thematic and comparative issues in different Asian religious traditions. May include Buddhism and Christianity, religion and martial arts, Asian religions in America, Taoist meditation, Zen and Japanese business, Buddhist ethics. May be repeated for credit. Girardot, Kraft, Rozehнал (HU)

REL. 222. Topics in Western Religions (4)
Selected historical, thematic, and comparative issues in Judaism, Christianity, and Islam. May be repeated for credit as the subject matter varies. (HU)

REL. 224. (PHIL 224) Topics in the Philosophy of Religion (4)
Selected problems and issues in the philosophy of religion. May be repeated for credit as the subject matter varies. Raposa (HU)

REL. 225. Topics in Religion and Ethics (4)
Analysis of various moral problems and social value questions. Possible topics include: environmental and non-human animal ethics; medical ethics; drug and alcohol abuse; spiritual meaning of anorexia. (HU)

REL. 228. Theories of Religion (4)
What is religion? Does it have a universal, cross-cultural and trans-paradigmatic essence? Drawing on numerous academic disciplines, the course engages the major issues and most influential authors in the academic study of comparative religions. Rozehnal (HU)

REL. 230. Kabbalah: The Jewish Mystical Tradition (4)
Explores the history of the quest to know God, through mystical experience or theosophical speculation, as found in Jewish tradition. Examines such issues as the tensions between institutional religion and personal religious experience, between views of God as immanent in the world or transcending it, and between imagery for God and religious experience of God. Weissler (HU)

REL. 231. Classic Jewish Texts (4)
While many people know that the Hebrew Bible ("Old Testament") is a foundational scripture for Judaism, fewer are familiar with the post-biblical Jewish classics. Yet these works shaped the understanding of God, the identity of the Jewish people, and the vision of history and of the ethical life that inform Judaism as we know it today. As students read the Talmud, Midrash, and traditional prayer-book, they will become familiar with the wisdom of the rabbinic sages, and the central concepts of Jewish tradition. Weissler (HU)

REL. 247. (ASIA 247) Islamic Mysticism (4)
Sufism, the inner or ‘mystical’ dimension of Islam, has deep historical roots and diverse expressions throughout the Muslim world. Students examine Sufi doctrine and ritual, the master-disciple relationship, and the tradition’s impact on art and music, poetry and prose. Rozehnal (HU)

REL. 251. (CLSS 251) Classical Mythology (3)
Myth, religion and ritual in ancient Greece and Rome. Emphasis on primary sources; introduction to ancient and modern theories of myth. Cross-cultural material. (SS)

REL. 254. (ASIA 254) Buddhism and Ecology (4)
Buddhism’s intellectual, ethical, and spiritual resources are reexamined in light of contemporary environmental problems. Is Buddhism the most green of the major world religions? What are the moral implications of actions that affect the environment? Prerequisite: One prior course in religion, environmental studies, or Asian studies. Kraft (HU)

REL. 335. (ANTH 335) Religion, Witchcraft and Magic (4)
Addresses broad questions about the roles that religion, magic, and witchcraft play in human life, as philosophical systems of meaning, as useful tools for understanding, and as practical and moral guides for human action. Special focus on the role of witchcraft and magic in the modern world, especially in the lives of disempowered people. Vann (SS)

REL. 347. (PHIL 347) American Religious Thinkers (4)
An examination of the writings of key figures in the history of American religious thought (such as Edwards, Emerson, Bushnell, Peirce, James, Royce, Dewey and the Niebuhrs). Attention will be directed both to the historical reception of these writings and to their contemporary significance. Raposa (HU)

REL. 361. Fieldwork (1-4)
Opportunity for students to work, or observe under supervision, religious organizations or institutions. Consent of chair required. (ND)

REL. 371. Directed Readings (1-4)
Intensive study in areas appropriate to the interests and needs of students and staff. (ND)

REL. 373. (HUM 373, PHIL 373) Independent Ethics Project (4)
Supervised ethics research into a topic approved by the advisor for the Humanities Minor in Ethics. An option
for completing the ethics minor. For ethics minors only. (HU)

**REL 374. Seminar for Majors (4)**
A capstone seminar for departmental majors. Considers the methodologies of religious studies and assesses current issues in the field. Offers opportunities for in-depth work on a particular tradition under the guidance of a faculty member. Offered in spring semester. May be repeated for credit. (HU)

**REL 375. (SSP 375) The Christian Right in America (4)**
What do we know about the Christian Right? Who are they? What do they believe? Where do they come from? Seminar explores answers to such questions through a focus on the history of the Christian Right as well as its ideologies and beliefs, the people who are a part of it, and its evolving relationship to the American political system. Topics include some of the most divisive social issues of our time: abortion, homosexuality, capital punishment, pornography, taxes, education, and the separation of church and state. Prerequisite: One 100-level SSP course. Munson (SS)

**REL 391. Senior Thesis in Religion (4)**

**Russian Studies**

See listing under Modern Languages and Literature.

**Russian Studies**

Mary A. Nicholas, Ph.D. (Pennsylvania) program director.

Professors: Arthur E. King, Ph.D. (Ohio State); Rajan Menon, Ph.D. (Illinois), Monroe J. Rathbone professor of international relations.

**Russian Studies Major**

The major in Russian studies is an interdisciplinary program designed to provide students with a broad exposure to the Russian language and to Russian culture. Courses in language, literature, history, politics, foreign policy, and economics, as well as the possibility of study in the republics of the former Soviet Union, are part of the curriculum for this major. The required and elective courses fit in well with a traditional liberal arts education. At the same time, the emphasis on area studies provides students with a focus for their intellectual efforts and a specialization that can be pursued, in graduate school or in a variety of public and private sector careers, after graduation.

The major in Russian studies requires 36 credit hours, distributed as follows:

**A. Required Courses**

**I. Language and Literature:** two years of college Russian, course selection based on placement: 16 credit hours.

**II. Russian History**

HIST 347 Russia to 1855 (4) or HIST 348 Russia since 1855 (4)

**III. Russian Politics and Foreign Policy**
POLS 261 Soviet and Post-Soviet Politics (4) or IR 169 International Relations of Russia and Eastern Europe (4)

**B. Elective Courses**

The student will select at least three courses from the following list:

IR 167 Diplomacy of Russia to 1917 (4)
IR 169 International Relations of Russia and Eastern Europe (4)
ECO 209 Comparative Economic Systems (3)

Any other Russian language and literature courses. Other courses approved by the director of the program (e.g., relevant courses offered through LVAIC or at other institutions). Field Study in the former Soviet Union (e.g., faculty-led study trips offered under special topics or approved study abroad programs). Any substitutes for required or elective courses must be approved by the director of the Russian studies program.

**Russian Studies Minor**

The minor in Russian studies is an interdisciplinary program designed to provide a broad range of study of the former Soviet Union. It can be considered the beginning of a specialization in the area that can be continued in graduate school, or a useful area of concentration for certain careers after graduation (e.g., foreign service, governmental employment, business, foreign trade, etc.). The program may also be of general interest to non-specialist students who wish to do focused work on the culture and society of the former USSR.

The minor in Russian studies requires 18 to 20 credit hours of formal course work, chosen in consultation with the program director, Mary Nicholas, Department of Modern Languages and Literature.

Two semesters of college-level Russian based on the student’s level of competence;

Any three of the following:

Any one course in Russian literature or literature in translation (4)
POLS 261 Soviet and Post-Soviet Politics (4)
HIST 347 Russia to 1855 (4)
HIST 348 Russia since 1855 (4)
IR 169 International Relations of Russia and Eastern Europe (4)
ECO 209 Comparative Economic Systems (3)

Special topics courses in other areas such as psychology or sociology and anthropology with permission.

Field Study in the former Soviet Union for academic credit under special topics (4)

Other courses approved by the director of Russian studies.

**School Psychology**

See listings under Education.

**Science, Environmental and Technical Writing**

See listings under Journalism and Communication.
Science, Technology and Society

Stephen H. Cutcliffe, Ph.D. (Lehigh), program director.
Steven Louis Goldman, Ph.D. (Boston), Andrew W. Mellon Professor in the Humanities.

The Science, Technology and Society (STS) program is the product of a continuing cross-college effort to create a common ground from which to explore the relations between science, technology and society: between ideas, machines and values. The STS program serves as a focal point for a wide range of courses that study the natures of science and of technology, and analyze their social and personal implications. It lends coherence and visibility to offerings otherwise dispersed throughout the catalog.

STS Studies Major

The major in science, technology and society studies prepares students for graduate study or for a wide variety of career opportunities including policy analysis, planning, or community relations with public or private sector agencies concerned with the social relations of scientific research and technological innovation. The intrinsically cross-disciplinary character of science-technology-society interactions is reflected in the B.A. requirements. Majors must complete a minimum of 30 credit hours in STS courses, listed below, together with at least 15 credit hours in any traditional academic discipline: engineering, physical or life science, the humanities, or the social sciences. This collateral set of courses should be chosen in consultation with the program director to provide the foundation needed to engage STS studies issues in which that discipline is implicated. The senior seminar provides an opportunity for students to integrate the knowledge they have gained and the skills they have acquired in their coursework. Opportunities for student research are available, especially through STS 181: Independent Study and STS 391: Honors Thesis.

STS studies is a social science major in the College of Arts and Science, and majors must fulfill the college’s B.A. distribution requirements. A detailed description of the STS studies major requirements follows.

Detailed Description of STS Major Requirements

A. Required STS Courses (minimum of 30 hours)

CORE Courses (20 credits)

- STS 11: Technology and Human Values (4)
- HIST 7: Technology in America’s Industrial Age (4)
- HIST 8: Technology in Modern America (4)
- STS/JOUR 124 Politics of Science (4)
- POLS 115: Technology as Politics (4)
- PHIL 128: Philosophy of Science (4)
- PHIL 228: Topics in Philosophy of Science (4)
- STS 381: Senior Seminar (4)

Electives

Three additional advanced courses (at least two of which must be at the 100 level or higher) from the list of approved STS Studies courses (10-12 credits)

B. Concentration in a complementary discipline (minimum of 15 hours to be chosen in conjunction with STS studies advisor); or approved departmental or interdisciplinary program minor; or double major.

C. Science and Mathematics Requirement. Students must fulfill the college’s regular B.A. distribution requirements of at least eight credits in the natural sciences; and at least three credits in mathematical sciences. At least one of the courses in the natural sciences must also include the associated laboratory course. These courses should be chosen in consultation with the advisor.

Honors in STS

In order to receive Honors in STS, the student must attain a 3.5 grade-point average in courses presented for the major and a 3.2 grade-point average over all, and must complete the 4-credit Honors Thesis sequence (STS 391 and 392) beyond the required minimum of 30 Core credits required of all STS majors.

STS Studies Minor

The program also offers a minor in science, technology & society studies which is open to all undergraduates. Students electing the minor must take a set of courses totaling a minimum of 15 hours that includes STS 11: Technology and Human Values and electives chosen from the list of all courses eligible for STS studies which follows below. Students should consult with the program director when selecting courses for either the major or the minor.

Science, Technology and Society Courses

STS 11. Technology and Human Values (4)

Impact of technology on society in relation to ethical problems raised by the exploitation of technological innovations. Illustrations from history, social studies, philosophy, literature, and film. Cutcliffe (SS)

STS 112. Engineering and Society (4)

An examination of the social, political, commercial, and cultural factors that determine the problems engineers are asked to solve as well as the terms of acceptable solutions to those problems. This is a discussion-based course using a mix of books, articles, and videos. Goldman (SS)

STS 117. (HIST 117/WS117) Women, Science and Technology (4)

Explores the impact of technology and science on women’s social roles and the contribution of women engineers and scientists to their disciplines. Will focus on the American experience. Among the topics discussed are invention, design, laboratory research, education, engineering, professionalism, labor force participation, office mechanization, household appliances, virtual spaces, childcare and reproduction. Cooper (SS)

STS 124. (JOUR 124) Politics of Science (4)

Analysis of the multi-dimensional interaction between the federal government and the scientific community. Explores historical growth of the science-government connection, the scientific establishment both past and present, and the role of scientific advice to the White House and Congress. Also examines scientific ethics, public attitudes toward science, science-society interactions, and case studies of scientific controversies. S. Friedman (SS)

STS 141. (ASIA 141) Science and Technology Studies in East Asia (4)

The development of science and technology in East Asia with emphasis on Japan and China. Cultural and religious influences, both internal and external, and
interactions with the West, as illustrated by the development of bronze technology, ceramics, and architecture. Factors in Western and Japanese society that have contributed to the rapid growth of Japanese technology as well as limits to future growth of technology in East Asia. (SS)

STS 145. (HIST 145) Introduction to the History of Science (4)
The history of modern science, primarily physical and biological, with emphasis on the development of major theoretical models since the seventeenth century. Goldman (SS)

STS 181. Independent Study (1-4) fall-spring
Prerequisite: consent of the program director. (HU or SS)

STS 221. (MAT 221/ANTH 221) Materials in the Development of Man (3)
Development of materials technology and engineering from the Stone Age to Atomic Age as an example of the interaction between technology and society. In-class demonstration laboratories on composition and structure of materials. Term projects using archaeological materials and alloys. Course intended for, but not limited to, students in the humanities and secondary science education. Engineering students may not use this course for engineering science or technical elective credit. Small (SS)

STS 252. (CSC 252) Computers, the Internet, and Society (3)
An interactive exploration of the current and future role of computers, the Internet, and related technologies in changing the standard of living, work environments, society and its ethical values. Privacy, security, deperson-alization, responsibility, and professional ethics; the role of computer and Internet technologies in changing education, business modalities, collaboration mechanisms, and everyday life. Nagel (SS)

STS 323. (JOUR 323) Controversies (4)
Exploration of science, health, and environmental controversies from the dual perspectives of scientific uncertainty and mass media coverage. Examines genetic engineering and biotechnology, environmental health risks, and human behavior research. Includes discussion of ethical and social responsibilities and interactions of scientists, journalists, and the public. S. Friedman (SS)

STS 341. Issues in American Competitiveness: At Home and Abroad (4)
Issues affecting American commercial competitiveness focusing on topics associated with the recent emergence of a new commercial environment in all First World societies. Team taught in a highly interactive setting with industry, public sector, and government experts, in addition to academics from various disciplines and institutions. Students read topical articles and books, participate in team projects and debates, and conduct team research on competitiveness issues they have chosen for a term report. Goldman, Nagel (SS)

STS 381. Senior Seminar (4)
In-depth study of selected topics in science, technology, and society with special attention to methodological issues. Subject matter may vary from semester to semester. Intended for STS majors and minors, but open to others. Prerequisite: STS 11 or consent of program director. Cutcliffe (SS)

STS 382. Senior Project (4)
Continuation of STS 381. Students conduct and present independent research projects on STS topics of special interest. Prerequisite: STS 381. Cutcliffe (SS)

STS 391 Honors Thesis (1) Fall

STS 392 Honors Thesis (3) Spring
Directed undergraduate research thesis required of students who apply and qualify for graduation with program honors. Prerequisite: STS 391, or concurrent with STS 392. (ND)

Graduate Courses in STS
(Open to undergraduates by petition only.)

STS 481. Readings in Science, Technology and Society (3)
Readings seminar on selected themes and topics in science, technology, and society. May be repeated for credit with permission of the program director.

Other STS courses.
The following courses, appropriate to STS studies, are offered by various departments. Course descriptions may be found under the catalog entry for the individual department. New courses are frequently added to this list and announced in bulletins published by the STS program. For further information, please contact the program director.

ANTH 221 Materials and the Development of Man—Small
ARCH 107 History of American Architecture—Thomas
ARCH 210 20th-Century Architecture—Zaknic
ARCH/HIST 361 Evolution of High-rise Building Construction—Peters
ARCH/HIST 363 Evolution of Long-Span Bridge Building—Peters
ARCH/HIST 365 Evolution of the Modern Building Process—Peters
ASIA 141 Science and Technology Studies in East Asia—Staff
CHM 5 Chemistry and National Issues—Schray
CSC 252 Computers, the Internet, and Society—Nagel
DES 66 Design History—Snyder & Priester
ECO 311 Environmental Economics—Munley
ECO 314 Energy Economics
EES 2 Intro to Environmental Science—Sahagian
EES 4 Science of Environmental Issues—Kodama
ES 1 Intro to Environmental Studies—Gillroy
ES 102 Environmental Values and Ethics—Holland
ES/POLS 105 Environmental Policy and Planning—Holland
ES 331 U.S. Environmental Law: Pollution and Risk Abatement
ES 336 Environmental Justice and the Law
ES 338 Environmental Risk: Perception and Communication—Briggs
HIST 7 Technology in America's Industrial Age—Smith
HIST 8 Technology in Modern America—Smith
HIST 107 Technology and World History—Smith
HIST 111 Engineering in the Modern World—Smith
HIST 117 Women, Science and Technology—Cooper
HIST 145 Introduction to the History of Science—Goldman
IR 34 Society, Technology, & War Since the Renaissance—Kaufmann
IR/ES 333 International Environmental Law and Policy—Gillroy
IR/ES 343 Comparative Environmental Law and Policy—Gillroy
IR 344 International Politics of Oil—Barkey
JOUR 124 Politics of Science—Friedman
JOUR/ES 125 Environment, Public and Mass Media—Friedman
JOUR 323 Controversies—Friedman
MAT 221 Materials in the Development of Man—Small
PHI/REL 116 Bioethics—Staff
PHIL 128 Philosophy of Science—Levine
PHIL 228 Topics in the Philosophy of Science—Goldman
PHIL 250 The Minds of Robots and Other People—Staff
POLS/ES 107 The Politics of the Environment—Wurth
POLS 115 Technology as Politics—Wurth
POLS 328 U.S. Politics and the Environment—Wurth
POLS 375 Green Policy—Wurth
REL 6 Religion and the Ecological Crisis—Kraft
REL 8 Prehistoric Religion, Art, and Technology—Girardot
REL 187 Science, Technology, & the Religious Imagination—Raposa
SPP 160 Medicine and Society—Lasker
SPP 302 The Sociology of Cyberspace—Rosenwein
SPP/JOUR 327 Mass Communication and Society—Rosenwein
SPP 367 Sociology of Science—Rosenwein
THTR/ARCH 161 Theater Design and Engineering—Milet
WS 117 Women, Science and Technology—Cooper

Social Psychology
See listings under Sociology and Anthropology.

Sociology and Anthropology

Professors. James R. McIntosh, Ph.D. (Syracuse), chairperson; Raymond Bell, Ed.D. (Lehigh) emeritus; Barbara B. Frankel, Ph.D. (Princeton), emeritus; John B. Gateswood, Ph.D. (Illinois); Roy C. Herrenkohl, Ph.D. (N.Y.U.) Distinguished Service Professor; Judith N. Lasker, Ph.D. (Harvard) NEH Distinguished Professor; Robert E. Rosenwein, Ph.D. (Michigan); David B. Small, Ph.D. (Cambridge); Nicola Tannenbaum, Ph.D. (U. of Iowa); Robert C. Williamson, Ph.D. (Southern California), Emeritus.

Affiliated Faculty. Jeffrey B. Fleisher, Ph.D. (Virginia)

The department houses two disciplines, sociology and anthropology. Sociology is concerned with the study of human beings in relationships with others. Anthropology takes a holistic approach to the study of humans today and in the past, in a global, comparative, and multidimensional perspective. Together these disciplines encompass the study of the broadest range of human activities, from the comparative examination of widely divergent past and present cultures and societies, to the inner life of individuals as this influences social behavior, to an examination of the most pressing social issues of our time.

The offerings within the department seek to foster self- and societal awareness as well as an understanding of what it means to be human. Instruction within the department also provides students with the necessary analytic skills to understand and conduct social research.

To that end, central to the department's major programs is training in research methods, statistics, and the use of computer applications in social science.

The department offers three bachelor of arts majors: anthropology, sociology and anthropology, and sociology/social psychology. The three programs are parallel in structure and requirements and each consists of 40 credit hours of course work. The sociology and anthropology major is an interdisciplinary program for students desiring a wider familiarity with social science fields, whereas the anthropology and sociology/social psychology majors are for students desiring more traditional, disciplinary programs of study.

Research Opportunities. It is the explicit aim of the department to involve majors, minors and other interested students in the ongoing research activities of faculty members. Second-semester sophomore, junior and senior students interested in a supervised research experience are encouraged to consult with the department chair or talk with the appropriate faculty member. Course credit can be received for research experience.

Internship Opportunities. The department maintains close, working relationships with a variety of social agencies and institutions in the area. Majors can earn course credit by carrying out supervised work in field settings, e.g., hospitals, private and public agencies devoted to social services, courtrooms, prisons, etc. This useful experience allows a student to apply the concepts learned in the classroom to a field setting and to evaluate vocational aspirations and interests.

Senior Thesis. All majors are encouraged to do independent research culminating in a senior thesis; this is especially recommended for students intending to go on to graduate or professional school. The best time to begin discussing possible projects with faculty is during the second-semester of the junior year. The department chairperson should be consulted for further details.
Departmental Honors. To be eligible for departmental honors, students must have at least a 3.3 GPA in the major. In addition, students pursuing honors must take ANTH or SSP 399 and write a thesis during their senior year. Awarding of departmental honors is contingent on both the quality of the thesis, as judged by a department committee, and the candidate’s GPA at time of graduation.

B.A. Major Programs

Anthropology

Collateral Requirement (4 credits)
One general course in statistics: MATH 12, ECO 145, PSYC 110, or equivalent. (Note: MATH 12 fulfills the College of Arts and Sciences mathematics requirement.)

Introductory (4 credits)
ANTH 1. Introduction to Anthropology

Disciplinary Core Courses (8 credits)
ANTH 111. Comparative Cultures [fall] or ANTH 140. Introduction to Linguistics [spring] and ANTH 112. Doing Archaeology [spring] or ANTH 145 Human Evolution (NS) [fall, alternate years]

Methodology (4 credits)
SR 111. Research Methods and Data Analysis [fall]

Major Electives (20 credits)
Five additional anthropology courses, at least two of which must be at the 300-level. (Individualized study courses 300, 393, 394, 395, and 399 cannot be used to fulfill this requirement; however, one SSP course can be substituted as an anthropology elective.)

Research, Internship, or Thesis (4 credits)
Preferably during the senior year, majors must complete at least four credits of experiential learning on a subject or in a context relevant to their major. Students may fulfill this requirement in a variety of ways—research, field school, internship, or thesis:

ANTH 300. Apprentice Teaching
ANTH 393. Supervised Research
ANTH 394. Field School
ANTH 395. Internship
ANTH 399. Senior Thesis

Students who intend going on to graduate or professional school are strongly encouraged to do the senior thesis option, and a senior thesis is required for departmental honors.

Sociology and Anthropology

Collateral Requirement (4 credits)
One general course in statistics: MATH 12, ECO 145, PSYC 110, or equivalent. (Note: MATH 12 fulfills the College of Arts and Sciences’ mathematics requirement.)

Introductory (8 credits)
SSP 1 Introduction to Sociology and Social Psychology (4)
ANTH 1 Introduction to Anthropology (4)

Theory and Methodology (8 credits)
SR 111 Research Methods and Data Analysis (4) fall
SR 381 Development of Social Theory (4) spring

Major Electives (24 credits)
Three additional courses in sociology/social psychology, one of which must be at the 300-level or above, AND three additional courses in anthropology, one of which must be at the 300-level.

(Note: MATH 12 fulfills the College of Arts and Sciences’ mathematics requirement.)

Sociology/Social Psychology

Collateral Requirement (4 credits)
One general course in statistics: MATH 12, ECO 145, PSYC 110, or equivalent.

Introductory (4 credits)
SSP 1 Introduction to Sociology and Social Psychology (4)

Theory and Methodology (8 credits)
SR 111 Research Methods and Data Analysis (4) fall
SR 381 Development of Social Theory (4) spring

Major Electives (20 credits)
Five additional courses in sociology/social psychology, at least two of which must be at the 300-level. (Individualized study courses—300, 393, 394, 395, 399—cannot be used to fulfill this requirement; however, one ANTH course can be substituted as a “sociology/social psychology” elective.)

Research, Internship, or Thesis (4 credits)
Preferably during the senior year, majors must complete at least four credits of experiential learning on a subject or in a context relevant to their major. Students may fulfill this requirement in a variety of ways—research, field school, internship, or thesis:

SSP 300 Apprentice Teaching (4)
SSP 393 Supervised Research (1-4)
SSP 394 Field School (1-8)
SSP 395 Internship (1-4)
SSP 399 Senior Thesis (2-4)

Students who intend going on to graduate or professional school are strongly encouraged to do the senior thesis option, and a senior thesis is required for departmental honors.

Concentrations within the Anthropology Major.

Anthropology majors may choose to concentrate in cultural or archaeological anthropology. These optional concentrations in one or the other subfield entail additional constraints on course selection within the major electives category, as described below.

Concentration in Cultural Anthropology

Anthropology majors electing to concentrate in cultural anthropology must complete at least four courses in cultural anthropology at the 300-level or above. Regular course offerings that would satisfy this concentration include the following:

ANTH 111. Comparative Cultures
ANTH 120. Culture and Globalization
ANTH 121. Culture and the Environment
ANTH 125. The Cultural Construction of Gender
ANTH 140. Introduction to Linguistics
ANTH 160. Health, Illness, and Healing
ANTH 182. North American Indians
ANTH 184. Cultures of the Pacific
ANTH 187. Peoples of Southeast Asia
ANTH 305. Anthropology of Fishing
ANTH 320. Global Capitalism
ANTH 325. Economic Anthropology
ANTH 330. Food for Thought
ANTH 335. Religion, Witchcraft, and Magic
ANTH 376. Culture and the Individual

Students choosing this concentration are strongly encouraged to use their general education electives to complete at least two physical anthropology/archaeology courses; the equivalent of two years of foreign language study; pursue courses in museum studies, mathematics, computer science, philosophy, religion studies, literature, biology, and geology as specific interests dictate; and take a wide range of courses in the social sciences, generally, such as SSP 1, PSYC 1, POLS 3, IR 10, Ezo 1, and history offerings.

Concentration in Archaeological Anthropology
Anthropology majors electing to concentrate in archaeological anthropology must complete at least four courses in archaeological anthropology at the 100-level or above. Regular course offerings that would satisfy this concentration include the following:

- ANTH 112. Doing Archaeology
- ANTH 121. Culture and the Environment
- ANTH 145. Human Evolution
- ANTH 172. North American Archaeology
- ANTH 174. Greek Archaeology
- ANTH 176. Roman Archaeology
- ANTH 221. Materials in the Development of Man
- ANTH 345. Evolution of the State
- ANTH 370. Historical Archaeology
- ANTH 377. Archaeology of Death
- ANTH 394. Field School (archaeology field school)

Students choosing this concentration are strongly encouraged to use their general education electives to complete at least three courses in cultural anthropology; pursue courses in museum studies, mathematics, computer science, history, and the social sciences as interests dictate; and take a wide range of natural science courses of special relevance to anthropologists.

Minor Programs
Anthropology: ANTH 1 and four additional courses at 100 level or above in anthropology.
Sociology and Anthropology: One of the following introductory courses: ANTH 1 or SSP 1 and four additional courses at 100 level or above with at least one in anthropology and one in sociology/social psychology.
Sociology/Social Psychology: SSP 1 and four additional courses at 100 level or above in sociology/social psychology.

Undergraduate Courses

Anthropology

- ANTH 1. (GCP 1) Introduction to Anthropology
- ANTH 100. Seminar in Anthropology

Topics in anthropology. May be repeated for credit. (SS)

ANTH 111. Comparative Cultures
Anthropology is a comparative discipline; through comparisons we learn what is unique to a particular culture, what is shared among a number of cultures, and how trait, idea, practice or belief are related to each other. Students will learn how anthropologists do comparisons and do their own comparative research using both qualitative and quantitative techniques. Tannenbaum (SS)

ANTH 112. (CLSS 112) Doing Archaeology
Principles of archaeological method and theory. Excavation and survey methods, artifact analysis, dating techniques, and cultural reconstruction. Course includes field project. Small (SS)

ANTH 120. (GCP 120) Anthropology of Globalization
Examines the relationship between local patterns of culture and the presumably homogenizing forces of globalization. Topics include migration, diaspora, and the politics of identity, the scope and effects of global capitalism and consumerism, tourism, popular culture, the global art market, and cultural authenticity. Vann (SS)

ANTH 121. (CLSS 121, ES 121) Environment and Culture
Impact of environment upon cultural variability and change. Comparative study of modern and past cultures and their environments as well as current theories of human/environmental interaction. Small (SS)

ANTH 123. (WS 123) The Cultural Construction of Gender
Comparative study of the meanings and social roles associated with gender. Psychological, symbolic, and cultural approaches. Tannenbaum (SS)

ANTH 127. (CLSS 127) Early Civilizations
Introduction to early civilizations in the Near East, Mediterranean, Africa, Europe, and New World. Similarities and differences in economics, politics, social organization, and religion. Small (SS)

ANTH 139. (REL 139) Jewish Folklore
Examines the transformation of folk and popular Judaism from the Old World, through the period of immigration to America, to ethnic and later forms of American Jewish culture. Attention paid to concept of folklore revivals and their meanings. Four case studies: folk tales and storytelling, klezmer music, life-cycle rituals, and food. Weisssler (SS)

ANTH 140. (COGS 140, PSYC 140, MFL 140) Introduction to Linguistics
Relationship between language and mind; formal properties of language; language and society; how languages change over time. (SS)

ANTH 145. Human Evolution
Principles of biological anthropology focusing on the evolution of the human species. Topics include evolutionary theory, nonhuman primate diversity and behavior, the relationship between biology and behavior in evolutionary terms, the hominid fossil record, and genetic variability among contemporary human populations. Prerequisite: ANTH 1. Gatewood (NS)
ANTH 160. Health, Illness, and Healing (4)
Introduction to medical anthropology, a field of study that examines how conceptions of illness and health and methods of healing vary over time and across cultures. Introduces a number of culturally specific approaches to health and illness, including Western biomedicine, and aims to provide a broad understanding of the relationship between culture, illness, and healing. Vann (SS)

ANTH 172. North American Archaeology (4) fall
Development of prehistoric North American indigenous population north of Mexico, beginning with earliest evidence of people in the New World continuing up through European contact. (SS)

ANTH 174. (CLSS 174, ART 174, ARCH 174) Greek Archaeology (3)
Ancient Greek culture from the Neolithic to Hellenistic periods. Reconstructions of Greek social dynamics from study of artifacts. Small (SS)

ANTH 175. Archaeology of Classical Cultures (4)
Course introduces the student to an overview of the archaeology of ancient Greece and Rome from Iron Age to Late Antiquity. Emphasis on aspects of cultural development and change. Small (SS)

ANTH 176. (CLSS 176, ART 176, ARCH 176) Roman Archaeology (3)
Cultures of the Roman Empire. Reconstructions of social, political, and economic dynamics of the imperial system from study of artifacts. Small (SS)

ANTH 178. Mesoamerican Archaeology (4)
Course on the archaeology of Mesoamerica: Olmec, Zapotec, Maya, Toltec, and Aztec. Reconstructs urban centers, political and economic organizations, and theories of the Mayan collapse. Small (SS)

ANTH 182. North American Indians (4)
Culture areas of native North America prior to substantial disruption by European influences north of Mexico. Environmental factors and cultural forms. Gatewood (SS)

ANTH 183. (AAS 183) Peoples and Cultures of Africa (4)
Studies African modernity through a close reading of ethnographies, social stories, novels, and African feature films. Staff (SS)

ANTH 184. (Asian Studies 184) Cultures of the Pacific (4)
Cultures of the Pacific Islanders prior to substantial disruption by European influences. Culture histories, language families, social organizations, and religions of Australian, Melanesian, Polynesian, and Micronesian peoples. Gatewood (SS)

ANTH 187. (ASIA 187) Peoples of Southeast Asia (4)
Peoples and cultures of Burma, Laos, Cambodia, Thailand, Malaysia, Singapore, Indonesia, and the Philippines. World view, religion, economy, politics, and social organization. Tannenbaum (SS)

ANTH 188. Southeast Asians in Southeast Asia and America (4)
In this course we explore the ways in which different peoples lived in Southeast Asia, why they moved to America, and the ways in which this move affected their cultures. Topics explored include: aspects of their culture, particularly religion and social organizations; motivations for migrating including war, political, and economic reasons; and their adaptations to America and American responses to their presences. No prerequisites. Tannenbaum (SS)

ANTH 221. (MAT 221, STS 221) Materials in the Development of Man (3) fall
Development of materials technology and engineering from the stone age to atomic age as an example of the interaction between technology and society. In-class demonstration laboratories on composition and structure of materials. Term projects using archaeological materials and alloys. Course intended for, but not limited to, students in the humanities and secondary science education. Engineering students may not use this course for engineering science or technical elective credit. Notis (SS)

ANTH 305. Anthropology of Fishing (4)
Comparative study of fishing peoples and their technologies. Fishing strategies, control of information, and social organization of marine exploitation in subsistence and modern industrial contexts. Theory of common-property resources and the role of social science in commercial fisheries management. Gatewood (SS)

ANTH 312 The Anthropological Signature of the Past (4)
Course covers the basic tenets of different anthropological analyses of premodern cultures. Emphasis on the archaeological traces of different social constructions in the past. Small (SS)

ANTH 320. (GCP 320) Global Capitalism (4)
Anthropological approach to the forms and effects of contemporary global capitalism, including the growth of multinational corporations, flexible corporate strategies, overseas manufacturing, and global branding and marketing; the impact of global capitalism on the environment and on the lives of people in “Third World” countries; consumer culture and the diversity of non-Western consumption practices; alternative capitalist systems, especially Asian capitalism. Vann (SS)

ANTH 325. Economic Anthropology (4)
Cross-cultural perspectives on the ways people produce, distribute, and consume goods; how these systems are organized; and how they are connected with other aspects of society, particularly political and ideological systems. Tannenbaum (SS)

ANTH 330. Food for Thought (4)
Symbolic and cultural analyses of foods and cuisines. Examines what people eat, who prepares it, what it means, and the social and religious uses of foods historically and cross-culturally. Tannenbaum (SS)

ANTH 335. (REL 335). Religion, Witchcraft, and Magic (4)
Addresses broad questions about the roles that religion, magic, and witchcraft play in human life, as philosophical systems of meaning, as useful tools for understanding, and as practical and moral guides for human action. Special focus on the role of witchcraft and magic in the modern world, especially in the lives of disempowered people. Vann (SS)

ANTH 339. Seminar in Anthropology (4)
Topics in anthropology. Varying semester to semester: human evolution, politics and law, introduction to linguistics, human use of space, anthropology of deviance. May be repeated for credit. (SS)
ANTH 345. (CLSS 345) Evolution of the State (4)
Theories of state formation. Comparison of evolutionary trajectories of early states in the Near East, Mediterranean, and New World. Small (SS)

ANTH 370. (HIST 370) Historical Archaeology (4)
This course examines the unique nature of historical archaeology of post contact America. Topics include reconstituting the past through the archaeological and historical record, exhibiting past culture, and capturing the real or imagined past. Course includes fieldwork and visits to famous historical archaeological sites. Small (SS)

ANTH 371. Special Topics (1-4)
Advanced work through supervised readings. May be repeated for credit. Prerequisite: consent of the department chairperson. (SS)

ANTH 376. Culture and the Individual (4)
Concepts and methods of studying relations between the individual and the sociocultural milieu. Culture and personality language and thought, cross-cultural studies of cognition. Gatewood (SS)

ANTH 377. Archaeology of Death (4)
Course examines what we can determine about the past from human remains. Class will study health, age, and disease from the analysis of human bone, the cultural aspects of burial and funerals, and take part in a field project in Nisky Hill Cemetery in Bethlehem. Small (SS)

ANTH 393. Supervised Research (1-4)
Conducting anthropological research under the supervision of a faculty member. May be repeated for credit. Prerequisite: consent of the department chairperson. (SS)

ANTH 394. Field School (1-8)
Field school in archaeology or ethnography. Maximum of eight credits for a single season or field experience. May be repeated once for credit. (SS)

ANTH 395. Internship (1-4)
Supervised experience involving non-paid work in a setting relevant to anthropology. May be repeated once for credit. Prerequisite: open only to department majors. (SS)

ANTH 399. Senior Thesis (2-4)
Research during senior year culminating in senior thesis. Required for anthropology majors seeking departmental honors. May be repeated up to a total of 4 credits. Prerequisite: consent of the department chairperson. (SS)

Sociology and Anthropology

SR 41. (WS 41) Human Sexuality (4)
Sexuality and gender roles across the life cycle, including human reproduction, decision-making, and the societal regulation of sexual behavior. (ND)

SR 42. (WS 42) Sexual Minorities (4)
How minority sexual identities have been the subject of speculation, misunderstanding, and sometimes violent attempts at correction or elimination. Sexual orientation, gender role, including transvestitism and “drag,” transsexualism, sexism, heterosexism, and homophobia. Emphasis on critical thinking, guest speakers, and discussions. (SS)

SR 100. Seminar in Social Relations (1-4)
Topics in social relations. May be repeated for credit. (SS)

SR 111. Research Methods and Data Analysis (4)
fall
Research skills in anthropology, sociology and social psychology. Problem formulation; research design; methods and measures; analysis and interpretation of data. Emphasis on the use of statistics in the research process. (ND)

SR 381. Development of Social Theory (4) spring
Comparative study of social theory. (SS)

SR 395. Methods in Observation (4) alternate years
Naturalistic and participant observation in uncontrolled field settings. (SS)

SR 399. Senior Thesis (4)
Research during senior year culminating in senior thesis. Required for social relations majors seeking departmental honors. Prerequisite: consent of the department chairperson. (SS)

Sociology/Social Psychology

SSP 1. Introduction to Sociology and Social Psychology (4) fall and spring
Patterns of social interaction, group behavior and attitudes provide a focus on the relationship of the individual to society. Social structure and social change within the institutions of society provide a focus on the relationship of society to the individual. The influences of social class, gender and race are explored at each level of analyses. Theories, methods and research results provide micro and macro models for understanding society. Staff (SS)

SSP 100. Seminar in Sociology and Social Psychology (1-4)
Topics in sociology and social psychology. May be repeated for credit. (SS)

SSP 103. (AAS 103) Race and Ethnicity (4) fall
Course examines race and ethnicity from a sociological perspective. Focus on the role of the major racial and ethnic communities in modern American society. Explores the roles of race and ethnicity in identity, social relations, and social inequality. Topics include racial and ethnic communities, minority/majority groups, assimilation, prejudice/discrimination, identity, and the social construction of the concept of “race.” Johnson (SS)

SSP 104. (POL 104). Political Sociology (4)
An introduction to political sociology through an examination of the major sociological questions concerning power, politics, and the state. Covers questions concerning state formation, nationalism, social movements, globalization, political culture and participation, and civil society. Includes examples such as racism, welfare reform, campaign financing, coal mining in Appalachia, revolution in Latin America, the rise of the Nazi party in Germany, and the place of the United States in a global society. Munson (SS)

SSP 105. (GCP 105) The Social Origins of Terrorism (4)
Examines the social, religious, and political foundations of terrorism by studying the roots of terrorism historically and cross-nationally. We will look at the differing kinds of terrorism, including political terrorism in the Middle East, anti-abortion terrorism in the United States, eco-terrorism, and religious and state terrorism throughout the world. Students will have a chance to
better understand the beliefs of terrorists, conditions that produce and sustain terrorism, and the origins of political violence more generally. Munson (SS)

SSP 109. (PSYC 109) Adulthood and Aging (4)
Social science approaches to the latter two-thirds of the life. Cognitive and personality development; attitudes toward aging; social behavior of older adults; widowhood; retirement. Prerequisite: PSYC 1 or SSP 1. May not be taken pass/fail. Hyland (SS)

SSP 110. (WS 110, GCP 110) Women's Work in Global Perspectives (4)
This course brings to the forefront the intersections of race, class, gender, and nation with women's employment around the world. We will examine women's paid and unpaid work in the U.S., Europe, Asia, Latin America, and Africa in an effort to understand the striking persistence of gender inequality over time and across the world. Topics of study include: work and family relations, women's domestic labor, factory work, and agribusiness. In addition, we will explore the ways in which women have organized for changes in work and in their communities in order to conceive of possibilities for the future of women's work. Krasas (SS)

SSP 121. (PSYC 121) Social Psychology (4)
Theories, methods of investigation and results of research on the way social and psychological processes interact in human behavioral settings. Topics include analysis of self and relationships, dynamics of small groups, attitudes and persuasion, prejudice, prosocial and antisocial behavior. Prerequisite: One of the following introductory courses: ANTH 1 or SSP 1 or PSYC 1. Rosenwein (SS)

SSP 125. (PSYC 125) Social Psychology of Small Groups (4)
Theories and empirical research regarding interpersonal behavior in small groups. Classroom exercises and group simulations. Prerequisite: consent of instructor. Rosenwein (SS)

SSP 128 (WS 128) Race, Gender, and Work (4)
Race, Gender and Work is a class designed to help students understand racial and gender inequalities as they relate specifically to work and employment. We explore the origins and histories of inequalities, the ways in which inequalities persist and/or change today, and what steps might be taken toward creating a more equal society. Krasas (SS)

SSP 135. (Jour 135, PSYC 135) Human Communication (4)
Processes and functions of human communication in relationships and groups. Rosenwein (SS)

SSP 141. Social Deviance and Social Control (4)
Analysis of deviant social systems, supporting factors maintaining them, and societal responses to deviant roles and collectivities. McIntosh (SS)

SSP 152. Alcohol, Science and Society (4)
Alcohol use and abuse, its historical function in society, moral entrepreneurship, status struggles and conflict over alcohol. Current problems with attention to special population groups and strategies for prevention of alcohol abuse. McIntosh (SS)

SSP 153. (PSYC 153) Personality (4)
Examination of the major theoretical frameworks psychologists use to understand human thought, feeling, and behavior. Whereas these frameworks each emphasize very different concepts (e.g., the unconscious mind vs. culture vs. neurotransmitters), they are united in their effort to answer the question: Why does a given individual think, feel, or behave as she does? Prerequisite: Psy 1 or SSP 1. Gill (SS)

SSP 160. Medicine and Society (4)
Health, illness, and the health professions from the sociological perspective. Social epidemiology, social psychology of illness, socialization of health professionals, organization of health care, patient-professional relationships and ethical issues in medical care. Lasker (SS)

SSP 161. The American Dream: Popular Ideologies in American Society (4)
Is the “American Dream” a myth or reality? This course explores this question and various aspects of basic American values through a sociological lens. The American Dream, meritocracy, and individualism are strongly held beliefs the United States—the of opportunity. We will examine the implications, causes, and consequences of these beliefs and other popular ideologies in the context of a highly stratified and increasingly diverse society. The course focuses on how ideologies function to both reproduce and transform society. Johnson (SS)

SSP 162. AIDS and Society (4)
Impact of the AIDS epidemic on individuals and on social institutions (medicine, religion, education, politics, etc.); social and health policy responses; international experience; effect of public attitudes and policy on people affected directly by AIDS. (SS)

SSP 163. Pass the Peas: Mapping the Blueprint of Hip Hop Culture (4)
The appearance of the hip hop movement can be traced to a specific time and place, the Bronx, New York, 1974. However, hip hop has no single cultural antecedent. To uncover the origins of hip hop culture, one must begin by discovering the richly layered history of African American and Jamaican music of the 20th century. Using this broad canvas, students will discover how young Bronx natives in the 1970s fused elements of past musical styles with their own personal expression. From this point, the course will chart the expansion of hip hop culture from a five borough folk movement to a multi-million dollar entertainment industry in the late 20th century. Staff (SS)

SSP 165. Contemporary Social Problems (4)
Studies of major problems facing contemporary society. (SS)

SSP 166. (AAS 166) Wealth and Poverty in the United States (4)
Course examines the sociology of wealth and poverty—affluence and disadvantage, “rags and riches”—in American Society. Focus is a critical analysis of the wealth gap, its causes, consequences, and social context. We will consider the role of wealth and poverty in determining life chances and structuring opportunity, as well as their role in the perpetuation of social inequality across generations. We will address contemporary debates surrounding public policy, tax laws, anti-poverty programs and other reform efforts aimed at decreasing the gap between the “Haves” and the “Have-Nots.” Johnson (SS)
SSP 171. (REL 171). Religion and Society (4)
An introduction to the sociology of religion. Covers classical and contemporary approaches to defining and studying the role of religion in society. Emphasis on understanding religious beliefs and practices in the United States, the sources and contours of religious change, and the effects of religion on individuals and society. Specific topics include religious fundamentalism, religious conversion, religious practices and authority, secularization, religion in public life, religion in social change, religious terrorism, and the ways in which religion impacts our personal health, educational attainment, and family life. Munson (SS)

SSP 302. The Sociology of Cyberspace (4)
An examination of social life on the Internet and the World Wide Web. Topics may include sociocultural and psychological aspects of communication in cyber-environments (e.g., email, chat rooms, news groups, MUDS, etc.), interpersonal relationships and group development, the nature of community, the politics of cyberspace (control and democracy), privacy and ethics, and economic dimensions. Examination of past and current case studies. Rosenwein (SS)

SSP 308. (PSYC 308) Seminar in Social Psychology (4)
Intensive consideration of selected topics in current theory and research in social psychology. The subject matter varies from semester to semester, and includes such topics as the social psychology of education, the applications of perception and learning theory to social psychological problems, the social psychology of science, and the social environment of communication. May be repeated for credit. Prerequisite: One of the following introductory courses: ANTH 1 or SSP 1. (SS)

SSP 310. (AAS 310, WS 310) Gender, Race, and Sexuality: The Social Construction of Differences (4)
This course will provide the student with an opportunity to engage current debates about the meaning and use of racial and sexual classification systems in society. Using a multi-disciplinary approach, we will examine the historical and sociological contexts in which specific theories of racial and sexual differences emerged in the U.S. Additionally, we will explore the ways in which changes in the images have implications on the role racial, gender, and sexual identity plays in our understanding of the relationship between difference and inequality. Prerequisite: SSP 103, or department permission. Staff (SS)

SSP 312. (PSYC 312) Interpersonal Behavior in Small Groups (4)
Intensive consideration of theoretical and methodological issues in the analysis of the development of small groups. Prerequisite: One of the following introductory courses: ANTH 1 or SSP 1. Rosenwein (SS)

SSP 313. Social Movements (4)
Explores the origins, dynamics, and consequences of social movements through both sociological theory and empirical case studies. Covers questions of what constitutes a social movement, where and when social movements arise, who joins a social movement, and how social movements are able to contribute to change. Answers to these questions highlight issues of social movement recruitment and leadership, interactions between movements and the media, the state, and the broader public, ideology, strategies and tactics, and the factors contributing to the success and failure of social movements. Course readings drawn from case studies on civil rights, women's rights, gay rights, the environment, American Indians, abortion, globalization, apartheid, democratization, peace, and Islamic fundamentalism. Prerequisite: One 100-level SSP course. Munson (SS)

SSP 314. (PSYC 314) Social Cognition (4)
Examines the formation of beliefs about social groups, individuals, the self, and the world. Consequences and validity of those beliefs are considered. Areas of inquiry include stereotypes and prejudice, impression formation processes, the self, attitudes and persuasion, and social influence. Prerequisite: PSYC 110 or SR 111. Gill (SS)

SSP 323. (PSYC 323) The Child in Family and Society (4)
Influences such as marital discord, family violence, poverty and prejudice on the development of the child from birth through adolescence. Prerequisite: One of the following introductory courses: ANTH 1 or SSP 1. Staff (SS)

SSP 324. (JOUR 324). Health, Communication, and the Internet (4)
This interdisciplinary class examines the role of the Internet in changing the way lay people, the mass media and medical organizations think and behave regarding health and medical care. It explores the nature of traditional and online health communication, and highlights online health issues such as access, quality of information, economics, privacy, and ethics. S. Friedman and J. Lasker (SS) spring

SSP 325. (HIST 325, WS 325) History of Sexuality and the Family in the U.S. (3-4) fall
This course will examine the role of sex and sexuality in American history, emphasizing the ways in which sexual norms and values have influence on the formation and evolution of the family. Prerequisite: One of the following introductory courses: ANTH 1 or SSP 1. Staff (SS)

SSP 326. (HIST 326, WS 326) Social Class in American History (3-4) spring
This course will examine the role of sex and sexuality in American history, emphasizing the ways in which sexual norms and values have influence on the formation and evolution of the family. Prerequisite: One of the following introductory courses: ANTH 1 or SSP 1. Staff (SS)

SSP 327. (JOUR 327) Mass Communication and Society (4)
A review of theories and research on the relationship of mass communication to social processes. Intensive analysis of selected media products (e.g., TV news, dramas, and sitcoms; films; print; music videos, etc.). Prerequisite: One of the following introductory courses: ANTH 1 or SSP 1. Staff (SS)

SSP 333. (POLS 333, PSYC 333) Social Psychology of Politics (4)
Political behavior viewed from a psychological and social psychological perspective. Prerequisite: ANTH 1 or SSP 1; PSYC 1 or department permission. Rosenwein (SS)

SSP 341. (WS 341) Women and Health (4)
An introduction to feminist views of medicine on women's lives and the impact of the women's movement on health care. (SS)
SSP 351. (WS 351) Gender and Social Change (4)
Changes in gender roles from social psychological and structural perspectives. Comparative analyses of men and women (including people of color) in the social structure; their attitudes and orientations toward work, family, education, and politics. (SS)

SSP 355. Sociology of Education (4)
Course examines the social organization of education as a social institution and the role of schools in society. Focus is primarily on educational processes in the United States. Topics include: IQ, curriculum, tracking, educational inequality, primary/secondary/higher education, private vs. public, informal education and social capital, effects on and of race/class/gender, schools as agents of socialization, educational policy and school reform. Prerequisite: ANTH 1 or SSP 1. Johnson (SS)

SSP 356. (PSYC 356) Seminar in Personality Psychology (4)
Topics in personality psychology: the self, personality consistency, motivation, psychological adjustment. Prerequisite: SSP/PSYC 153 or consent of instructor. Williams (SS)

SSP 361. (PSYC 361) Personality and Social Development in Adulthood (4)
Theories and current research. Prerequisite: SSP/PSYC 109 or consent of Psychology department chair. Hyland (SS)

SSP 363. (PSYC 363) Personality and Social Development in Childhood (4)
Issues related to social development (e.g., attachment, social competence), social contexts (e.g., family, day care), and personality development (e.g., sex roles, aggression, temperament) from infancy through adolescence. Prerequisite: SSP/PSYC 107 or consent of instructor. (SS)

SSP 364. (WS 364) Sociology of the Family (4)
Sociological analysis of families in the United States, including investigations of historical and contemporary patterns. Issues addressed include parenting, combining work and family, divorce and remarriage, family policies. Staff (SS)

SSP 365. (WS 365) Inequalities at Work (4)
Primary focus is on race, gender, and class as axes of disadvantage and privilege in work and employment. We will explore both theories and empirical studies of inequality as well as their social, political, and practical ramifications for the workplace. The course will be conducted seminar-style and the class will rely heavily on student participation. Krasas (SS)

SSP 366. Sociology of Aging (4)
Residential patterns, social policies and services for the aged. Alternative political strategies, health programs, living arrangements and workplace choices considered. The changing roles of the elderly in American and other societies, and the special problems they face. Impact of changing age structure. Lasker (SS)

SSP 367. Sociology of Science (4)
Review of sociological, social psychological, and anthropological perspectives on science as a cognitive and social enterprise. Analysis of past and contemporary case studies as well as experimental/simulation research. Rosenwein (SS)

SSP 370. Juvenile Delinquency (4)
The development of delinquent behavior within its social context; an analysis of delinquent gangs and subcultures and the variable patterns of antisocial activity; and the evaluation of institutional controls and treatment of the problem. Staff (SS)

SSP 371. Special Topics (1-4)
Advanced work through supervised readings. May be repeated for credit. Prerequisite: consent of the department chairperson. (SS)

SSP 373. Seminar in Sociology (4)
Intensive consideration of selected topics in contemporary theory or research in sociology. The subject matter varies from semester to semester. May be repeated for credit. (SS)

SSP 374. Social Stratification: Race, Class, Gender (4)
This course is an introduction to social stratification. Examines social inequality as an organizing principle in complex societies. Explores the intersection of the “great divides” of race, class, and gender. Through readings from classical sociological theory to cutting-edge literature we embark on a critical analysis of the causes and consequences of social stratification and social mobility in the United States and in a global context. Prerequisite ANTH 1 or SSP 1. Johnson (SS)

SSP 375. (REL 375). The Christian Right in America (4)
What do we know about the Christian Right? Who are they? What do they believe? Where do they come from? Seminar explores answers to such questions through a focus on the history of the Christian Right as well as its ideologies and beliefs, the people who are a part of it, and its evolving relationship to the American political system. Topics include some of the most divisive social issues of our time: abortion, homosexuality, capital punishment, pornography, taxes, education, and the separation of church and state. Prerequisite: One 100-level SSP course. Munson (SS)

SSP 379. (AAS 379) Race and Class in America (4)
This course focuses on the ways in which race and class intersect in the social, economic, and political structures of American society. Through sociological literature, fiction, non-fiction, film, and other media we will explore the place of race and class in American society. We will examine how race and class operate on a personal, “micro” level, while at the same time operating on a large-scale, “macro” level. Prerequisite: SSP 103, or consent of instructor. Johnson (SS)

SSP 391. Evaluation Research (4)
Application of social research methods of evaluation of the effectiveness of social programs. Measurement, research design, criteria of effectiveness and decision making. Prerequisite: SR 111 or consent of department chairperson. Staff (SS)

SSP 392. Teamwork and Leadership (4)
This course focuses on how teams function in organizational settings, especially in business and industry. Consideration is given to team dynamics and the style(s) of leadership needed to establish and lead teams. Emphasis is placed on both the internal workings of teams and on the external relationships that teams have in organizational settings. Research and theory are drawn...
from a variety of perspectives and disciplines including social psychology, sociology, and management. Case studies from business and industry are examined. Staff (SS)

SSP 393. Supervised Research (1-4)
Conducting sociological or social psychological research under the supervision of a faculty member. May be repeated for credit. Prerequisite: consent of the department chairperson. (SS)

SSP 394. Field School (1-8)
Field school in sociology/social psychology. Maximum of eight credits for a single season or field experience. May be repeated once for credit. (SS)

SSP 395 Internship (1-4)
Supervised experience involving non-paid work in a setting relevant to sociology/social psychology. May be repeated once for credit. Prerequisite: open only to department majors. (SS)

SSP 399. Senior Thesis (2-4)
Research during senior year culminating in senior thesis. Required for sociology/social psychology majors seeking departmental honors. May be repeated up to a total of 4 credits. Prerequisite: consent of the department chairperson. (SS)

Graduate Courses in Sociology

The Master's Program in Sociology prepares students to apply sociological and social psychological perspectives and methods to the analysis of social problems. Grounded in a strong theoretical and substantive understanding of social institutions, social relations, and social policy, as well as in advanced research and computer skills, students are prepared to be effective and experienced practitioners in the field of applied social research. Specialty areas include: policy studies (health, education, family, diversity, substance abuse, delinquency); human communication (teambuilding in organizations, interactional processes, mass communication, personal relationships); and program evaluation.

The program requires 30 hours of course work. Required courses are: Advanced Research Methods; Statistics; Proseminar in Applied Social Theory; Advanced Computer Applications; Research Practicum, either in an agency or firm in the community or with a faculty member; and three electives. All students take a comprehensive exam. Students choose whether to write a thesis or to take an additional six credits of elective courses.

SSP 401. Proseminar in Applied Social Theory (3)
Explores influential sociological theory, the differences between classical theoretical traditions, the main strengths and weaknesses of such traditions. Emphasis is placed on understanding the uses of theory in research, and the implications of theoretical models when applied to contemporary research and problems. Staff (SS)

SSP 402. Sociology of Cyberspace (3)
The course focus is on case-based discussion in the social psychology and sociology of the Internet and the World Wide Web. Questions of what it means to be an individual online, how relationships develop, the nature of groups, democracy and power, and education are considered. Evaluation is based on short papers related to the cases and assigned readings, both in hard copy and online. Rosenwein (SS)

SSP 411. Advanced Research Methods (3)
Study of quantitative and qualitative methodologies, measurement and research design issues at an advanced level. Specific methodologies include participant observation, survey/interview, laboratory or field methods, content analysis, and focus groups. Prerequisite: SR 111 or equivalent. Staff (SS)

SSP 413. Research Practicum (3-6)
Supervised research, either with a faculty member or in a community agency, designed to apply research skills to a particular problem as defined by the faculty member or agency in collaboration with the student and supervising instructor. Final paper should demonstrate theoretical understanding, proper application of methodology and data analysis, and results of the project. Staff (SS)

SSP 414. Survey Research (3)
Examination of survey methods, sample design, interview design, training of survey personnel, data management and analysis. (SS)

SSP 415. Case Studies of Social Control (3)
Social control leads to social order and also generates social deviance. The processes involved in this dual production are found in the formal institutions of society and in the informal patterns of interaction within groups. Macro and micro level approaches are explored, especially in the drug and alcohol area. McIntosh (SS)

SSP 416. (EDUC 416) Quasi-Experimentation and Program Evaluation (3)
Social science methods for non-laboratory settings. Examination of quasi-experimental research designs, threats to validity, possible controls, and uses in social program evaluation. Non-mathematical presentation. Knowledge of elementary statistics assumed. (SS)

SSP 452. Organizing, Community, and Power (4)
Seminar on grassroots and national social movement organizing built around theories of social and political power. Specific topics to be covered include recruitment and media strategies, organizational models, the role of ideology, and movements in the political process. Emphasis will be on practical, applied knowledge of help to practitioners. We will examine examples of both faith-based and race-based organizing, as well as both liberal and conservative social movements. Munson (SS)

SSP 453. Urban Communities (3)
Reading of classical and contemporary urban theory and community studies in sociology and anthropology. Examination of patterns of social class, power, and social change in urban settings, community organizing and public policy aimed at addressing urban social problems, and evaluation of community interventions. Lasker (SS)

SSP 454. Urban Education: Inequality and Public Policy (3)
Social inequality is found throughout American Society but problems of inequality related to education have perhaps received more attention than those of any other contemporary social institution. Researchers, scholars, journalists, social critics, and observers have studied, written, and talked about educational inequality to an enormous extent. Social service organizations, activists, policy-makers, legal professionals, and government officials have focused massive reform efforts and political agendas to tackle inequality in education. Many sociologists have long viewed education not just as an arena of
inequality but as the solution to the widespread inequalities they see reflected in society. Urban education has been an especially complex and controversial subject of scrutiny in recent scholarly and popular debates. This course will focus with a sociological perspective on urban education, inequality, and public policy in the contemporary United States. The first portion of the course examines research and literature relevant to the contemporary social problems of urban education and inequality. The second portion of the course will explore the role of public policy in perpetuating educational inequality, and as a potentially promising solution to it.

**Spanish**

See listings under Modern Languages and Literature.

---

**Special Education**

See listings under Education.

**Speech**

See listings as Communication under Journalism and Communication.

**Statistics**

See listing under mathematics.

---

**Supply Chain Management**

**Program director.** Robert J. Trent, Ph.D. (Michigan State) associate professor of management.

**Program faculty.** Michael G. Kolchin, D.B.A. (Indiana) C.P.M., chair, department of management and marketing; Robert Kutchta, M.S. (New Jersey Institute of Technology) professor of practice in marketing; Teresa M. McCarthy, Ph.D. (Tennessee); assistant professor of marketing; Susan A. Sherer, Ph.D. (Pennsylvania) Kenan Professor of Information Technology Management and program director, business information systems; Gregory C. Tonkay, Ph.D. (Penn State) professor of industrial and systems engineering; Todd A. Watkins, Ph.D. (Harvard) associate professor of economics; Yuliang Yao, Ph.D. (Maryland) assistant professor of business information systems.

Success in today's business environment is driven by competitive advantage and profitability. Customer-focus, value added product differentiation and cost management are the elements associated with industry leaders. The Supply Chain Management undergraduate major at Lehigh University prepares students to understand and manage the processes that distinguish the successful company from its competitors.

The Supply Chain Management major equips students with the knowledge, skills and abilities necessary for success in the complex business environment of the 21st Century. This program:

- Provides solid exposure to supply management, logistics, business-to-business, and operations management topics.
- Develops cross-functional team skills by integrating Supply Chain Management students with engineering students in the Integrated Product, Process and Project (IPD) program.
- Emphasizes advanced cost analysis, negotiation, quality management and improvement, logistics network modeling and e-business.
- Integrates core business courses with supply chain major courses.
- Provides field study and experiential learning opportunities in industry.

Supply Chain Management graduates will be prepared to enter industry at a level that accelerates their on-the-job learning and development. Supply Chain Management graduates typically work within four areas, each with its own set of positions and career paths: purchasing and supply management, transportation and logistics, operations management, inventory management and control.
Supply Chain Management Program and Courses

For specific course descriptions please see subject area heading in this catalog. Check index for page number.

Required Major Courses (21 hours)

- SCM 309 Purchasing and Supply Management (3)
- MKT 321 or Business to Business Marketing (3)
- MKT 348 Management of Marketing Channels (3)
- IE 168 Production Analysis (3)
- SCM 354 Integrated Logistics and Transportation Management (3)
- BUS 211 Integrated Product Development
- SCM 328 Pricing Concepts and Negotiations (3)
- SCM 342 e-Business Enterprise Applications (3) (also cross-listed as BIS 342)

And an optional:

- SCM 373 Supply Chain Management Internship (1-3)

Undergraduate Courses

SCM 309. Purchasing and Supply Management (3)
Negotiating, purchasing, supplier evaluation and selection, international purchasing, cost/price analysis, procurement information systems. Lectures, cases, and electronic business applications.

Mkt. 321. Business to Business Marketing (3)
Marketing products and services to other businesses. The role of salespersons as consultants to business customers such as manufacturing firms, banks, advertising agencies, retailers and management advisory service firms. Electronic business applications in customer relationship management. Prerequisite: Mkt. 211.

SCM 328. Pricing Concepts and Negotiation (3)
Examination of the components of price quotations and the behavioral foundations of the negotiation process. These concepts are exposed through both lectures and simulations and include such topics as quantity discount analysis, fixed and variable cost analysis, experience curve, break-even point, negotiation planning, tactics, power, concepts of win-win and win-lose, behavioral styles, cultural and gender differences, and individual and team negotiations.

SCM 342 (BIS 342). e-Business Enterprise Applications (3)
Introduction to the implications of key information technologies used within and across businesses to conduct e-business. The course covers the functionality of various enterprise applications and their integration: customer relationship management, enterprise resource planning, supply chain management, supplier relationship management, data warehousing and mining, business intelligence, and product lifecycle management. Prerequisites: BIS 111 or consent of the instructor.

SCM 354. Integrated Logistics Transportation Management (3)
A combined lecture, discussion, and experiential course designed to (1) expose students to the fundamentals of logistics management and (2) apply course material directly. For example, students will analyze a logistics system for a manufacturing or service firm to identify the cost-effective transportation and storage of raw materials, work-in-process inventory, and finished goods from point of origin to final consumer and the supporting information and decision support systems. Topics addressed include integrated logistics, logistical resources, logistics system design, and logistics administration. Students will read seminal and contemporary best-practice logistics articles throughout the course. In addition to addressing the logistics activities inherent in integrated supply chain management, this course provides a field study/experiential learning opportunity.

Bus 211. Integrated Product Development Projects (3) spring
Business, engineering, and design students work in cross-disciplinary teams of 4-6 students on marketing, financial and economic planning, economic and technical feasibility of new product concepts. Team work on industrial projects with faculty advisors. Oral presentations and written reports. Prerequisite: Junior standing in business, economics, arts or engineering.

IE 168. Production Analysis (3) spring
A course for the engineering student not majoring in industrial engineering. Engineering economy; application of quantitative methods to facilities analysis and planning, operations planning and control, work measurement and scheduling, and operating systems analysis. Prerequisites: Math 23.

SCM 371. Directed Readings (1-3)
Readings in various fields of supply chain management designed for the student who has a special interest in some field of supply chain management not covered by the regularly scheduled courses. Consent of the department chair. May be repeated.

SCM 372. Special Topics (1-3)
Special problems and issues in supply chain management for which no regularly scheduled course work exists. When offered as group study, coverage varies according to interests of instructor and students. Consent of the department chair. May be repeated.

SCM 373. Supply Chain Management Internship (1-3) summer
A sponsoring faculty member shall direct readings, projects and other assignments including a comprehensive final report in conjunction with an industry sponsored internship. The work experience itself, whether paid or unpaid, is not the basis for academic credit. Intellectual development in the context of a field study learning experience comparable to Bus 211 (Engr 211). Integrated Product Development Projects, and Mgt 372. Special Topics in Logistics, will be the determining factor in awarding academic credit. This course cannot be used to satisfy requirements of the Supply Chain Management major. Consent of the department chair. Prerequisite: Junior standing in the College of Business and Economics and Supply Chain Management declaration.

Technology, Interdisciplinary Courses

See listings under Science, Technology and Society.
Theatre

Professor. Jeffrey Milet, M.F.A. (Yale); Augustine Rips, M.F.A. (Northwestern), chairperson; Pam Pepper, M.F.A. (Ohio).

Associate professors. Drew Francis, M.F.A. (Brandeis); Erica Hoelscher, M.F.A. (Northwestern); Kashi Johnson, M.F.A. (Pittsburgh).

Adjunct professors. Catherine Bachochin A.B.D. (Lehigh); E. Laura Hausmann, B.F.A. (Boston Conservatory); Erik T. Lawson; R. Elizabeth Miller, Certificate (LAMDA); Pamela Richey, M.F.A. (Montana); Elizabeth Lammer, M.F.A. (Cincinnati) Heather Hillhouse-Deans, M.F.A. (Missouri).

To study theatre is to examine its many internal disciplines. Acting and directing combine with design, technical theatre, dramatic literature and theatre history to form the body of our art. Students may pursue general theatre studies or focus on particular areas such as performance, design or history and literature. They may major in theatre, minor in theatre or participate strictly in our production program. Students may even complete a minor in theatre outside the College of Arts and Sciences.

The bachelor of arts degree in theatre is granted after at least 48 credit hours of study. Because we believe that undergraduate theatre education should be broad based with an emphasis on diversity of experience, students are encouraged to take a variety of courses outside the major. Many students complete double majors. Those with the talents and aspirations for a career in theatre have gone to graduate schools offering intense, pre-professional training. Other majors who have not pursued a theatrical career have gone from our program directly into careers in business, social services, sales. Theatre study is an excellent preparation for vocations in which self presentation is important, such as law. The problem solving, analytical and interpersonal skills gained from this discipline are applicable across a wide range of careers. An understanding and appreciation of the complex art of the theatre will enrich a lifetime.

The department’s active production program is curricular and promotes collaborative projects involving students, faculty, staff and guest artists. Our large performance facility is the Diamond Theater, a 300-seat thrust theatre housed in the Zoellner Arts Center. The core of our work in this space is dedicated to productions featuring primarily student actors directed by faculty or guest artists. When possible, a highly qualified student may direct or design in this space. In addition to our own productions, we regularly invite outside professional performers and ensembles to work with us and perform. We also operate a lab theatre (Zoellner’s Black Box Theater) for student and faculty experimentation.

The availability of valuable hands-on experience and the very close working relationships developed between students and faculty uniquely characterize the department of theatre. The department enjoys a special relationship with Bethlehem’s professional theatre company, Touchstone Theatre. Performance and administrative internships with the company are available to qualified students and the department and Touchstone often collaborate on workshops and seminars.

Students interested in designing a major or minor in theatre should consult with the department chairperson. Experienced theatre students with questions regarding accurate placement in any theatre course should, likewise, consult with the chairperson.

Lehigh University is an accredited institution of the National Association of Schools of Theatre.

Theatre Major

Through the selection of appropriate electives, students may concentrate their major in one of these areas:

- Acting/Directing
- Design/Technical Theatre
- Theatre History/Dramatic Literature
- General Theatre Studies

The major in theatre consists of 48 hours distributed as follows:

Coursework required of all majors, 24 hrs
- THTR 1 Introduction to Theatre (4)
- THTR 60 Dramatic Action, (4)
- THTR 87 Scenography I, (4)
- THTR 127 The Development of Theatre and Drama from Ritual to Renaissance (4)
- THTR 128 The Development of Theatre and Drama from Renaissance to Present (4)
- THTR Acting, any appropriate level (4)
- THTR 315 Senior Study (0)

Production Requirement, 8 hrs
- Four courses from the following: THTR 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33, 42, 45, 47, 175. Advanced courses may be substituted.
- Electives, 16 hrs
- Four courses carefully selected with an advisor, emphasizing depth or breadth of study.

Recommended electives from other departments:

- The departments of art and architecture, English, modern languages and literature, music and others all offer courses of value to a theatre major or minor. Consult with your advisor about enriching your academic career outside the theatre department.

Theatre Minor

The minor in theatre consists of at least 22 hours of course work selected in consultation with a departmental advisor. This includes at least five courses (18-20 hrs) and two active semesters in theatre production totaling at least four credits. Fulfill the production requirement through an approved production-oriented course. An approved minor in theatre will include some academic diversity beyond a single curricular area.

Departmental Honors

The exceptional student may elect to pursue departmental honors in the senior year. This student must have a GPA of 3.3 in all theatre courses presented for the major. No later than the fall of the senior year the student, with faculty supervision, elects a special project in a particular area of theatre. This may take the form of preparing to direct a play, researching a role to be performed, preparing a design presentation or researching in an area of theatre scholarship in preparation for the writing of a substantial report. In the next semester, usually the spring of the senior year, the report or project would be...
executed. The student will enroll in two, four-credit independent study courses, one each senior semester.

**The Acting Sequence**

Students with little or no prior acting experience should elect Theatre 11, Introduction to Acting, as their first course. Students with some prior acting experience should consult with the department chairperson for accurate placement and waiver of the Theatre 11 prerequisite.

**Courses in Theatre**

**THTR 1. Introduction to Theatre (4)**

Foundations of theatre: historical, literary and practical. (HU)

**THTR 11. Introduction to Acting (4)**

Preparation for scene study and characterization. (HU)

**Theatre Production Courses: Theatre 20 through 47**

Theatre 20 through 47 are open to all undergraduates, some by permission and/or audition. These production-oriented theatre courses combine classroom investigation with practical application in theatre department, music department and Zoellner Arts Center productions. Unless otherwise noted, they may not be repeated for credit.

**THTR 20. Stage Technology and Production I (2)**

Scenic construction materials and techniques. Scenic staging theory, methods and practice. Production assignment in construction and/or crew. Not repeatable for added credit. (HU)

**THTR 21. Stage Technology and Production II (2)**

Theory, methods and practice for advanced or managerial assignments in construction and/or run crew. Can be repeated for credit. (HU)

**THTR 22. Stage Properties and Decoration (2)**

Creating props and decor for the stage. Production assignment as assistant property master. (HU)

**THTR 23. Basic Scene Painting (2)**

Painting for the stage. Production assignments painting with scenic artist. (HU)

**THTR 25. Costume Technology & Production I (2)**

Costume construction methods and materials. Production assignment in construction or wardrobe. (HU)

**THTR 26. Costume Technology & Production II (2)**

Theory, methods and practice for advanced or managerial assignments in construction and/or run crew. (HU)

**THTR 27. Lighting Technology & Production I (2)**

Computerized lighting systems. Instrumentation and lighting crew participation. Production assignment in light board operation. Prerequisite: (HU)

**THTR 28. Lighting Technology & Production II (2)**

Master Electrician assignment. (HU)

**THTR 30. Sound Technology & Production I (2)**

State of the art digital audio technology. Pre-production sound assignments, recording, equipment. Production assignment in sound operation. (HU)

**THTR 31. Sound Technology & Production II (2)**

Sound engineer assignment. (HU)

**THTR 35. Performance (2)**

Performing in a department-approved production. May be repeated for credit. (HU)

**THTR 42. Marketing and Publicity for the Theatre (2)**

Theory and practice of marketing and publicity for productions. (HU)

**THTR 45. Stage Management (2)**

Organization, scheduling, coordination of various production specialties. Production assignment as assistant stage manager. (HU)

**THTR 47. House Management (2)**

Front of house coordination, audience services, interface with stage management and production team. Production assignment as house manager. (HU)

**THTR 50. (DES 50) Stage Lighting (4)**

An introduction to the art and practice of lighting design for the stage. History of theatrical lighting design. (HU)

**THTR 54. (CLSS 54) Greek Tragedy (3)**

Aspects of Greek theater and plays of Aeschylus, Sophocles, and Euripides in their social and intellectual contexts. Pavlock (HU)

**THTR 56. Jazz Dance (2)**

Jazz dance styles and combinations. May be repeated for credit. Prerequisite: fee. (HU)

**THTR 57. Modern Dance (2)**

Modern dance styles and combinations. May be repeated for credit. Prerequisite: fee. (HU)

**THTR 58. (CLSS 58) Greek and Roman Comedy (3)**

Study of comedy as a social form through plays of Aristophanes, Menander, Plautus, and Terence. Pavlock (HU)

**THTR 60. (ENGL 60) (GC 60) Dramatic Action (4)**

How plays are put together; how they work and what they accomplish. Examination of how plot, character, aural and visual elements of production combine to form a unified work across genre, styles and periods. Recommended as a foundation for further studies in design, literature, or performance. (HU) FALL

**THTR 67. Stagecraft (2)**

Stagecraft, rigging, problem solving, materials and techniques. Practical experience in executing scenery for the stage. (HU)

**THTR 68. Costume Construction (2)**

Techniques of sewing, pattern drafting and fitting. Practical experience in executing costumes for the stage. (HU)

**THTR 69. Stage Electrics (2)**

Theatre lighting techniques, equipment, materials, methods and theory. Practical experience in executing lighting for the theatre. (HU)

**THTR 77. Ballet (2)**

Classical ballet for beginners and those who have had some training. May be repeated for credit. Prerequisite: fee. (HU)

**THTR 87. (DES 87) Scenography I (4)**

Introduction to the process of creating integrated designs in theatre production. The study and practice of the principles of visual representation, historical and conceptual research and the study of theatrical styles. (HU) SPRING

**THTR 111. (DES 111) Sound Design (2)**

Techniques, materials, and methods of designing sound for theatrical production (HU)
THTR 127 (ENGL 127). The Development of Theatre and Drama from Ritual to Renaissance (4)
Survey of Western theatre and dramatic literature from ritual origins to the Renaissance. (HU) FALL

THTR 128 (ENGL 128). The Development of Theatre and Drama from Renaissance to Present (4)
Survey of Western theatre and dramatic literature from the renaissance to the present. (HU) SPRING

THTR 129. (WS 129) History of Fashion and Style (4)
Dress and culture in the Western Hemisphere from prehistory to today. The evolution of silhouette, garment forms and technology: The relationship of fashion to politics, art and behavior. Cultural and environmental influences on human adornment. (HU)

THTR 130. Drafting for the Theatre (4)
Theatre drafting techniques and conventions. Material, methods and theory in stage graphics. Model building techniques and practice. An introduction to computer drafting. (HU)

THTR 140 (AAS 140). African American Theatre (4)
Studies in African American theatre: literary, practical and historical. May be repeated for credit. (HU)

THTR 144. Directing (4)
Introduction to the theatrical director's art. Research, rehearsal techniques, scene work. Prerequisites: THTR 60, Dramatic Action, and acting experience as determined by the department, or consent of chairperson. (HU)

THTR 147. Characterization in Realism (4)
Elements of characterization through scene study in realistic drama. Prerequisite: THTR 11 or consent of instructor. (HU)

THTR 148. Characterization in Expressionism (4)
Elements of characterization through scene study in expressionistic drama. Prerequisite: THTR 11 or consent of instructor. (HU)

THTR 152. Stage Make-up (4)
Theatrical make-up techniques for the actor and designer. (HU)

THTR 154. (DES 154) Scene Painting (4)
Study and practice of basic and advanced methods of painting for the theatre. Includes basic elements and principles of design, color theory, the influence of light, atmosphere and aesthetics for the theatre. (HU)

THTR 161. (Arch 161) Performing Arts Venue Design and Technology (4)
Designing theatres. Theatre equipment systems and acoustics. Function and form. (HU)

THTR 175. Special Projects (1-4)
Theatrical topics of current or special interest. Can be repeated for credit. (HU)

THTR 181. Theatre Management (4)
Concepts, techniques and practices related to managing the theatrical enterprise. (HU)

THTR 185. Production Seminar (1-4)
Practicum in various approaches to theatre production, e.g. performance ensemble. Prerequisite: audition, or consent of the chairperson. Can be repeated for credit. (HU)

THTR 187. (DES 187) Scenography II (4)
Includes beginning scene design, lighting design, and costume design principles and techniques. Introduction to design history. Significant texts, scenicographic design and media techniques in graphic and three-dimensional solutions. Introduction to drafting and mechanical perspective. Prerequisite: THTR 87 or consent of instructor. (HU) FALL

THTR 211 (Germ 211). German Drama (4)
Drama as a literary genre; plays from various periods of German literature. (HU)

THTR 218 (Germ 218). Goethe's "Faust" (4)
Study of Goethe's play with an introduction to the Faust tradition. (HU)

THTR 236. Acting Presentational Styles (4)
Elements of characterization and scene study in presentational dramatic literature from classical through post-modern periods. Prerequisite: 100-level acting course, or consent of chairperson. (HU)

THTR 244. Acting Shakespeare (4)
Monologue, scene study and ensemble work from Shakespeare's dramatic and poetic canon. Prerequisite: 100-level acting course, or consent of chairperson. (HU)

THTR 245. Advanced Directing (4)
Continuation of Theatre 144. The director's voice. Supervised practical experience. Prerequisite: THTR 144. (HU)

THTR 253. Scene Painting II (4)
Advanced scene painting methods for the theatre. Shop management for the scenic artist. Collaboration with designers and stage technology. Prerequisite: THTR 153. (HU)

THTR 260. Design Practicum (1-4)
Scenic, costume, lighting or sound design for the theatre. Realized design production assignments and portfolio building. Collaboration, process and presentation. Prerequisite: Dept. Permission. Repeatable for credit. (HU)

THTR 271. Playwriting (4)
The art and practice of writing plays for the stage. (HU)

THTR 275. Internship (1-4)
Professionally supervised work in theatres and theatrical organizations in the areas of performance, design, technical theatre, theatre administration and management. May be repeated for credit. Prerequisite: consent of chairperson. (ND)

THTR 287. (DES 287) Scenography III (4)
Includes advanced scene design, lighting design, and costume design principles and techniques. Design history projects in specific periods. Complex design problems of traditional texts. Emphasis on color and color theory. Prerequisite: THTR 187 or permission. (HU) SPRING

THTR 2xx, Breaking into the Business (4)
This course will explore the world of the professional actor with comprehensive coverage of all aspects of the acting profession. Abundant information on auditioning techniques, the tools of the actor, the acting unions, professional theater companies, graduate and professional training programs and the world of film & television will be examined. Students will research and perform two audition pieces developed during the course of the semester. Prerequisite: THTR 11...
THTR 315. Senior Study (0)
Seminar for senior theatre majors. Enhancement of current theatre studies while preparing for further theatre studies or activity. (ND)

THTR 318. (FREN 318) Drama in the Twentieth Century (3)
Contemporary French drama with an analysis of its origins and movements. Armstrong (HU)

THTR 328. (ENG 328). Shakespeare (4)
An introduction to Shakespearean drama including comedies, histories, tragedies, and romances. Emphasis on textual study, cultural contexts, and performance strategies. Hawkes, Traister (HU)

THTR 347. Advanced Characterization in Realism (4)
A continuation of THTR 147 for the advanced acting student. Prerequisite: THTR 147. (HU)

THTR 348. Advanced Characterization in Expressionism (4)
A continuation of Theatre 148 for the advanced acting student. Prerequisite: THTR 148. (HU)

THTR 351. Advanced Special Projects (1-8)
Independent study in theatre. Prerequisite: consent of the chairperson. Can be repeated for credit. (HU)

THTR 361. Research in Theatre Technology (1-4)
Solving technological problems in theatre. Application of new technologies. May be repeated for credit. Prerequisite: consent of chairperson. (HU)

THTR 387. (DES 387) Scenography IV (4)
Advanced problem solving of non-traditional design problems, experimental approaches and solutions, contemporary issues in environmental design. Design history focus on contemporary design trends and non-traditional history. Prerequisite: THTR 287 or permission. (HU) FALL

Urban Studies Committee.
David Curtis Amidon, Jr., M.A. (Penn State), associate professor of urban studies and director, urban studies program; Frank T. Colon, Ph.D. (Pittsburgh), professor of political science; Thomas J. Hyclak, Ph.D. (Notre Dame), professor of economics and interim dean, college of business and economics; Roger D. Simon, Ph.D. (Wisconsin), professor of history; J. Bruce Thomas, Ph.D. (Berkeley), associate professor of architecture; Ivan Zaknic, M.Arch. and Urban Planning (Princeton), professor of architecture.

This is an interdepartmental major program intended for students who seek a broad background in the social sciences and for those with career interests in such fields as business or law, and such specialized areas as city management, architecture and urban planning, human relations, and the helping professions.

Instruction focuses on the process of urbanization, the problems and opportunities arising therefrom, the relationship between cities and economic growth, and public policies relating to cities.

A minimum of 37 credit hours is required, apportioned among two levels of study. Substitutions are possible with approval of the director, who advises all those with majors and minors in urban studies. The director's office is located at 232 Chandler-Ullmann Hall.

Undergraduate Major

1. required preliminary courses (12 credit hours)
   - US 61 The Study of Urbanization (4)
   - US 62 Contemporary Urban Issues (4)

   one of the following research methods courses
   - ECO 145 Statistical Methods (4)
   - MATH 12 Basic Statistics (4)

2. elective courses (25 credit hours)

   Any course may be elected from among the following:
   - ECO 312 Urban Economics (3)
   - POLS 377 Urban Politics (3-4)
   - POLS 360 Public Administration (3-4)
   - HIST 333 American City to 1900 (3-4)
   - HIST 334 American Urban History (3-4)
   - US 363 Philadelphia: Development of a Metropolis (4)

   Up to two Architectural History courses numbered 100 or higher.

   Up to two courses may be elected from among the following:
   - ECO 354 Public Finance: State and Local (3)
   - POLS 331 Community Politics Internship (3-4)
   - HIST 326 Social Class in American History (4)
   - US 125 American Ethnic Groups (4)
   - US 371/372 Special Topics (1-8)

   Participants in off-campus programs, such as the Philadelphia or Washington semesters, may receive credit for up to three elective courses, depending upon the content of those courses, but they must also complete at least four courses in the first group of electives above.

   Urban studies minor. The minor consists of US 61 and four or five additional courses from an approved list for a total of 18 credit hours.

Undergraduate Courses

US 61. The Study of Urbanization (4) spring, 2008
Introduction to the study of cities. Emphasis on sources of economic vitality, especially entrepreneurialism, and on causes of social and material decay. Amidon (SS)

Analysis of problems, typically including planning, housing, crime, homelessness, family life, feminist and gay/lesbian agendas, and the role of government in the economy. Political bias in the media and the academy. Extensive analysis of feature films. Amidon (SS)

US 75. Culture Wars (4) every semester
Conservative perspectives on the most divisive issues in American life today including, among others, race, crime, homelessness, family life, feminist and gay/lesbian agendas, and the role of government in the economy. Political bias in the media and the academy. Extensive analysis of feature films. Amidon (SS)

US 81. Americans from Italy (3)
The immigrant generation seen through autobiographies and fiction. Attitudes of and toward Italo-Americans in recent times, especially as reflected in feature films and in politics. Struggles to preserve traditional values. Amidon (SS)

US 85. American Jews: Politics and Culture (3) spring
Jewish influences on American higher education and popular culture, with special attention to the movie industry. Sources of Jewish liberalism and leftism, Neo-conservatism and other adjustments to the wielding of
serious power in American life. Mutual hostilities between secularized Jews and Orthodox Jewry, conserva-
tive Catholics, evangelical Christians, and
African-Americans. Jewish roles in party politics and
journalism. Amidon (SS)

US 88. The Lost World of Protestant America (3)
Decline of the once-dominant American cultural group
in relative size, self-confidence, cohesiveness, and reli-
gious conviction. Myth and reality in the work of such
figures as Allee, Zane Grey, Norman Rockwell, and
Walt Disney. Individualism, communalism, and
constitutional conflict. Seminar format with limited
enrollment. Amidon (SS)

US 125. American Ethnic Groups (4) fall
Immigration to the United States: patterns of conflict
and accommodation; emphasis on recent confrontations
in New York and Los Angeles. Amidon (SS)

Metropolis (4) fall
Philadelphia as an experiment in the deliberate creation
of a new community; the rise and fall of the Protestant
elite; immigration, industrialization, and vigorous
growth, 1681-1929; liberalism and the collapse of a great
city. Amidon (SS)

US 371, 372. Special Topics (1-8)
A seminar on a topic of special interest in urban studies.
Prerequisite: consent of the program director. (SS)

Women’s Studies

Professors. Marie Helene Chabut, Ph.D. (U.C., San
Diego); professor of French; Alexander M. Dury, Ph.D.
(Illinois), professor of English; Jan S. Fergus, Ph.D.
(CUNY), professor of English; Elizabeth N. Fifer, Ph.D.
(Michigan), professor of English; Edward J. Gallagher,
Ph.D. (Notre Dame), professor of English; Lucy C. Gans,
M.F.A. (Pratt), professor of fine art and architecture; Diane T.
Hyland, Ph.D. (Syracuse), professor of psychology; Judith
L. Lasker, Ph.D. (Harvard), professor of sociology and
anthropology; Laura Katz Olson, Ph.D. (Colorado), pro-
fessor of political science; Laurence J. Silberstein, Ph.D.
(brandeis), Philip & Muriel Berman Professor of Jewish
Studies and professor of religion studies; Jean R. Soderlund,
Ph.D. (Temple), professor of history; Lloyd H. Steffen,
Ph.D. (Brown), University Chaplain and professor of reli-
gion studies; Hannah W. Stewart, Ph.D. (Duke) pro-
fessor of Political Science; Nicola B.

Women’s Studies encourages women and men to think
beyond the boundaries of traditional political, and cultural contexts. The program challenges
students to think beyond the boundaries of traditional
gender roles, traditional disciplines, and established insti-
tutions. In the best tradition of a liberal arts education,
Women’s Studies encourages and women to think critically and constructively, to redesign knowledge, and
to gain a better understanding of themselves and their

Assistant professors. Dawn Keeley, Ph.D., (Wisconsin,
Madison), assistant professor of English; Women’s Studies,
and American Studies; Monica Najjar, Ph.D. (Wisconsin), assistant professor of history; Miren Edurne
Portela, Ph.D. (N.C., Chapel Hill), Spanish.

The minor in Women’s Studies engages students in the
study of two interrelated subjects. The first is an exami-
nation of the cultural, historical, and social experiences
and contributions of women. The second is an explo-
ration of gender (the social construction of differential
identity for males and females) and of the ways in which
gender distinctions shape human consciousness and
human society.

Nearly all academic disciplines have defined human
nature and significant achievement in terms of male
experience and have underestimated the impact of gen-
der on social structures and human lives. By contrast,
Women’s Studies courses attend to women’s diverse ex-
periences and perspectives and acknowledge the critical
significance of gender. By shifting the focus to women
and gender, Women’s Studies seeks to provide an alterna-
tive paradigm for understanding human experience.

The Women’s Studies Program has several major goals:
to expand students’ understanding of present status and rich history; to stimulate a critical examina-
tion of the impact of gender roles and stereotypes on
social structures and individual lives; to evaluate propos-
als for alternative arrangements; and to connect issues
addressed in the classroom with those raised in personal,
political, and cultural contexts. The program challenges
students to think beyond the boundaries of traditional
gender roles, traditional disciplines, and established insti-
tutions. In the best tradition of a liberal arts education,
Women’s Studies encourages and women to think critically and constructively, to redesign knowledge, and
to gain a better understanding of themselves and their

The minor in Women’s Studies consists of a minimum of 18 credit hours. Students pursuing the minor are
required to take the introductory course (WS 101) and one upper-level course from among those concerned
with the theory and practice of Women’s Studies. The
remaining courses must include at least one course in the
arts and humanities and one course in the natural and
social sciences. Students arrange their program in consul-
tation with the program director.

Required courses (6 credit hours)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 101</td>
<td>Introduction to Women's Studies (4)</td>
</tr>
<tr>
<td>WS 271</td>
<td>Independent Reading and Research (1-4)</td>
</tr>
<tr>
<td>WS 330</td>
<td>Internship in Women's Studies (3)</td>
</tr>
<tr>
<td>WS 350</td>
<td>Senior Seminar (3)</td>
</tr>
<tr>
<td>WS 375</td>
<td>Internship in Women's Center (1-3)</td>
</tr>
<tr>
<td>WS 8/REL 8</td>
<td>Prehistoric Religion, Art and Technology (4)</td>
</tr>
<tr>
<td>WS 41/SR 41</td>
<td>Human Sexuality (4)</td>
</tr>
<tr>
<td>WS 42/SR 42</td>
<td>Sexual Minorities (4)</td>
</tr>
</tbody>
</table>
Undergraduate Courses in Women's Studies

Description of Required Courses (6 credit hours)

**WS 101. Introduction to Women's Studies (4)**
Placing women's experience at the center of analysis, the course introduces students to the key concepts, theoretical frameworks, and interdisciplinary research in the field of Women's Studies. Examines how gender interacts with race, age, class, etc., to shape human consciousness and determine the social organization of human society. (HU)

**WS 271. Independent Reading and Research (1-4)**
Independent study of selected topics designated and executed in collaboration with a member of Women's Studies faculty. Students taking this course as a requirement for the minor must elect at least the three-credit option. May be repeated for elective credit. Prerequisite: consent of program director. (SS/HU)

**WS 330. Internship in Women's Studies (3)**
Supervised work in women's organizations or settings, combined with an analysis, in the form of a major paper, of the experience using the critical perspectives gained in Women's Studies courses. Placements arranged to suit individual interests and career goals; can include social service agencies, women's advocacy groups, political organizations, etc. May be repeated for credit. Prerequisites: WS 101 and consent of program director. (SS)

**WS 350. Senior Seminar (3)**
An upper-level seminar that challenges students to systematize insights gained from introductory and elective courses by applying the interdisciplinary methodology of Women's Studies to a focused topic. Subject matter varies semester to semester. Offered by Women's Studies faculty on a rotating basis. May be repeated for elective credit. Prerequisite: WS 101, or consent of program director. (SS)

**WS 373. Internship in Women's Center (1-3)**
Supervised work in the Women's Center allows students to bring critical perspectives on women and gender into the campus community. Students who wish to fulfill the internship requirement of the Women's Studies minor must take the Women's Center internship for 3 credits. This course may be repeated for credit up to a maximum of 6 credits. Prerequisites: WS 101 and consent of Women's Center director. Handler (SS)

Undergraduate Elective Courses in Women's Studies

Description of Elective Courses (12 credit hours)

**WS 8. (REL 8) Prehistoric Religion, Art and Technology (4)**
Origins and early development of religions, with focus on interactions of religion, art, and technology in the Paleolithic and Neolithic periods. Special attention to the emergence of patriarchal social forms and the figure of the goddess. Interdisciplinary methods with a consideration of feminist theories of cultural development. Girardot (HU)

**WS 41. (SR 41) Human Sexuality (4)**
Sexuality and gender roles across the life cycle, including human reproduction, decision-making, and the societal regulation of sexual behavior. (ND)
WS 42. (SR 42) Sexual Minorities (4)
How minority sexual identities have been the subject of speculation, misunderstanding, and sometimes violent attempts at correction or elimination. Sexual orientation, gender role, including transvestism and "drag", transsexualism, sexism, heterosexism, and homophobia. Emphasis on critical thinking, guest speakers, and discussions. (SS)

WS 73 (ASIA 73, MLL 73) Film, Fiction, and Gender in Modern China (4)
Study of the struggle for an individual "modern" identity out of traditionally defined roles for men and women as depicted by Chinese writers and filmmakers. Class, texts, and films in English. Students interested in setting up a corollary Chinese language component for credit as CHIN 251 may discuss this possibility with the professor. Cook (HU)

WS 110 (SPP 110, GCP 110) Women's Work in Global Perspectives (4)
This course brings to the forefront the intersections of race, class, gender, and nation with women's employment around the world. We will examine women's paid and unpaid work in the U.S., Europe, Asia, Latin America, and Africa, in order to understand the striking persistence of gender inequality over time and across the world. Topics of study include: work and family relations, women's domestic labor, factory work, and agribusiness. In addition we will explore the ways in which women have organized for changes in work and in their communities in order to conceive of possibilities for the future of women's work. Krasas (SS)

WS 117. (HIST 117) Women, Science and Technology (4)
Explores the impact of technology and science on women's social roles, and the contribution of women engineers and scientists to their disciplines. Will focus on the American experience. Among the topics discussed are invention, design, laboratory research, education, engineering professionalism, labor force participation, office mechanization, household appliances, virtual spaces, childcare and reproduction. Cooper (SS)

WS 121. (ART 121, GCP 121) Women in Art (3)
A history of women artists from Renaissance to present day, with an emphasis on artists of the 20th and 21st century from a global perspective. We explore attitudes toward women artists and their work as well as the changing role of women in art world. There may be required visits to museums and/or artists' studios. Gans (HU)

WS 123. (ANTH 123) Cultural Construction of Gender (4)
Comparative study of the meanings and social roles associated with gender. Psychological, symbolic, and cultural approaches. Tannenbaum (SS)

WS 124. (HIST 124) Women in America (4)
Roles of women in American society from colonial to present times; attitudes toward women, female sexuality, women's work, and feminism. Cooper, Najar (SS)

WS 128/SSP 128 Race, Gender and Work (4)
Race, Gender and Work is a class designed to help students understand racial and gender inequalities as they relate specifically to work and employment. We explore the origins and histories of inequalities, the ways in which inequalities persist and/or change today, and what steps might be taken toward creating a more equal society. Krasas (SS)

WS 129/THTR 129 History of Fashion and Style (4)
Dress and culture in the Western Hemisphere from prehistory to today. The evolution of silhouette, garment forms and technology. The relationship of fashion to politics, art and behavior. Cultural and environmental influences on human adornment. (HU)

WS 138. (REL 138) Women in Jewish History (4)
Contributions of, and limitations on, women at different stages of Jewish history, using both primary sources and secondary material. Experience of modern Jewish women, and the contemporary feminist critique of traditional gender roles. Weissler (HU)

WS 145. (AAS 145) African American Women Writers (4)
Literature by African American women writers with a focus on the experiences and images of black women in the U.S. Explores the written portraits and voices of 20th century black female novelists and poets, including Hurston, Petry, Morrison, Angelou, and Walker. Levy (HU)

WS 153. (HIST 153) Women in European History, 1500-present (4)
Examines the position of women in Europe since the Renaissance. Particular attention to changing conceptions of women and their roles in society, the evolution of "women's work", the origins, growth and impact of feminism, and gender distinction as reflected in law, politics, popular culture, and leisure. Not open to students who have taken WS 353/HIST 353. (SS)

WS 158. (REL 158) Sex and Gender in Judaism: The Feminist Critique (4)
Writings by Jewish feminists reflecting the encounter between Judaism and feminism: prayer and ritual, women rabbis, God and God language, communal power, and marriage and divorce. Silberstein (HU)

WS 179. (POLS 179) Politics of Women (4)
Major social and political issues relating to the role of women in American society. Study of other countries will be included for comparative analysis. Olson (SS)

WS 184. (REL 184) Religion, Gender and Power (4)
Gender differences as one of the basic legitimations for the unequal distribution of power in Western society. Feminist critiques of the basic social structures, cultural forms, and hierarchies of power within religious communities, and the ways in which religious groups have responded. Silberstein (HU)

WS 226. (PHIL 226) Feminism and Philosophy (4)
Analysis of the nature, sources and consequences of the oppression and exploitation of women, and justification of strategies for liberation. Topics include women's nature and human nature, sexism, femininity, sexuality, reproduction, mothering. Prerequisite: one previous course in philosophy or women's studies. Dillon (HU)

WS 275 (SPAN 275) Introduction to Hispanic Women Writers (4)
The objective of this class is to introduce students to Hispanic contemporary female authors from Latin America, Spain, and the United States through the analysis of all literary genres (novel, short story, poetry, essay, and drama). This class provides students with a solid introduction to both Hispanic women's writing
from the last years of the 19th century to the present, as well as to feminist literary theory. Portela (HU)

WS 310. (SSP 310, AAS 310) Gender, Race and Sexuality: The Social Construction of Differences (4)
This course will provide the student with an opportunity to engage current debates about the meaning and use of racial and sexual classification systems in society. Using a multidisciplinary approach, we will examine the historical and sociological contexts in which specific theories of racial and sexual differences emerged in the U.S. Additionally, we will explore the ways in which changes in the images have implications on the role racial, gender and sexual identity plays in our understanding of the relationship between difference and inequality. Prerequisite: SSP 103 or department permission. (SS)

WS 311. (ENGL 311) Literature of Women (4)
Women's works about women: is literary creativity gender-identified? Are there specifically “feminine” subjects or themes? Besides re-reading some familiar fiction, drama, and poems, introduction to contemporary and often experimental works by less famous writers. (HU)

WS 318. (PSYCH 318) Seminar in Gender and Psychology (4)
Gender as shaped by psychological and social psychological processes. Socialization, communication and power, gender stereotypes, methodological issues in sex differences research. Prerequisite: PSYCH 210 completed or concurrent or permission of instructor. Hyland (SS)

WS 325. (HIST 325, SSP 325) History of Sexuality and the Family in the U.S. (3-4)
Changing conceptions of sexuality and the role of women, men, and children in the family and society from the colonial to the post-World War II era. Emphasis on the significance of socio-economic class and cultural background. Topics include family structure, birth control, legal constraints, marriage, divorce, and prostitution. Najjar (SS)

WS 326. (SPAN 326) Tradition and Resistance: Women Writers of Latin America (4)
Study of poetry and narrative works by Latin American women writers. Authors include Rosario Ferr, Rosario Castellanos, Elena Poniatowska, Cristina Peri Rossi, among others. Prerequisite: Spanish 152 or equivalent. (HU)

WS 327. (FREN 327) Women Writing in French (4)
Reading and discussion of works written by women in French. The emphasis is on 19th and 20th Century writers, such as G. Sand, Colette, S. de Beauvoir, M. Duras, Andree Chedid. Chabut (HU)

WS 341. (SSP 341) Women and Health (4)
Relationships of women to the medical system. Influence of medicine on women's lives and the impact of the women's movement on health care. Prerequisite: Any one of ANTH 1, ANTH 11, ANTH 12, SSP 5, or SSP 21, or department permission. Lasker (SS)

WS 342. (POLS 342) Gender and Third World Development (4)
Focus on gender implications of contemporary strategies for economic growth, neo-liberal development models, and mainstream methodologies for field research in Third-World countries. Emphasis on multiple writing assignments, group and individual projects on specific regions and countries, and rigorous research/critical skills. Prerequisite: POLS 3, Stewart-Gambino (SS)

WS 346 (SPAN 346) Contemporary Hispanic Women Writers: The Novelists (4)
This course explores the works of Hispanic women writers who have been oppositional to hegemonic cultural politics during the twentieth century in Latin America and Spain. Grounding the readings in their particular contexts, the class discusses the issues these writers define as important in their work, the impact of their creations in both the literary cannon as well as in the politics of their countries, the use of literature as a weapon to empower minority positions, and the effect of their narratives on the changing literary cannon. Special attention will be paid to issues related to interpretations of history, exile, different forms of violence and repression, expressions of desire, and sexuality. Portela (HU)

WS 351. (SSP 351) Gender and Social Change (4)
Changes in gender roles from social psychological and structural perspectives. Comparative analyses of men and women (including people of color) in the social structure; their attitudes and orientations toward work, family, education, and politics. Prerequisite: Any one of ANTH 1, ANTH 11, ANTH 12, SSP 5, or SSP 21, or department permission. (SS)

WS 364. (SSP 364) Sociology of the Family (4)
Sociological analysis of families in the United States, including investigations of historical and contemporary patterns. Issues addressed include parenting, combining work and family, divorce and remarriage, family policies. ANTH 363 recommended in conjunction with this course. Prerequisite: Any one of ANTH 1, ANTH 11, ANTH 12, SSP 5, SSP 21, or department permission. (SS)

WS 365 (SSP 365) Inequalities at Work (4)
This course's primary focus is on race, gender, and class as axes of disadvantage and privilege in work and employment. We will explore both theories and empirical studies of inequality as well as their social, political, and practical ramifications for the workplace. The course will be conducted seminar-style with most classes relying heavily on student participation with guidance from the instructor. Krasas (SS)

WS 387 (ENG 387) Gender and Sexuality in the Horror Film (4)
Horror films are centrally concerned with issues of masculinity, femininity, heterosexuality, homosexuality, bisexuality, and less defined queerness. This course will explore these topics with reference to subgenres like the slasher film, the vampire film, the psychological horror film, and the science fiction horror film. Films screened include: Dracula, Alien, The Silence of the Lambs, Cat People, and Halloween. Doty (HU)

WS 91, 191, 272, 291, 371, 381, 382, 391, 392. Special Topics (1-4)
Intensive study of a topic of special interest not covered in other courses. May be cross-listed with relevant offerings in major department or other programs. May be repeated for credit as topic varies. Prerequisite: consent of program director. (ND)
VI. An Overview from Past and Present

Lehigh University is independent, nondenominational, and coeducational.

Founded in 1865 as a predominantly technical four-year school, the university now has approximately 4,650 undergraduates within its three major units—the College of Arts and Sciences, the College of Business and Economics, and the College of Engineering and Applied Science—and approximately 2,000 students enrolled in graduate programs offered through the graduate schools in these colleges and in the College of Education. There are undergraduates from nearly every state and U.S. territory and more than 40 foreign nations. The university is primarily situated on the Asa Packer Campus on the north slope of South Mountain overlooking Bethlehem, Pennsylvania. Sayre Park, the wooded refuge located toward the top of the mountain, is the setting for many living groups. The residences are reached via winding private roads. Many residential units on campus command a panoramic view of the Lehigh Valley. The Appalachian are visible to the west, with an especially good view from The Lookout on the Packer Campus. Both the tower and dining room in Iacocca Hall on the Mountaintop Campus afford panoramic views of the Lehigh Valley. The campus at its highest point is 971 feet above sea level.

A substantial portion of the upper level of Lehigh’s campus is maintained as a nature preserve. The preserve supports deer, squirrels, chipmunks, raccoons, wild turkeys and other birds. Besides the Asa Packer Campus, the university has extensive athletic fields and facilities on the Murray H. Goodman Campus, two miles to the south in Saucon Valley. The university acquired the Mountaintop Campus at the end of 1986. It links the Asa Packer and Murray H. Goodman campuses and brings total land holdings in Bethlehem to 1,600 acres, nearly double the former total.

The board of trustees and university officers have established and enforce policies designed to preserve Lehigh’s natural beauty. It is their contention that the environment in which the young adult university student pursues knowledge can make the total educational experience more meaningful, and that the ideal environment is separate and unique from the distractions of the nonacademic community.

There are approximately 400 members of the faculty, teaching a total of more than 2,000 course titles (not all of which are offered every semester). Among faculty members who are tenured and to whom the university has a permanent commitment, nearly all hold the doctorate degree (typically Ph.D. or Sc.D.).

In total, there are more than 2,000 employees of the university, making it the second-largest employer in the community.

History and Purpose

The principal author of the brief history of Lehigh University that follows, Dr. W. Ross Yates, holds the bachelor of arts and master of arts degrees from the University of Oregon, in his native state. He received the doctor of philosophy degree from Yale University and studied in France on a Fulbright Scholarship. He joined the Lehigh staff in 1955 and served as dean of the College of Arts and Science from 1963 to 1972. Today he is professor emeritus of government, and lives in Oregon.

When the sound of the last cannon of the Civil War died away, statesmen, educators, and industrial pioneers marshalled the victorious forces of the North and turned their attention to education. They wanted to increase the number of trained scientists, engineers, and other skilled people so they could transform the vast natural resources of the country into a strong and independent national economy.

Asa Packer was one of the industrial pioneers. He built the Lehigh Valley Railroad and controlled a coal-mining empire in the mountains of eastern Pennsylvania. He knew, as did many others, that a strong national economy depended on more than technical skills. It needed above all people broadly educated in the liberal arts and sciences—people who could combine practical skills with informed judgments and strong moral self-discipline. He kept this in mind when founding and endowing Lehigh University.

The site that Packer chose for his university was a railroad junction across the Lehigh River near Lehigh University as follows:

“In the fall of 1864 an interview was requested of me by the Hon. Asa Packer, of Mauch Chunk (now Jim Thorpe), Pa. He came to my house in Philadelphia, and said that he had long contemplated doing something for the benefit of his State, and especially of the Lehigh Valley. From that valley he said he had derived much of the wealth which GOD had given to him, and to the best interests of that valley he wished to devote a portion of it in the founding of some educational institution, for the intellectual and moral improvement of the young men of that region.

“After conversing with him a little while, and drawing out his large and liberal views, I asked him how much money he purposed to set aside for this institution, when he quietly answered that he deigned to give $500,000. At the time of this interview no one in this country, it is believed, had offered in a single sum such an endowment for a literary institution. It was the noblest offering which an American had ever laid on the altar of learning, and more than equaled many royal donations which have carried down the names of kings as patrons of European universities.
"Filled with profound emotions at the mention of such a gift for such an object, I asked the noble donor what specific plans he had dreamed in his own mind in reference to it. His reply was, "I am not much acquainted with these matters, but you are, and I want you if you will to devise a plan which I can put into effective operation." I told him that I would make the attempt. I did so. I drew up the outline sketch of such an institution as I thought would give the largest results for the means used, and submitted it in a few weeks to his inspection.

"He examined it with the practical judgment and business habits with which he deals with all great questions, and adopted the scheme as the basis of his future university. The first meeting of the Board of Trustees, selected by Judge Packer, met at the "Sun Hotel," in Bethlehem, July 27th, 1865, and began to organize the work before them."

The trustees followed several principles in setting up the university. One was that of combining scientific and classical education. They considered both to be practical. The principle carried forward an ideal of the great 17th-Century Moravian educator, John Amos Comenius. A motto taken from the works of Francis Bacon was used to summarize this principle, namely, Homo minister et interpretes naturae—man, the servant and interpreter of nature, to use a free translation. That motto lives on at Lehigh, being an element in the university seal.

The trustees chose as first president a man whose education and habits expressed this principle, Henry Coppee. They established five schools, including a school of general literature in addition to four scientific schools of, respectively, civil engineering, mechanical engineering, mining and metallurgy, and analytical chemistry. Another principle upon which the trustees insisted was that of keeping the size of the student body proportionate to the abilities of the faculty to teach them well. The university would admit only as many freshmen each year as it could be assured of providing with the highest quality of education. In the 19th century the total enrollment never exceeded several hundred students; the size has increased significantly in recent decades, along with the number of faculty members.

The trustees also insisted that Lehigh was to be non-dominational and would have an admission policy based on merit. Competitive examinations were held for applicants for admission. From 1871 to 1891 no tuition was charged, but the national financial crisis at the turn of the century decimated the value of the Lehigh Valley Railroad stock that Packer had given to Lehigh, which was the principal source of income.

At first the student body was entirely male. The contemporary ideological climate would permit nothing else. But around 1916, women were admitted to graduate programs. In 1971, the university opened its undergraduate program to them as well. Today men and women applicants are considered on an equal basis.

From the first, the students were serious-minded. In 1924, Catherine Drinker Bowen, daughter of president Drinker and later a famous biographer, published a brief History of Lehigh University, in which she commented:

"Ask any college professor which brand of boy he would prefer to teach, the cigarette brand or the flannel shirt variety. Right here we offer ten to one the flannel shirts. . . Lehigh still holds to the emblem of the flannel shirt—long may it wave! Engineers come to college to work. A writer in the Syracuse Post in 1895 spoke truthfully when he said, 'From the first, Lehigh's characteristic has been her earnestness. It is the boast of her graduates, the inspiration of her students. Men go there to learn to take a useful part in the economy of life.'"

The university community was constantly infused with new faculty and students determined to renew and rework the original principles in the light of changing times. The students' ambition and zeal bore fruit; as alumni they carried the university's educational goals into the work of nation-building. And, having received, they gave to perpetuate Lehigh's work of service.

Today, Lehigh University still adheres to Asa Packer's goal of a liberal and scientific education for practical service. Faculty and students work to maintain high quality in instructional programs. Generous support from individuals, foundations, industry, and government help Lehigh to retain high quality of education and faculty while keeping tuition as low as possible. (Tuition covers only a part of the cost of a Lehigh education.)

**Presidents of the University**

The presidents of Lehigh University are described and their achievements cited in the following paragraphs. The years in parentheses are those served in the presidency.

**Henry Coppee** (1866-1875). Coppee served as a railroad engineer in Georgia, a captain in the Army during the Mexican War, and taught at West Point and at the University of Pennsylvania before becoming first president in 1866.

Much building was done on the new university campus. A Moravian church on Packer Avenue was remodeled into Christmas Hall; a house for the president was erected on campus; and Packer Hall, the university center, was built.

Coppee lectured in history, logic, rhetoric, political economy, and Shakespeare.

**John McDowell Leavitt** (1875-1880). Leavitt was an Episcopal clergyman who graduated from Jefferson College and taught at Kenyon College and Ohio University. During his incumbency, the university was divided into two schools, General Literature and Technology. As of 1876, a student could receive two engineering degrees by taking a longer course, and beginning in 1877 the master of arts, doctor of philosophy, and doctor of science degrees were established. Linderman Library rotunda was completed in 1877. Asa Packer died in May, 1879, and Founder's Day was held in his honor the following October.

**Robert Alexander Lamberton** (1880-1893). Lamberton, a graduate of Dickinson College, practiced law in Harrisburg, Pa., and was a university trustee when asked to become president. During his administration, students and the community witnessed the first Mustard and Cheese dramatic presentation.

A gymnasium (now Coppee Hall) was erected, and Chandler Chemistry Laboratory was built, now known as Chandler-Ullmann Hall. Lehigh was also building its reputation for academic excellence; the mechanical engineering department was established in 1881 and the Lehigh chapter of Phi Beta Kappa was founded in 1887.
were organized.

examinations in the Arts College. The placement bureau, system was instituted as were the senior comprehensive psychology, journalism, history, and fine arts. The majors newly organized academic offerings: philosophy, music, changing concepts of education were evident in several

deferred tuition payments, helped to ease the shortage. of students from 1929 to 1936 as a result of the

degrees were awarded to women. Lehigh faced a shortage office in 1922. During his presidency, the first graduate

Richards took office in 1922. During his presidency, the first graduate degrees were awarded to women. Lehigh faced a shortage of students from 1929 to 1936 as a result of the Depression, but the newly established office of admission, as well as university scholarships, fellowships, and deferred tuition payments, helped to ease the shortage. Changing concepts of education were evident in several newly organized academic offerings: philosophy, music, psychology, journalism, history, and fine arts. The majors system was instituted as were the senior comprehensive examinations in the Arts College. The placement bureau, a public relations office, and a student health service were organized.

Thomas Messinger Drown (1895-1904). Drown studied medicine at the University of Pennsylvania and went abroad to study chemistry. Thereafter he was professor of chemistry at Lafayette College. In 1895 he assumed the presidency of Lehigh and was greatly interested in furthering the university’s development as a technical school.

His first years were difficult ones because the Panic of 1893 decimated the university’s stock holdings in the Lehigh Valley Railroad. Nevertheless, Lehigh managed to grow in enrollment, academics, and in physical plant. Williams Hall was completed. The curriculum leading to a degree in arts and engineering was established, as was the department of zoology and biology. New curricula were adopted in metallurgical engineering, geology, and physics.


Henry Sturgis Drinker (1905-1920). Drinker, an 1871 Lehigh graduate, was the only university alumnus ever to be named president. In 1907, the alumni endowment fund began, the Lehigh Alumni Bulletin was first published in 1913, and the Alumni Association was incorporated in 1917.

Drinker, besides being a lawyer, was a mechanical engineer and had been largely instrumental in solving the problems of constructing the two-mile-long Musconetcong Tunnel, an engineering feat that made possible a railroad line between Easton, Pa., and New York City. He started a tradition of businesslike management of university affairs.

During Drinker’s years, more buildings were completed: the original section of Fritz Engineering Laboratory, Drown Hall, Coxe Mining Laboratory, Taylor Hall, Taylor Gymnasium and Field House, Taylor Stadium and Lamberton Hall. Drinker’s interest in horticulture led to the planting of many rare trees and plants.

A teacher’s course and business administration course were begun in 1909 and in 1918 the university was divided into three colleges, liberal arts, business administration, and engineering—the roots of colleges of today. Army ROTC was established in 1919.

Drinker’s daughter, Catherine Drinker Bowen, went on to become a historical writer of note. Her experiences as the daughter of a Lehigh president and occupant of the President’s House are recorded in Family Portrait (Atlantic Little-Brown).

Drinker resigned in 1920 and Natt M. Emery, vice president, served as chief executive officer until 1922.

Charles Russ Richards (1922-1935). Richards took office in 1922. During his presidency, the first graduate degrees were awarded to women. Lehigh faced a shortage of students from 1929 to 1936 as a result of the Depression, but the newly established office of admission, as well as university scholarships, fellowships, and deferred tuition payments, helped to ease the shortage. Changing concepts of education were evident in several newly organized academic offerings: philosophy, music, psychology, journalism, history, and fine arts. The majors system was instituted as were the senior comprehensive examinations in the Arts College. The placement bureau, a public relations office, and a student health service were organized.

The Alumni Memorial Building—a memorial to the Lehigh alumni who served in World War I was opened in 1925—and Packard Laboratory was completed in 1929. In the same decade, a major addition to Linderman Library also was completed.

Clement C. Williams (1935-1944). Williams, a civil engineer, was president during an era of unprecedented alumni support. Undergraduate enrollment rose to an all-time high, passing 2,000 in 1938. Richards and Drinker residential houses, and the Ullmann wing adjoining the Chandler Chemistry Laboratory, were built. Grace Hall, the first arena-type facility of any size on campus, was completed in 1940, the gift of Eugene G. Grace, an 1899 graduate, who headed the board of trustees. A Graduate School implemented the programs in the three colleges. Williams retired in 1944, and the university was without a president for approximately two years.

Martin Dewey Whitaker (1946-1960). Dr. Whitaker, who had been director of the Atomic Energy Commission Laboratory at Oak Ridge, Tenn., and had worked in developing the atomic bomb, faced the responsibility of helping the university community readjust to peacetime conditions after World War II.

During his time as president, Lehigh’s assets nearly tripled: the endowment more than doubled to $18 million. Many buildings were renovated, and the Dravo House and McClintic-Marshall House residence halls were built. The faculty increased in number by 75 percent and the first endowed distinguished professorships were established.

The Centennial development program was begun in 1959. It raised more than $22 million for faculty salaries and construction that later included Whitaker Laboratory.

An extensive renovation and enlargement project associated with Packer Hall was undertaken in 1957, and, upon completion in 1958, the building became a university center.

Whitaker died in office.

Harvey A. Neville (1961-1964). Dr. Neville was the only faculty member ever elected president. His association with the university began in 1927 as an assistant professor of chemistry. During his three-year term as president, the first phase of the Saucon Valley athletic complex was completed, and Sayre Field was opened atop South Mountain. The Center for Information and Computing Science was established.

Neville, a strong supporter of research who fostered its growth on the campus, died in 1983.

Deming Lewis (1964-1982). Willard Deming Lewis became Lehigh’s 10th president after a distinguished career as a space engineer and research administrator. Dr. Lewis earned three degrees at Harvard and two from England’s Oxford University, where he was a Rhodes Scholar in advanced mathematics. In 1941, he joined Bell Telephone Laboratories, and in 1962 he became general manager of systems development with Bellcomm Inc., which engineered systems for the Apollo project that placed the first man on the moon.

Lewis, who died in 1989, received 33 U.S. patents on such devices as microwave antennas and filter and digital error detection systems. He helped write the equations describing a stylus sliding through a warped groove.
During Lewis’ tenure as Lehigh president, women were admitted as undergraduate students in 1971. New majors were begun in natural science, biology, social relations, geological sciences, environmental science and resource management, religion studies, computer engineering, computing and information science, applied mathematics, management science, American studies and other fields. Six research centers and seven institutes were established.

Capital campaigns brought in more than $130 million, and construction was completed on Maginnes Hall, Whitaker Lab, Mart Science and Engineering Library, Sinclair Lab, the Seeley G. Mudd Building, Neville Hall, Rathbone Hall dining room, 13 fraternity houses, the Centennial I and Centennial II residential complexes, the Broadhead House residence hall, the Trembley Park student apartments, the Saucon Village Apartments, the Philip Kauch Field House and the Stabler Athletic and Colonial Lion Center. The restoration of Packer Memorial Church was completed, and Packard Lab was renovated.

The original Physics Laboratory is now named in Lewis’s honor, as is the indoor tennis center.

Peter Likins (1982-1997). Dr. Likins, who earned a B.S. and Ph.D. from Stanford, and an M.S. from the Massachusetts Institute of Technology, became Lehigh’s 11th president in 1982. He sought balanced excellence in undergraduate programs while pursuing focused objectives in graduate study and research.

Under Likins, Lehigh doubled in size with the purchase in 1986 of 742 acres of land and a research complex from Bethlehem Steel Corp. The new Mountaintop Campus links the Asa Packer and Goodman campuses.

Lehigh also added many new buildings and facilities. Perhaps most notable was the $33-million Zoellner Arts Center, which provided a new home to Lehigh’s departments of music and theater and to the University Art Galleries, and made Lehigh a center for the fine arts. The Arts Center and the new Rauch Business Center, home of the College of Business and Economics, were built on the site of Taylor Stadium, which was replaced by Goodman Stadium on Lehigh’s athletic campus.

Also during Likins’ term, Lehigh built a $20-million state-of-the-art telecommunications system, the E.W. Fairchild-Marrindale Library and Computing Center — one of the most automated libraries anywhere — and the Harold S. Mohler Lab, which honors the former chairman of the board of trustees.

Also dedicated was the Sherman Fairchild Center for the Physical Sciences, which includes the renovated Physics Building (renamed Lewis Lab), and the adjoining Sherman Fairchild Lab.

Lehigh became home to the North East Tier Ben Franklin Advanced Technology Center, which has helped hundreds of new high-technology businesses get started. And the university led the way in establishing the Colonial League, now the Patriot League, in football.

The league is committed to the Lehigh tradition of “scholar-athletes.”

Financial support grew from $10 million a year to over $24 million. With over half of alumni making gifts, Lehigh ranked among the top Ph.D-granting schools in percentage of alumni donors.

Likins’ term also saw the establishment of the Lehigh Valley Center for Jewish Studies at Lehigh, the Center for Advanced Technology for Large Structural Systems, largest of its kind in North America, and centers in integrated circuits, management studies, chemical process modeling and control, and international studies.

Likins, an expert in spacecraft dynamics and control who has written textbooks in engineering mechanics, was one of 13 science advisers to President George Bush. He came to Lehigh after serving as dean of engineering and provost at Columbia, and left to become president of the University of Arizona.

William C. Hittinger (1997-98). A former chairman of the university’s board of trustees, Hittinger became interim president after the departure of Peter Likins. A member of the National Academy of Engineering, Hittinger served for 22 years on the board of trustees.

He graduated from Lehigh in 1944 with a B.S. in metallurgical engineering, and received an honorary Doctor of Engineering degree from Lehigh in 1973.

Over a 40-year career in the electronics industry, Hittinger worked for Western Electric Co., National Union Radio Corp., Bell Telephone Laboratories, Bellcomm Inc., General Instrument Corp., and RCA Corp. At Bellcomm, he oversaw systems engineering for NASA’s manned spaceflight program, and at RCA, where he became executive vice president, he was responsible for corporate technology, patents, licensing, international business and marketing development, and corporate technology planning.

Hittinger was a member of President Reagan’s National Security Telecommunications Advisory Committee from 1982-86. He was also a member of the U.S.-Brazil Presidential Committee on Science and Technology and a member of the board of directors for eight companies.

Hittinger served as national president of the Lehigh Alumni Association 1971-72 and received the prestigious L-in-Life award in 1979. An ROTC student at Lehigh, Hittinger served in the U.S. Army in 1943-46 during World War II, rising to the rank of captain.

During Hittinger’s term as chairman of the board of trustees, Lehigh began construction of the Zoellner Arts Center, completed the Ulrich Student Center, aggressively improved its financial aid for undergraduates, and completed the $300 million Campaign for Preserving The Vision. As president, Hittinger realigned the Iacocca Institute into the College of Business and Economics, oversaw the construction of the new Sayre Park Village residential complex, and helped Lehigh move forward during a time of presidential transition.

Gregory C. Farrington (1998 - 2006). Dr. Farrington was appointed Lehigh’s 12th president in May 1998 and served the university for eight years before stepping down in June 2006. Proclaiming on many occasions that “the only thing good enough for Lehigh is the best,” Farrington promoted academic excellence, improved facilities, and fostered collaborative relationships between Lehigh and the surrounding community.

Farrington earned his B.S. from Clarkson University and his A.M. and Ph.D. from Harvard, all in chemistry and specializing in solid state electrochemistry. Before joining the University of Pennsylvania’s Department of Materials Science and Engineering in 1979, he was a research chemist for General Electric Company’s Corporate Research and Development Center in New York State.

At Penn, he served as dean of the School of Engineering and Applied Science. He holds or shares more than two
dozen patents and has written or edited numerous books and book chapters, as well as 100 technical papers.

While at Lehigh, Farrington established the university's bold and creative Lehigh 2020 initiative. Launched in October 2000, the $75 million academic venture capital fund focused investment on attracting and retaining the best faculty and students, creating distinctive academic programs, funding critical research fields and stimulating cross-curricular collaboration. New programs created through the 2020 program include those in bioscience, bioengineering, applied life science, computer science and engineering, information systems and engineering, and bioeconomics.

Along with the reinvigoration of academics and the promotion of interdisciplinary learning, Farrington also literally changed the face of Lehigh’s historic campus. More than 20 major campus enhancement projects were completed during Farrington’s term, among them the construction of Campus Square, a new Alumni Building Arrival Court and parking garage, and a pedestrian walkway through the heart of the campus green, transforming it into a central gathering place. In addition, Copper Hall, Lamont Hall, Maginnes Hall, Wilbur Power House, Grace Hall, the A. Haigh Cundey Varsity House and Linderman Library were renovated.

Under Farrington’s leadership, Shine Forever: The Campaign for Lehigh generated more than half of its $500 million goal to endow faculty chairs, scholarships, academic programs, and facilities. He also advocated collaborations with the city of Bethlehem, the state and federal governments, industry and other partners to strengthen the university and spur regional economic development. His commitment to the Lehigh Valley was evident in his participation on various boards as well. He actively participated on the board of trustees of St. Luke’s Hospital & Health Network, the National Museum of Industrial History and Lehigh Valley Partnership.

Alice P. Gast (2006) On August 1, 2006, Alice P. Gast became Lehigh University’s 13th president. Previously she was the Robert T. Haslam Professor of Chemical Engineering and the Vice President for Research and Associate Provost at Massachusetts Institute of Technology.

Prior to moving to MIT in 2001, she spent 16 years as a professor of chemical engineering at Stanford University and at the Stanford Synchrotron Radiation Laboratory. In her research she studies surface and interfacial phenomena, in particular the behavior of complex fluids. Some of her areas of research include colloidal aggregation and ordering, protein lipid interactions and enzymes reactions at surfaces. In 1997 Gast co-authored the sixth edition of “Physical Chemistry of Surfaces.” with Arthur Adamson.

Professor Gast received her BS in Chemical Engineering from the University of Southern California. After earning her Ph.D. in chemical engineering from Princeton University, Gast spent a postdoctoral year on a NATO fellowship at the École Supérieure de Physique et de Chimie Industrielles in Paris.

She returned there for a sabbatical as a Guggenheim Fellow. She was a 1999 Alexander von Humboldt Fellow at the Technical University in Garching, Germany. She received the National Academy of Sciences Award for Initiative in Research, and the Colburn Award of the American Institute of Chemical Engineers. She was elected to the National Academy of Engineering in 2001 and to the American Academy of Arts and Sciences in 2002. She has served on numerous advisory committees including the NRC Board on Chemical Science and Technology, and the Homeland Security Science and Technology Advisory Committee. She was elected to the Board of the American Association for the Advancement of Science in 2006.

University Campuses
Lehigh University’s three campuses are located in Bethlehem, Pa., and comprise 1,600 acres.

Asa Packer Campus. Lehigh’s main academic campus, encompassing approximately 360 acres on the north slope of South Mountain overlooking Bethlehem, is a wooded area where most students attend class and live. This contains the original campus of the university.

Murray H. Goodman Campus. During the 1960s, the university acquired extensive acreage in the Saucon Valley just south of South Mountain. Development of one of the nation’s finest collegiate athletic complexes has continued since that time. The 500-acre campus now includes the Murray H. Goodman Stadium and other athletic fields, as well as the 6,000-seat Stabler Athletic and Convocation Center, the Ben Franklin Technology Partners of Northeastern Pennsylvania, the Philip Rauch Field House, the Cundey Varsity House, and the Lewis Indoor Tennis Facility. The campus is named for a major benefactor, Lehigh alumnus Murray H. Goodman, of West Palm Beach, Fla.

Mountaintop Campus. Lehigh bought this campus from Bethlehem Steel Corp. in 1986. It contains 670 acres of woods and a 72-acre research site with 8 buildings, five of which are owned by the University, including a landmark tower building visible for miles around. Acquisition of the facilities—the largest single transaction in Lehigh history—connects the two older campuses. The Mountaintop Campus houses the College of Education; the department of Biological Sciences and Chemical Engineering; programs in biochemistry, biotechnology, bioengineering, ATLSS (Advanced Technology for Large Structural Systems) center, Energy Research Center, and Ben Franklin incubator companies.

University Buildings
Lehigh has a major collection of 19th-century buildings designed by such prominent architects as Addison Hunton (1834-1916), Edward T. Potter (1831-1904) and the firm of Furness and Evans (Frank Furness, 1839-1912).

Designed by Dagit Saylor Architects just east of the Rauch Business Center is the Zoeller Arts Center, which houses a 1000-seat music auditorium, a 300-seat theatre, a permanent art gallery and museum store, and the departments of music and theatre. A 350-car parking garage is on the same site.

Opened in 2002, and designed by the Pritzker Prize-winning architectural firm of Bohlin Cywinski Jackson, is The Campus Square residential and retail complex with upper-class student apartments, bookstore and various eateries.

The university’s newer structures include the Ulrich Sports Complex (2002) and additions to the Cundey Varsity House (2002), Iaccoca Hall for biological sciences (2003), Stabler Arena (2004), and Sinclair Lab for optical technologies (2005).

Recently completed are campus enhancements that eliminated vehicular traffic and created landscaped walkways in the historic core of The Asa Packer Campus. Opening in the summer of 2006 is a 350-car parking garage pavilion and visitors arrival court at the west entrance to The Alumni Memorial Building.
Altogether, the three campuses contain 150 buildings with more than 4 million square feet of floor space.

In the following list, the first date after the name of each building indicates the year of construction. The second date indicates the year of a major addition.

**Campus Landmarks**

**Alumni Memorial Building** (1925). This edifice of Gothic design, housing the Visitor Center, Admissions and other administrative offices and those of the Alumni Association, represents a memorial to the 1,921 Lehigh alumni who served in World War I and the 46 who died. The building was designed by Theodore G. Visscher, Class of 1899, and James Lindsey Burley, Class of 1894.

**E. W. Fairchild-Martindale Library and Computing Center** (1985). The high-technology building houses science and engineering holdings, The Media Center, library and technology services staff, and a computer center. Construction was made possible by a major gift from Harry T. Martindale, a 1927 Lehigh graduate, and his wife, Elizabeth, daughter of the late Edmund W. Fairchild, founder of a business-publications and communications empire.

**Linderman Library** (1877). The rotunda, designed by Addison Hutton, was built as a gift to the university by founder Asa Packer as a memorial to his daughter, Lucy Packer Linderman. The rotunda is surrounded except on the south by a major addition constructed in 1929. The building houses more than 20,000 rare books and volumes related to the humanities and social science. The Bayer Galleria of Rare Books, made possible by a gift from Curtis F. Bayer, '35, was dedicated in 1985. The building is closed for renovations and will reopen in the spring of 2007.

**Packer Memorial Church** (1887). The church was the gift of Mary Packer Cummings in memory of her father, founder Asa Packer. It was dedicated on Founder's Day, October 13, 1887. The building was designed by Addison Hutton; the stained-glass window over the main door is attributed to Louis Comfort Tiffany.

**President's House** (1868). This 21-room residence, designed by Edward Potter, is the home of university presidents and is often used for receptions on special university occasions.

**Packer Hall, The University Center** (1868). When construction of the building began in 1865, a railroad was built to transport stone to the site. The building, designed originally by Potter, was extensively renovated and enlarged in 1958.

The building was constructed at the expense of the founder, who vetoed a plan to erect it of brick. “It will be built of stone,” Asa Packer responded.

Today the building houses student and faculty dining facilities, a food court, dean's offices, the military science (ROTC) department, the Women's Networking Center, The Center for Academic Success, a bank office, and conference facilities.

**Academic and Research Facilities**

**Chandler-Ullmann Hall** (1883, 1938). These adjoining buildings formerly were the William H. Chandler Chemistry Building (designed by Hutton) and the Harry M. Ullmann Chemistry Laboratory. Chandler served as acting university president, 1904 and 1905, and taught chemistry from 1871 to 1906. Ullmann served as chairman of the chemistry department. The building has been named a National Historic Chemical Landmark by the American Chemical Society.

**Fairchild-Martindale Library and Computing Center** (1985). This edifice of Gothic design, housing the Visitor Center, Admissions and other administrative offices and those of the Alumni Association, represents a memorial to the 1,921 Lehigh alumni who served in World War I and the 46 who died. The building was designed by Theodore G. Visscher, Class of 1899, and James Lindsey Burley, Class of 1894.

**Linderman Library** (1877). The rotunda, designed by Addison Hutton, was built as a gift to the university by founder Asa Packer as a memorial to his daughter, Lucy Packer Linderman. The rotunda is surrounded except on the south by a major addition constructed in 1929. The building houses more than 20,000 rare books and volumes related to the humanities and social science. The Bayer Galleria of Rare Books, made possible by a gift from Curtis F. Bayer, '35, was dedicated in 1985. The building is closed for renovations and will reopen in the spring of 2007.

**Packer Memorial Church** (1887). The church was the gift of Mary Packer Cummings in memory of her father, founder Asa Packer. It was dedicated on Founder's Day, October 13, 1887. The building was designed by Addison Hutton; the stained-glass window over the main door is attributed to Louis Comfort Tiffany.

**President's House** (1868). This 21-room residence, designed by Edward Potter, is the home of university presidents and is often used for receptions on special university occasions.

**Packer Hall, The University Center** (1868). When construction of the building began in 1865, a railroad was built to transport stone to the site. The building, designed originally by Potter, was extensively renovated and enlarged in 1958.

The building was constructed at the expense of the founder, who vetoed a plan to erect it of brick. “It will be built of stone,” Asa Packer responded.

Today the building houses student and faculty dining facilities, a food court, dean's offices, the military science (ROTC) department, the Women's Networking Center, The Center for Academic Success, a bank office, and conference facilities.

**Academic and Research Facilities**

**Chandler-Ullmann Hall** (1883, 1938). These adjoining buildings formerly were the William H. Chandler Chemistry Building (designed by Hutton) and the Harry M. Ullmann Chemistry Laboratory. Chandler served as acting university president, 1904 and 1905, and taught chemistry from 1871 to 1906. Ullmann served as chairman of the chemistry department. The building has been named a National Historic Chemical Landmark by the American Chemical Society.

The Department of Art and Architecture, division of urban studies, and Department of Psychology are located in Chandler-Ullmann.

**Christmas-Saucon Hall** (1865 and 1872, respectively). Christmas Hall is the university’s oldest building. When Asa Packer acquired the South Mountain site for the university in 1865, a Moravian church was being constructed. The newly formed university took over the building and completed it for use in recitations and as a dormitory and chapel. The name Christmas Hall was chosen in keeping with Moravian religious tradition. In 1872, Saucon Hall was constructed a few feet to the east of Christmas Hall. The buildings were connected with the construction of a “hyphen” in 1926. The building houses the Department of Mathematics, The office of Graduate Student Life, The University Press, and classrooms.

**Coppe Hall** (1883). The building originally housed classrooms and a gymnasium. It is named in honor of Henry Coppee, first president. The building was renovated in 2002 and houses the Weinstock Center for Journalism and Communication.

**Coxe Hall** (1918). Originally a mining laboratory, the structure is named for Eckley B. Coxe, pioneer mining engineer and trustee of the university. The building was recently renovated for the International Students and Scholars and the English as a Second Language programs and the Global Union.

**Drown Hall** (1908). The building, designed by Furness and Evans, is a memorial to Thomas M. Drown, president from 1895 to 1904. It is headquarters for the English Department and the Writing and Math Center.

**Fritz Engineering Laboratory** (1909, 1955). The laboratory is named for John Fritz, pioneer in the steel industry in the United States and a member of the university’s original board of trustees. Fritz provided funds for the original section; a seven-story addition accommodates the university’s testing machine, which is capable of applying a five-million-pound load to tension or compression members up to forty feet in length. The hydraulic testing machine is the largest facility of its kind currently in operation in the world. The laboratory is used primarily by the Department of Civil and Environmental Engineering.

**Iacocca Hall** (1958, 2003). Known as the tower building, it houses the College of Education, the chemical engineering department, the biological sciences department, as well as a dining room and food service facilities, plus a teleconferencing classroom.

**Imbt Laboratories**. This is primarily a high-bay research lab space where the ATLSS project was constructed, and where chemical engineering and Energy Research Center have major research facilities. It is also the headquarters of the “Fleet of the Future” program.

**Johnson Hall** (1955). The building houses the university health service, the counseling service, the chaplain’s office, campus police, and the parking services office. Earle E. “Coxey” Johnson, ’07, a director of General Motors Corp. and university trustee, provided funding for the structure.

**Lamberton Hall** (1907). The structure served as the university commons and dining room until the renovation of Packer Hall in 1958. The building honors the memory of Robert A. Lamberton, third president. It most recently housed the music department until its move to the Zoellner Arts Center. In January of 2006 it reopened as a late-night diner and student programming facility.
Magginees Hall (1970). The multilevel structure is headquarters for the College of Arts and Sciences and also houses the departments of modern languages and literature, history, international relations, political science, and religion studies, as well as the Science, Technology, and Society Program, the Philip and Muriel Berman Center for Jewish Studies, and the Center for International Studies. New classrooms opened on the ground floor in January 2004. The building is named for Albert B. Maginnes, ’21, who was a lawyer and university trustee.

Mart Science and Engineering Library (1968). This structure honors the memory of Leon T. Mart, ’13, and his son, Thomas, ’51. It operates in conjunction with the E. W. Fairchild-Martindale Library and Computing Center.

Seeley G. Mudd Building (1975). This seven-story building houses the chemistry department. The late Seeley G. Mudd was a California medical doctor. The Seeley G. Mudd Foundation, of Los Angeles, made a major gift toward the building.

Neville Hall (1975). This building in the chemistry complex has three auditoriums used for lectures and experiments. The building is named for Dr. Harvey A. Neville, president from 1961 to 1964, who was a chemist.

Newman Association Center. This Victorian structure, until the mid-1970s used as a private residence, was renovated by the Newman Association and serves as a center for students and as a residence for its director, a Roman Catholic chaplain.

Packard Laboratory (1929). The structure was the gift of James Ward Packard, Class of 1884, the electrical pioneer and inventor of the Packard automobile who served as a university trustee. The first Packard automobile (1898) is displayed in the lobby. The building is the headquarters for the College of Engineering and Applied Science. It also houses classrooms and laboratories for mechanical engineering and mechanics, for electrical and computer engineering, and computer science and engineering. An auditorium accommodates large classes and various events.

Philosophy Building (1879). This small building just below Packer Memorial Church was constructed as a porter’s lodge. Today it houses the philosophy department.

Price Hall. This structure formerly was a brewery named Die Alte Brauerei. In 1912 it was remodeled to serve as a dormitory, and it was named in honor of Henry Reese Price, president of the university board of trustees. It serves as the home of the sociology and anthropology department.

Rathbone Hall (1971). This building’s upper level is a major and recently renovated student dining facility, with window walls affording a panoramic view of the Lehigh Valley. The building bears the name of its donor, Monroe Jackson Rathbone, ’21, president of the university board of trustees from 1957 to 1973. Rathbone was chairman of the board, Standard Oil Co. (New Jersey), now Exxon Corp., and was a major innovator in the oil industry. The lower level houses the Residential Services Office.

Rauch Business Center (1990). Philip Rauch ’33, L.L.D. ’79, retired Chairman of the Board and Director of the Parker-Hannifin Corp., made the principal contribution to build this facility. Lehigh’s Rauch Business Center was dedicated in 1990 as the state-of-the-art home of the university’s College of Business and Economics. The $17.8-million facility has 115,000 square feet of floor space on five stories and features a diverse array of classrooms, auditoria, conference rooms, the Career Services Office and is also home to the Perella Financial Services Lab.

Sayre Building (1869). Originally known as the Sayre Observatory, the dome that once housed the telescope can still be seen.

Sherman Fairchild Center for the Physical Sciences (1892, 1976, 1986). The center, completed with help from the Sherman Fairchild Foundation, houses classrooms and laboratories for undergraduate and graduate students in physics, faculty offices and a 260-seat auditorium. The complex includes the Lewis Laboratory, the original five-story stone structure built in 1892, the Sherman Fairchild Laboratory for Solid-State Studies built in 1976, and the 1986 addition comprised of the Oberkotter Auditorium and research laboratories.

Sinclair Laboratory (1970). This facility houses the Center for Optical Technologies, The International Materials Institute, and other research laboratories. It is named for Francis MacDonald Sinclair, and was the gift of his widow, Jennie H. Sinclair. A 12,000-square foot research addition (the Smith Family Center for Optical Technologies) was completed in 2005.

Whitaker Laboratory (1965). This five-story structure with an adjoining two-level classroom-auditorium section honors the memory of Martin Dewey Whitaker, university president from 1946 to 1960. The building serves the Department of Materials Science and Engineering and Center for Advanced Materials and Nanotechnology. There are laboratories for high-pressure research and reaction kinetics, nuclear studies, analog computation, process control, optoelectronics, high-temperature thermodynamics and kinetics, and fine structures and metallography. The Offices of Government and Community Relations are also located in the building.

Wibur Powerhouse (1908). During most of its life, the building served as a power plant with some early engineering laboratory use. Renovated during the 1970s, it provided performing space for student theatrical productions, until the Zoellner Arts Center was built and is now the new home for student shops and project studios for the IPD (Integrated Product Development) IBE (Integrated Business and Engineering) and Design Arts programs.

Williams Hall (1903). This brick structure was the gift of Edward H. Williams, Jr., Class of 1875. Dr. Williams was a professor of mining and geology. The building contains classrooms and laboratories for the departments of biological sciences and of earth and environmental sciences. A small greenhouse adjoins the building. The building was extensively renovated and a fourth story added in 1956 following a fire.

Zoellner Arts Center (1997). With major gifts from Vickie and Robert Zoellner ’54, Dorothy and Dexter Baker ’50, and Claire and Theodore Diamond ’57, Dagit-Saylor Architects created a 105,000 sq. ft. structure designed to showcase Lehigh’s rapidly growing programs in the performing and visual arts as well as the departments of music and theater and 5,000 sq. ft. of exhibition space for the Lehigh University Art Galleries. Baker Hall has a seating capacity of more than 1,000. Diamond Theatre features a thrust stage and seating for 307; and a “black box” theater provides flexible space for experimental productions.
Athletic and Convocational Facilities

Murray H. Goodman Stadium (1988). Joanie and Murray Goodman, Class of 1899, were the principal benefactors. On October 1, 1988, Lehigh opened the gates to Murray H. Goodman Stadium, located on the Goodman Campus. Capacity is 16,000, and the stadium features a three-tiered press box, and limited chair back seating, with picturesque South Mountain in the background.

Grace Hall (1940). The building is named for its donor, Eugene G. Grace, Class of 1899, who was chairman of Bethlehem Steel Corp. and president of the university's board of trustees, 1924 to 1956. Grace Hall serves as the headquarters and offices for Lehigh intramural and club sports. The upper level houses the newly renovated Ulrich Student Center, including movie theatre, game-room and mailboxes. The lower level houses the recently renovated Leeman-Turner Arena.

Ulrich Sports Complex (1999). Lehigh chairman of the board of trustees, Ronald J. Ulrich, '66, funded the construction of the dual field complex for men's and women's soccer, men's and women's lacrosse, and field hockey. The complex features both natural grass and artificial turf fields, permanent seating, a press box and lighting for night contests. The complex was designed by a group of students enrolled in the University's distinctive ILE (Integrated Learning Experience) program, illustrating the strong partnership between athletics and academics at Lehigh.

Lewis Tennis Facility (1994). An anonymous donor made possible the construction of four indoor tennis courts for recreational use as well as team practice, and is named for former Lehigh President W. Deming Lewis. The building also includes men's and women's locker room facilities.

Philip Rauch Field House (1976). Philip Rauch, '33, L.L.D. '79 made a gift toward the facility. The building has 62,000 square feet of uninterrupted floor space—the equivalent of two football fields—for a variety of athletic activities. It has a six-lane, one-eighth-mile flat track.

Sayre Field (1961). Located atop South Mountain, the field is used for intramural sports.

Stabler Athletic & Convocation Center (1979). This arena provides seating for 6,000 people for concerts, spectator sports, including Lehigh's basketball teams, and other events. University trustee Donald B. Stabler, '30, made a major financial contribution toward the facility.

Taylor Gymnasium (1904 and 1913). This structure was the gift of Charles L. Taylor, Class of 1876, who was a friend and business associate of steel magnate Andrew Carnegie. There are two indoor swimming pools, two basketball courts, the Welch Fitness Center, men's and women's locker rooms, two racquetball and two squash courts, a steam room, a multi-purpose dance/aerobics room, a climbing wall and a Sports Medicine Complex. The athletic department offices are also housed in the Warren (Pete) Musser wing. The Roger Penske Hall of Fame area opened in the spring of '96.

Cundyce Varsity House (1963 and 2002). The building, expanded and renovated in 2002, houses a modern weight training facility, sports medicine and equipment areas, team meeting and reception areas, and locker rooms for several varsity teams. The Varsity House is located on the Murray H. Goodman Campus adjacent to the John C. Whitehead Football Practice Facility.

Central Heating/Refrigeration Plant

Central Heating and Refrigeration (1969). This glass-walled building houses three boilers that can be fired by either oil or gas. Other equipment provides chilled water for air conditioning.

Technology Center

125 Goodman Drive (1972). Situated on the Murray H. Goodman Campus in Saucon Valley, the building houses the Lehigh-based North East Tier Ben Franklin Advanced Technology Center, the Manufacturers Resource Center, and the University Relations office.

Residential Facilities

Brodhead House (1979). This structure is the university's first high-rise residential facility. The six-story building includes 4-person suites on the five upper floors, with a dining facility and lobby on the entrance level. The building is named in memory of Albert Brodhead, a member of the Class of 1888 who died in 1933, leaving 51 Bethlehem properties to his alma mater.

Campus Square (2002). In August of 2002, Lehigh opened a 250-bed residential complex that includes the campus bookstore and several retail stores. Air-conditioned, two, three and four-bedroom apartments are complete with full kitchen, private bathroom and fully furnished living room/dining room areas. Attached to the complex is a parking garage for 350 cars for residents' convenience.

Dravo House (1948). This 5-story stone edifice is the university's largest residential facility. It bears the name of two brothers, Ralph M. Dravo, Class of 1889, and Francis F. Dravo, Class of 1887, who founded the Dravo Corp., a Pittsburgh-based international construction company. Both men served as university trustees.

Drinker House (1940). This stone building honors the memory of Henry S. Drinker, Class of 1871, university president from 1905 to 1920.

McClintic-Marshall House (1957). This U-shaped stone structure was built in memory of Howard H. McClintic and Charles D. Marshall, both Class of 1888, who founded the McClintic-Marshall Construction Co. The firm was the world's largest independent steel fabricating firm before its acquisition by Bethlehem Steel Corp. in 1931. It built locks for the Panama Canal and constructed the Golden Gate Bridge in San Francisco Bay.

Richards House (1938). The building honors the memory of Charles Russ Richards, president of the university from 1922 to 1935. The building is constructed of stone in modified Gothic design.

Sayre Village (1998). This residential complex is comprised of three apartment buildings and houses students in three- and four-person apartments. Included is a fourth multipurpose community building and outdoor recreation facilities.

Taylor Residential College (1907 and 1918). The U-shaped building is one of the earliest concrete structures ever built. It was the gift of industrialist Andrew Carnegie in honor of his friend and associate, university trustee Charles L. Taylor, Class of 1876. The interior of the building was reconstructed and the exterior refinished prior to the facility becoming Lehigh's first residential college in 1984.

Trembley Park (1975). This seven-building undergraduate apartment complex is named in memory of Francis J. Trembley, Lehigh professor and pioneer ecologist.

Warren Square Complex. This cluster of four residence halls is located on Warren Square and Summit Street. They are upperclass facilities and some are used as special-interest houses.
Centennial I complex (1965)

**Congdon House.** Located at the east end of the Centennial I complex. Dr. Wray H. Congdon served as dean of students, dean of the graduate school, and special assistant to the president. Alpha Chi Omega sorority is housed here.

**Emery House.** It is named for Dr. Natt M. Emery, who was vice president and controller. Pi Beta Phi sorority is housed in Emery.

**Leavitt House.** The Rev. Dr. John McD. Leavitt was the second president, 1875 to 1879.

**McConn House.** C. Maxwell McConn was dean of the university from 1923 to 1938.

**Smiley House.** Dr. E. Kenneth Smiley served as vice president from 1945 to 1964.

**Stoughton House.** Dr. Bradley Stoughton was dean of the engineering college, 1936 to 1939.

**Williams House.** Dr. Clement C. Williams was president of the university, 1935 to 1944.

Centennial II complex (1970)

**Beardslee House.** Dr. Claude G. Beardslee was chaplain from 1931 to 1947.

**Carothers House.** Dr. Neil Carothers was dean of business.

**Palmer House.** Dr. Philip M. Palmer was dean of the arts.

**Stevens House.** The Rt. Rev. William Bacon Stevens, of Philadelphia, was Protestant Episcopal bishop of the Diocese of Pennsylvania and first president of the university board of trustees. He was the principal architect of the university's original academic plan.

**Stoughton House.** Dr. Bradley Stoughton was dean of the engineering college, 1936 to 1939.

**Williams House.** Dr. Clement C. Williams was president of the university, 1935 to 1944.

Saucon Village Apartments (1974)

The five-building garden apartment complex includes housing for married, graduate, and undergraduate students.

**Diamond.** Dr. Herbert M. Diamond, professor emeritus of economics, retired in 1964.

**Gipson.** Dr. Lawrence Henry Gipson, research professor of history, bequeathed his estate to the university to establish the Lawrence Henry Gipson Institute for Eighteenth-Century Studies. Dr. Gipson wrote a monumental 15-volume history, The British Empire before the American Revolution. He won the Pulitzer Prize for volume 10, The Triumphant Empire: Thunderclouds Gather in the West, 1763-1766.

**Hartman.** Dr. James R. Hartman was chairman of the department of mechanical engineering and mechanics.

**More.** Dr. Robert P. More, ’10, dean of the College of Arts and Sciences, who also taught German for forty years, bequeathed to the university his $746,000 estate, amassed after investing $3,000 in IBM stock. The university child care center is located in this building.

**Severs.** Dr. J. Burke Severs, of Bethlehem, is distinguished professor emeritus of English. He is a Chaucerian scholar.

Fraternities and Sororities

The university has a strong fraternity tradition, dating back to 1872. Since the admission of undergraduate women in 1971, several sororities have come into being. Some 600 men live in 21 fraternities, and all of the fraternities have houses located on Asa Packer campus. All are chapters of national fraternities.

An alphabetical listing follows. The date of the founding of the chapter is given in the first column. The second column lists the date the chapter occupied its present house; any additional date indicates the most recent addition or major renovation.

<table>
<thead>
<tr>
<th>Fraternity</th>
<th>Year Founded</th>
<th>Year Occupied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Chi Rho</td>
<td>1918</td>
<td>1968</td>
</tr>
<tr>
<td>Alpha Tau Omega</td>
<td>1966</td>
<td></td>
</tr>
<tr>
<td>Beta Theta Pi</td>
<td>1891</td>
<td>1968</td>
</tr>
<tr>
<td>Chi Phi</td>
<td>1872</td>
<td>1922</td>
</tr>
<tr>
<td>Chi Psi</td>
<td>1893</td>
<td>1916</td>
</tr>
<tr>
<td>Delta Phi</td>
<td>1884</td>
<td>1963</td>
</tr>
<tr>
<td>Delta Sigma Phi</td>
<td>1931</td>
<td>1971</td>
</tr>
<tr>
<td>Delta Tau Delta</td>
<td>1874</td>
<td>1985</td>
</tr>
<tr>
<td>Delta Upsilon</td>
<td>1885</td>
<td>1968</td>
</tr>
<tr>
<td>Kappa Alpha</td>
<td>1894</td>
<td>1961</td>
</tr>
<tr>
<td>Kappa Sigma</td>
<td>1900</td>
<td>1973</td>
</tr>
<tr>
<td>Lambda Chi Alpha</td>
<td>1926</td>
<td>1973</td>
</tr>
<tr>
<td>Phi Gamma Delta</td>
<td>1921</td>
<td>1968</td>
</tr>
<tr>
<td>Phi Kappa Theta</td>
<td>1966</td>
<td></td>
</tr>
<tr>
<td>Phi Sigma Kappa</td>
<td>1901</td>
<td>1957</td>
</tr>
<tr>
<td>Psi Upsilon</td>
<td>1884</td>
<td>1909</td>
</tr>
<tr>
<td>Sigma Alpha Mu</td>
<td>1966</td>
<td></td>
</tr>
<tr>
<td>Sigma Chi</td>
<td>1953</td>
<td></td>
</tr>
<tr>
<td>Sigma Phi Epsilon</td>
<td>1907</td>
<td>1963</td>
</tr>
<tr>
<td>Theta Chi</td>
<td>1942</td>
<td>1964</td>
</tr>
<tr>
<td>Theta Xi</td>
<td>1904</td>
<td>1967</td>
</tr>
</tbody>
</table>

There are eight sororities. All are nationally affiliated. Two reside in the Centennial I Complex, and six, Alpha Gamma Delta, Alpha Omicron Pi, Alpha Phi, Delta Gamma, Gamma Phi Beta, and Kappa Alpha Theta, reside in Sayre Park. Over 300 women live in sororities.

The sororities are listed with year of establishment at Lehigh in the first column and year of moving into their present house in the second column.

<table>
<thead>
<tr>
<th>Sorority</th>
<th>Year Founded</th>
<th>Year Occupied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Chi Omega</td>
<td>(Congdon)</td>
<td>1988</td>
</tr>
<tr>
<td>Alpha Gamma Delta</td>
<td>1975</td>
<td>2000</td>
</tr>
<tr>
<td>Alpha Omicron Pi</td>
<td>1983</td>
<td>2004</td>
</tr>
<tr>
<td>Alpha Phi</td>
<td>1975</td>
<td>1996</td>
</tr>
<tr>
<td>Delta Gamma</td>
<td>1982</td>
<td>2003</td>
</tr>
<tr>
<td>Gamma Phi Beta</td>
<td>1975</td>
<td>1998</td>
</tr>
<tr>
<td>Kappa Alpha Theta</td>
<td>1984</td>
<td>2006</td>
</tr>
<tr>
<td>Pi Beta Phi (Emery)</td>
<td>1997</td>
<td>1998</td>
</tr>
</tbody>
</table>
VII. Administration, Faculty and Staff

This section lists the people whose talents and abilities constitute the university’s most important resource. Members of the board of trustees contribute their expertise to establish the policies of the university. Also listed are the administration, members of the faculty and staff, and the members of the visiting committees who help to keep courses of instruction current and of maximum value to the students and prospective employers.

Board of Trustees

When only the year of the degree is listed, the degree was awarded by Lehigh University.

Officers of the Board As of December 31, 2003

James R. Tanenbaum, chair
Paul N. Leitner, vice chair
Denise M. Blew, corporate secretary and treasurer
David L. Hammer, assistant secretary/assistant treasurer

Members of the Board

Nancy M. Berman, B.A. ’67, Wellesley College; M.A. ’77, Hebrew Union College; Honorary Doctor of Humane Letters ’97; president, Philip and Muriel Berman Foundation; Museum Director Emerita, Skirball Cultural Center

Robert L. Brown, III, B.S. ’78, partner, Pricewaterhouse Coopers

Michael J. Caruso, B.A. ’67, president, Caruso Benefits Group, Inc.

Maria K. Chrin, B.S. ’87, MBA ’89, Columbia University, partner, Circle Financial Group, LLC

Amy R. Churgin, B.A. ’77, M.A., Hunter College, vice president/publisher, Architectural Digest

Kevin L. Clayton, B.A. ’84, M.B.A. ’88, St. Joseph’s University; principal, Oaktree Capital Management LLC

William W. Crouse, III, B.S. ’64, M.B.A. ’71, Pace University; general partner-managing director, Healthcare Ventures.

Frank L. Douglas, B.S. ’66, Ph.D. ’73, M.D. ’77, Cornell University, Executive in Residence, Sloan School of Management, Massachusetts Institute of Technology.

James J. Duane, III, B.A. ’73; M.A. ’75, Manchester University; J.D. ’78, Harvard University, attorney, Taylor, Duane, Barton & Gilman, LLP

Herbert E. Elders, B.A. ’62, M.S. ’64, managing director, Goldman Sachs & Co.

Oldrich Foucek, III, B.A. ’72; J.D. ’75, Case Western Reserve University, managing partner, Tallman, Hudders & Sorrentino

John J. Franchini, B.A. ’97, J.D. ’00 (University of Virginia) attorney, Morgan, Lewis & Bockius

Ronald M. Freeman, B.A. ’60, Bachelor of Laws ’64, Columbia University, retired CEO, Lipper & Co., International, Ltd.

John H. Glanville, B.A. ’77, M.S. ’85, University of Texas, Austin, general partner, Athenaeum Capital Partners.

William P. Griffin, B.A. ’79, senior account executive, Epitome Systems

 Francis J. Ingrassia, B.S. ’75, managing director/partner, Goldman Sachs & Company.

Jane P. Jamieson, B.A. ’75, M.S. ’76, Boston University, executive vice president, Pyramis Global Advisors

Sharon R. Kanovsky, B.S. ’86, M.S. ’91, Temple University; director, Deutsche Asset Management

George N. Kledaras, B.S. ’87, M.S. ’96, New York University, Kledaras Technologies Inc.

Paul N. Leitner, B.S. ’76, M.B.A. ’80, New York University, principal, The Leitner Thomas Group

Joseph R. Perella, B.S. ’64, M.B.A. ’72, Harvard University

Carl E. Petrillo, B.S. ’62, president & CEO, Yonkers Contracting Co., Inc.

Brad Eric Scheler, B.A. ’74, J.D. ’77, Hofstra University; senior partner, Fried, Frank, Harris, Schriver & Jacobson LLP

Sarat Sethi, B.S. ’92, MBA ’97 Harvard Business School, Portfolio Manager – Partner/Principal Douglas C. Lane & Associates

Dennis E. Singleton, III, B.S. ’66; M.B.A. ’68, Harvard University; partner, Spiiker Properties, Inc.

Daniel E. Smith, Jr., B.S. ’71, M.B.A. ’76, Harvard University, president and CEO, Sycamore Networks, Inc.

Tara I. Stacom, B.S. ’80, executive vice president, Cushman & Wakefield, Inc.

Karen L. Stuckey, B.S. ’75, partner, Pricewaterhouse Coopers, LLP

Elliot J. Sussman, B.S. ’73 Yale University, M.D. ’77, Harvard Medical School, M.B.A. ’81, University of Pennsylvania; president, Lehigh Valley Hospital and Health Network

James R. Tanenbaum, B.A. ’71; M.A. ’72, Fletcher School of Diplomacy; J.D. ’75, Partner, Morrison & Foerster, LLP

Kristina M. Theiss, B.S. ’98, M.B.A. ’04, New York University; vice president, Credit Suisse First Boston

Ralph Albert Thomas, B.S. ’76, M.B.A. ’77, executive director, New Jersey Society of CPAs

Charles Tschampion, III, B.S. ’67; M.B.A. ’68; director, Industry Relations, CFA Marketing Division, CFA Institute

Ronald J. Ulrich, B.S. ’67; M.B.A. ’71, New York University, chairman & chief investment officer, Equinox Capital Management, LLC

Finn Wentworth, B.S. ’80, founder, managing principal, Normandy Real Estate Partners


D. Brooks Zug, B.S. ’67, M.B.A. ’70, Harvard University, senior managing director, HarbourVest Partners, LLC.
Trustees Emeriti
William L. Clayton, B.S. ’51, Honorary Doctor of Laws ’87, senior vice president, Salomon Smith Barney
Theodore L. Diamond, B.S. ’37, M.B.A. ’39 Harvard University, president, T. L. Diamond & Co., Inc.
Murray H. Goodman, B.S. ’48, Honorary Doctor of Laws ’88, chairman, The Goodman Company
William C. Hittinger, B.S. ’44, Honorary Doctor of Engineering ’75, retired executive vice president, research and engineering, RCA Corp.
Ronald R. Hoffman, B.S. ’54, retired executive vice president-human resources, Aluminum Co. of America
C. Lester Hogan, B.S. ’42 Montana State University, M.S. ’47, Ph.D. ’50; Honorary Doctor of Engineering ’71, retired consultant to the president, Fairchild Camera and Instrument Corp.
Douglas C. Lane, B.S. ’67, M.B.A. ’68, University of Michigan-Evanston president, Douglas C. Lane & Associates
Eugene Mercy, Jr. B.S. ’59, Honorary Doctor of Laws ’98, Chairman, Granite Capital International Group
Philip R. Peller, B.S. ’60, M.B.A. ’61 New York University; retired partner, Andersen World Wide
Stanley M. Richman, B.S. ’55, retired president, Lightning Service Electric Co.
S. Murray Rust, Jr., B.S./M.S. 34, Honorary Doctor of Humane Letters ’80, retired chairman of the board, Rust Engineering Co.
Edwin F. Schectz, Jr., B.S. ’54, Chairman of the Board & CEO, Guyasuta Investment Advisors, Inc.
James B. Swenson, B.S. ’59, retired partner, PriceWaterhouse
Edward G. Uhl, B.S. ’40, Honorary Doctorate of Science ’75; retired chairman, Fairchild Industries, Inc.
Honorary Trustees
Hans J. Baer, B.S. ’47, M.A. ’50, New York University; Honorary Doctor of Laws ’97, honorary chairman, Julius Baer Holding
Warren V. Musser, B.S. ’49; chairman emeritus, Safeguard Scientific
Robert E. Zoellner, B.S. ’54, Alpine Associates
Victoria Zoellner, Alpine Associates

Principal Officers
Educational information (degrees earned and colleges and universities attended) may be found in the alphabetical listing that follows in this section. The highest degree earned is given here. All offices, unless otherwise noted, are located at Bethlehem, PA 18015; the area code, unless otherwise noted, is (610).

Principal Officers
Alice P. Gast, Ph.D., president; 758-3157
Mohamed S. El-Aasser, Ph.D., provost and vice president for academic affairs; 758-3605
Margaret F. Plympton, M.B.A., vice president for finance and administration; 758-5178
Bonnie N. Devlin, B.A., vice president for advancement; 758-5199
Bradley M. Drexler, B.A., vice president for university relations; 758-4487
Frank A. Roth, J.D., general counsel; 758-3572
Thomas J. Hyclak, interim dean, College of Business and Economics; 758-3400
Anne S. Meltzer, Ph.D., Herbert J. and Ann L. Siegel dean, College of Arts and Sciences 758-4570
Sally A. White, Ph.D., dean, College of Education; 758-3221
S. David Wu, Ph.D., dean, P.C. Rossin College of Engineering and Applied Science; 758-5308
Carl O. Moses, Ph.D., deputy provost for academic programs; 758-5891
Jean R. Soderlund, Ph.D., deputy provost for faculty affairs; 758-3369
J. Bruce Gardiner, interim dean of admissions and financial aid; 758-3101
Bruce M. Taggart, Ph.D., vice provost for library & technology services; 758-3025
David B. Williams, Ph.D., vice provost for research; 758-6120
Steven J. Devlin, Ph.D., vice provost for institutional research; 758-5744
John W. Smeaton, Ph.D., vice provost for student affairs; 758-3890
Denise M. Blew, B.S., CMA, CPA, associate vice president for finance and secretary to the board; 758-3179
Jacqueline Matthews, M.S., associate vice president for human resources; 758-3900
Anthony L. Corallo, M.A., associate vice president for facilities services and campus planning; 758-3970
William D. Michalerya, M.B.A., M.Eng., associate vice president for government relations and economic development; 758-5002
Joseph D. Stetser, Ed.D., Murray H. Goodman dean of athletics; 758-4320

College Offices
College of Arts and Sciences
Maginnes Hall
9 West Packer Avenue; 758-3300
Anne S. Meltzer, Ph.D., Herbert J. and Ann L. Siegel dean
Pam Pepper, M.F.A., associate dean for faculty & staff
Stephen H. Cutcliffe, Ph.D., associate dean, graduate and research programs
Michael Kolchin, Ph.D., associate dean, graduate programs

College of Business and Economics
Rauh Business Center
621 Taylor Street; 758-3400
Thomas J. Hyclak, interim dean
Joan B. DeSalvatore, M.A., associate dean and director, undergraduate program
Michael Kolchin, Ph.D., associate dean, graduate programs
College of Education
Iacocca Hall
111 Research Drive; 758-3225
Sally A. White, Ph.D., dean
Ward Cates, Ph.D., interim associate dean

P.C. Rossin College of Engineering and Applied Science
Packard Laboratory
19 Memorial Drive West; 758-4025
S. David Wu, Ph.D., dean
John P. Coulter, Ph.D., associate dean, graduate studies & research
Gerard P. Lennon, Ph.D., associate dean, undergraduate studies

Offices and Resources
In this section, only the principal officers are listed. For degree information, consult the alphabetical listing that follows.

Academic Outreach
618 Brodhead Avenue; 758-4802
Henry U. Odi, executive director of academic outreach and special projects

Admissions
27 Memorial Drive West; 758-3100
J. Bruce Gardiner, interim dean of admissions and financial aid

Advancement
27 Memorial Drive West; 758-4711
Bonnie N. Devlin, vice president for advancement

Alumni Association
27 Memorial Drive West; 758-3135
Christopher V. Marshall, executive director

Art Galleries/Museum Operations
420 East Packer Avenue; 758-3615
Ricardo Viera, director/curator

Athletics
641 Taylor Street; 758-4300
Joseph D. Sterrett, Murray H. Goodman dean of athletics

Ben Franklin Technology Center
125 Goodman Drive; 758-5200
R. Chad Paul, executive director

Bookstore
9 West Packer Avenue; 758-3375
Cosmos Oliveri, general manager

Budget Office
422 Brodhead Avenue; 758-4204
Stephen J. Guttman, director of budget

Bursar
27 Memorial Drive West; 758-3160
Michael J. King, bursar

Business Services
516 Brodhead Avenue; 758-3840
Mark R. Ironside, executive director

Career Services
621 Taylor Street; 758-3710
Donna L. Goldfeder, director

Center for Writing, Math and Study Skills
35 Sayre Drive; 758-3098
Edward E. Lotto, director

Chaplaincy Services
36 University Drive; 758-3877
Rev. Dr. Lloyd H. Steffen, university chaplain, chairperson and professor of religion studies

Child Care Center
5 Duh Drive; 758-5437
Kathy N. Calabrese, director

Community and Regional Affairs
5 Whitaker Lab; 758-5801
Dale A. Kochard, executive director for community and regional affairs

Computing Center (see Information Resources)

Conference Services
63 University Drive; 758-5306
Mary Kay Baker, director

Controller's Office
524 Brodhead Avenue; 758-3140
Kathleen J. Miller, controller

Corporate and Foundation Relations
27 Memorial Drive West; 758-6845
Kathryn Humphreys, assistant vice president

Counseling & Psychological Services
36 University Drive; 758-3880
Ian T. Birky, director

Dean of Students
29 Trembley Drive; 758-4156
Sharon K. Basso, associate vice provost and dean of students

Development (see Advancement)

Distance Education (see Special Academic Programs)

Environmental Health and Safety
616 Brodhead Avenue; 758-4251
Barbara A. Plohocki, director

Facilities Services and Planning
461 Webster Street; 758-3970
Anthony L. Corallo, associate vice president

Finance and Administration
27 Memorial Drive West; 758-3180
Margaret E. Plympton, vice president

Financial Aid
218 W. Packer Avenue; 758-3181
Linda F. Bell, director

Fraternity Management Association
219 Warren Square; 758-3888
Elizabeth M. Fisher, executive director

General Counsel
27 Memorial Drive West; 758-3572
Frank A. Roth, Esq., general counsel

Government Affairs and Community Affairs
5 Whitaker Lab; 758-5802
William D. Michalerya, associate vice president; 758-5802
Vito G. Gallo, assistant vice president for state relations; 758-5801
Dale Kochard, executive Director for Community & Regional affairs; 758-5801

Graduate Student Life
26 Sayre Observatory
Karen H. Huang, director of graduate student life; 758-3648

Health Center
36 University Drive; 758-3870
Susan C. Kitei, M.D., director

Human Resources
428 Brodhead Avenue; 758-3900
Jacqueline Matthews, associate vice president

Institutional Purchasing
516 Brodhead Avenue; 758-3840
Patricia L. Reich, director

Institutional Research
422 Brodhead Ave.; 758-5890
Steven J. Devlin, vice provost for institutional research
Scott M. Knauss, director

Internal Audit
526 Brodhead Avenue; 758-5012
Robert J. Eichenlaub, director

International Students and Scholars
5 E. Packer Avenue; 758-4859
Goisa Nansteel, manager of International Students and Scholars

Library and Technology Services
8A East Packer Avenue; 758-3025
Bruce M. Taggart, vice provost

Mailing and Printing Services
118 ATLSS Drive; 758-5402 (Mailing); 758-5408 (Printing)
Glenn H. Strause, director

Manufacturers Resource Center
125 Goodman Drive; 758-5599
Jack E. Plunder, executive director

Parking Services
36 University Drive; 758-3893

Personnel (see Human Resources)

Police (see University Police)

President’s Office
27 Memorial Drive West; 758-3157
Alice P. Gast, president

Provost’s Office
27 Memorial Drive West; 758-3605
Mohamed S. El-Aasser, provost and vice president for academic affairs

Registrar
27 Memorial Drive West; 758-3200
Bruce S. Correll, registrar

Research and Sponsored Programs
526 Brodhead Avenue; 758-3021
Thomas J. Meischeid, director

Residential Services
63 University Drive; 758-3500
Ozzie Breiner, director

Risk Management
616 Brodhead Ave.; 758-3899
Richard Freeman, director

Special Academic Programs (Distance Education and Summer Studies)
36 University Drive; 758-3966 (Summer); 758-4373 (Distance)
James A. Brown, director

Sports Communications
641 Taylor Street; 758-3174
Jeff Tourial, director

Student Affairs
29 Trembley Drive; 758-3890
John W. Smeaton, vice provost for student affairs

Student Auxiliary Services
63 Rathbone Hall; 758-5339
David M. Joseph, executive director

Summer Studies (see Special Academic Programs)

Transportation Services
126 Goodman Drive; 758-4410
Christopher J. Christian, director

Treasurer (see Finance and Administration)

University Police
36 University Drive; 758-4200
Edward K. Shupp, chief

University Relations
125 Goodman Drive; 758-4487
Bradley M. Drexler, vice president

Vice Provost for Research
27 Memorial Drive West; 758-6120
David B. Williams, vice provost

Women’s Center
29 Trembley Drive; 758-6484
Kristen R. Handler, director of women’s center

Zoellner Arts Center
420 East Packer Avenue; 758-5323
Elizabeth Scofield, executive director

Faculty and Emeriti

The first date after the name is the date of appointment to continuous service on the Lehigh University faculty or staff; the second date, when the first fails to do so, indicates the date of appointment to the present professional rank. Where the name of the institution awarding a high-level degree is not given, the institution is the same one that awarded the previous degree listed.

P.E. indicates certification as a professional engineer; C.P.A. indicates certified public accountant. A.P.R. indicates accreditation by Public Relations Society of America.


B


Nicholas W. Balabkins (1957, 1994), professor emeritus of economics. Dipl.nr.pol., Gottingen (Germany), 1949; M.A., Rutgers, 1953; Ph.D., 1956.


Maria Bykovskaia (2002), assistant professor of biological sciences. M.S., Leningrad (Russia), 1987; Ph.D., Russian Academy of Sciences (Russia), 1992.


Mooi Choo Chua (2004), associate professor of computer science and engineering. B.E., Malaya (Malaysia), 1984; M.S., California, 1988; Ph.D., 1991.

D


E


Mohamed S. El-Aasser (2007, 2004), provost and vice president for academic affairs; director, emulsion polymers institute and professor of chemical engineering. B.S., Alexandria (Egypt), 1962; M.S., 1966; Ph.D., McGill (Canada), 1972.


F


G


Jeff Heflin (2001), assistant professor of computer science and engineering. B.S., William and Mary, 1992; M.S., Maryland, 1999; Ph.D., 2001.


Chuan C. Hsiung (1952, 1984), professor emeritus of mathematics. B.S., Cheking (China), 1936; Ph.D., Michigan State, 1948.


Xiaolei Huang (2006), assistant professor of computer science engineering. B.S., Tsinghua University (China), 2000; M.S., Rutgers, 2001; Ph.D., 2006.


James C.M. Hwang (1988), professor of electrical and computer engineering. B.S., National Taiwan (Taiwan), 1976; M.S., Cornell, 1973; Ph.D., 1976.


K


K


Kai Landskron (2006), assistant professor of chemistry. Undergraduate studies, Bayreuth (Germany), 1998; Ph.D., Ludwig Maximilians (Germany), 2001.


Henry Leidheiser, Jr. (1968, 1990), professor emeritus of chemistry. B.S., Virginia, 1941; M.S., 1943; Ph.D., 1946.


Tianbo Liu (2005), assistant professor of chemistry. B.S., Peking (China), 1994; Ph.D., Stony Brook, 1999.


Le-Wu Lu (1961, 2004), Bruce G. Johnston professor emeritus of civil engineering, B.S., National Taiwan (Taiwan), 1954; M.S., Iowa State, 1956; Ph.D., Lehigh, 1960.


M


Stefan Maas (2003), assistant professor of biological sciences. M.A., Free University (Germany), 1993; Ph.D., Heidelberg (Germany), 1996.


Jutta Marxillier (2004), professor of practice of biological sciences. B.S., Giessen (Germany), 1984; M.S., 1989; Ph.D., Heidelberg (Germany), 1993.


Joseph R. Merked (1962, 1988), professor emeritus of chemistry. B.S., Moravian, 1948; M.S., Purdue, 1950; Ph.D., Maryland, 1952.


Peter Mueller (1980, 1983), associate professor of civil engineering. Dipl. Ing., ETH (Switzerland), 1967; Dr. sc. tech., 1978.


Roger N. Nagel (1982), Harvey E. Wagner chair in manufacturing systems engineering, professor of computer science and engineering; director, intelligent systems laboratory and senior fellow for innovative programs for the provost's office. B.S., Stevens Institute of Technology, 1964; M.S., 1969; Ph.D., Maryland, 1976.


Alan W. Pence (1957, 1997), provost emeritus and professor emeritus of materials science and engineering.

B.S., Cornell, 1957; M.S., Lehigh, 1959; Ph.D., 1962.


Tom F. Peters (1989), professor of art and architecture, and history, and director, the building and architectural technology institute. M. Arch., ETH (Switzerland), 1969; Dr.t.c., 1977; Habilitation Fuer Technikgeschichte TH, Darmstadt, 1992.


Q


R


James M. Ricles (1992, 2000), Bruce G. Johnston professor of structural engineering and professor of civil engineering. B.S., Texas, 1979; M.S., 1980; Ph.D., California at Berkeley, 1987; P.E., California.


James E. Sturm (1956, 1995), professor emeritus of chemistry. B.A., St. John’s (Minnesota), 1951; Ph.D., Notre Dame, 1957.


Dmitri Veenov (2006), assistant professor of chemistry. B.S., Moscow State University (Russia), 1991; M.S., Case Western Reserve, 1994; Ph.D., Harvard, 1999.


W


Ping-Shi Wu (2006), assistant professor of mathematics. B.S., Tamkang (Taiwan), 1994; M.S., 1996; M.S., California at Davis, 2002; Ph.D., 2005.


Y

Yuliang Yao (2003), C. Scott Hartz '68 term professorship and assistant professor of management. B.S., Shanghai Jiao Tong (China), 1995; M.B.A., Rensselaer Polytechnic Institute, 1997; Ph.D., Maryland, 2002.


Z


Research Organizations/Directors and Staff

Directors and staff members of the university's research centers and institutes are listed. Complete degree information may be found in the faculty and staff alphabetical listings. In some cases, areas of research interest are given. All addresses are Bethlehem, Pa. 18015, and the area code is (610).

Center for Polymer Science and Engineering

111 Research Drive; 758-3590
Manoj K. Chaudhury, Ph.D.; John Coulter, Ph.D.; Gregory Ferguson, Ph.D.; Natalie Foster, Ph.D.; Ned Heindel, Ph.D.; Andrew Klein, Ph.D.; H. Daniel Ou-Yang, Ph.D.; Ray Pearson, Ph.D., director; Steven L. Regen, Ph.D.; James Roberts, Ph.D.; Cesar A. Silebi, Ph.D.; Gary Simmons, Ph.D., Arkady S. Voloshin, Ph.D.

Center for Promoting Research to Practice

L-111 Iacocca Hall, 111 Research Drive (610)-758-3258
Edward S. Shapiro, Ph.D., Director, Linda Bambara, Ph.D.; George J. DaPaol, Ph.D.; Asha Jitendra, Ph.D.; Lee Kern, Ph.D.; Patricia Manz, Ph.D.; Ageliki Nicolopoulou, Ph.D., George White, Ph.D.

Center for Optical Technologies

Sinclar Laboratory, 7 Asa Drive; 610-758-2600; FAX 610-758-2605; www.lehigh.edu/optics
Administration: Thomas L. Koch, Ph.D., Director; Kimberly D.C. Trapp, Industry Liaison Officer; Anne L. Nierer, Administrative Coordinator.
Faculty Associates: Fil Bartoli, Ph.D., Ivan Biaggio, Ph.D., Rick Blum, Ph.D., Slade Cappill, Ph.D., Helen Chan, Pd.D., Volkmar Dierolf, Ph.D.; Yuje Ding, Ph.D.; James Hwang, Ph.D., Mhradis Haral, Ph.D.; Himandu Jain, Ph.D.; Thomas Koch, Ph.D.; Tiffany Li, Ph.D., Alastair McCaulay, Ph.D., Herman Niel, Ph.D., Boon-Siew Ooi, Ph.D.; Daniel Ou-Yang, Ph.D.; Sibel Pamukcu, Ph.D., Raymond Pearson, Ph.D.; Slava Rotkin, Ph.D., Michael Stavola, Ph.D., Nelson Tansu, Ph.D.; Svethan Tatic-Lucic, Ph.D., Jean Toulouse, Ph.D., Richard Vinci, Ph.D., Marvin White, Ph.D.

Center for Value Chain Research

Address: Rauch Business Center, 621 Taylor St.
Susan A. Sherer, Ph.D. and Lawrence V. Snyder, Ph.D., co-directors; Rosemary T. Berger, Ph.D.; Ravi Chitturi, Ph.D.; Jim Dearden, Ph.D.; Parveen P. Gupta, Ph.D.; Joseph C. Hartman, Ph.D.; Joy Ruihua Jiang, Ph.D.; Heindel, Ph.D., Andrew Klein, Ph.D.; H. Daniel Ou-Yang, Ph.D.; Ray Pearson, Ph.D., director; Steven L. Regen, Ph.D.; James Roberts, Ph.D.; Cesar A. Silebi, Ph.D.; Gary Simmons, Ph.D., Arkady S. Voloshin, Ph.D.

Center for Optical Technologies

Sinclair Laboratory, 7 Asa Drive; 610-758-2600; FAX 610-758-2605; www.lehigh.edu/optics
Administration: Thomas L. Koch, Ph.D., Director; Kimberly D.C. Trapp, Industry Liaison Officer; Anne L. Nierer, Administrative Coordinator.
Faculty Associates: Fil Bartoli, Ph.D., Ivan Biaggio, Ph.D., Rick Blum, Ph.D., Slade Cappill, Ph.D., Helen Chan, Pd.D., Volkmar Dierolf, Ph.D.; Yuje Ding, Ph.D.; James Hwang, Ph.D., Mhradis Haral, Ph.D.; Himandu Jain, Ph.D.; Thomas Koch, Ph.D.; Tiffany Li, Ph.D., Alastair McCaulay, Ph.D., Herman Niel, Ph.D., Boon-Siew Ooi, Ph.D.; Daniel Ou-Yang, Ph.D.; Sibel Pamukcu, Ph.D., Raymond Pearson, Ph.D.; Slava Rotkin, Ph.D., Michael Stavola, Ph.D., Nelson Tansu, Ph.D.; Svethan Tatic-Lucic, Ph.D., Jean Toulouse, Ph.D., Richard Vinci, Ph.D., Marvin White, Ph.D.

Center for Value Chain Research

Address: Rauch Business Center, 621 Taylor St.
Chemical Process Modeling and Control Research Center
Iacocca Hall, 111 Research Drive; 758-4781
Mayuresh V. Kothare, Ph.D., co-director; William L. Luyben, Ph.D., co-director; Hugo S. Caram, Ph.D.; William E. Schiesser, Ph.D.; Stanley H. Johnson, Ph.D.; James T. Hsu, Ph.D.;
Emulsion Polymers Institute
111 Research Drive; 758-3590
Mohamed S. El-Aasser, Ph.D., director; Eric S. Daniels, Ph.D., executive director; E. David Sudol, Ph.D., associate director; Victoria L. Dimonie, Ph.D.; Andrew Klein, Ph.D.; H. Daniel Ou-Yang, Ph.D.; Raymond A. Pearson, Ph.D.; James E. Roberts, Ph.D.; Cesar A. Silebi, Ph.D.; Olga L. Shaffer, M.S.
Energy Research Center
117 ATLSS Drive; 758-4090
Engineering Research Center for Advanced Technology for Large Structural Systems (ATLSS)
117 ATLSS Drive, Imbt Laboratories, Mountain Campus
758-3525; Fax 758-5902; www.atlss.lehigh.edu
Administration: Richard Sause, Ph.D., Director; James M. Rice, Ph.D., Deputy Director; Robert P. Alpago, B.S., Administrative Director; Frank E. Stokes, M.S., Manager - structural laboratories; Peter Y. Bryan, B.S., Manager - computer systems; Phyllis D. Pagel, financial services; Michael Bombard, website development; Alyssa Clapp, B.S., conference/research coordinator; Elizabeth MacAdam, research coordinator; Richard Sause, Ph.D., Co-director-Pennsylvania Infrastructure Technology Alliance (PITA); James M. Rice, Ph.D., Director – Real-Time Multi-Dimensional Testing Facility, (RTMD); Chad Kuks, Ph.D., Operations Manager – RTMD.
Faculty Associates:
Hugo S. Caram, Ph.D., Chemical Engineering; Helen M. Chan, Ph.D., Materials Science & Engineering; John N. DuPont, Ph.D., Materials Science & Engineering; Joachim L. Grenstedt, Ph.D., Mechanical Engineering & Mechanics; Arnold R. Marder, Ph.D., Materials Science & Engineering; Wojciech Z. Misiolek, Ph.D., Materials Science & Engineering; Clay J. Naito, Ph.D., Structural Engineering; Herman F. Nied, Ph.D., Mechanical Engineering & Mechanics; Sibel Pamukcu, Ph.D., Civil & Environmental Engineering; Raymond A. Pearson, Ph.D., Materials Science & Engineering; Stephen P. Persik, Ph.D., Structural Engineering; James M. Ricles, Ph.D., Structural Engineering; Richard Sause, Ph.D., Structural Engineering; John L. Wilson, Ph.D., Structural Engineering; Yunfeng Zhang, Ph.D., Structural Engineering
Faculty Emeritus Associates:
John W. Fisher, Ph.D., emeritus, Structural Engineering; John H. Gross, Ph.D., emeritus, Materials Science & Engineering; Le-Wu Lu, Ph.D., emeritus, Structural Engineering; Alan W. Pence, Ph.D., emeritus, Materials Science & Engineering; Robert Stout, Ph.D., emeritus, Materials Science & Engineering; Ben T. Yen, Ph.D., emeritus, Structural Engineering
Research/Staff Associates:
Ian C. Hodgson, M.S., Infrastructure Monitoring; Eric J. Kaufmann, Ph.D., Metallography/Fractography; Husam Mahmoud, M.S., Infrastructure Monitoring; Thomas M. Marullo, M.S., Software; development/System Administration - RTMD; Sougata Roy, Ph.D., Infrastructure Monitoring/Fatigue
Iacocca Institute
111 Research Drive; 758-6723
Dr. Mohamed S. El-Aasser, Provost & Vice President for Academic Affairs; Richard Brandt, Director; Iacocca Institute and Director, Global Village; Vincent G. Munley, Academic Director; Sherry L. Buss, Curriculum Director, Global Village; Mary Frances Schultz-Leon, Candidate Manager, Global Village; Elizabeth Simmons, Manager, Professional Education; Trisha Alexy, Program Administrator, Pennsylvania Governer’s School for Global Entrepreneurship and Program Administrator, Governor’s Institute for Personal Finance and Entrepreneurship, Iacocca Professors: S. David Wu, professor of industrial and systems engineering; Vincent G. Munley, professor, department of economics.
International Materials Institute for New Functionality in Glass (IMI-NFG)
7 Asa Drive, 758-6677. www.lehigh.edu/imi
Himanshu Jain, Eng.Sc.D., Director
Carlo G. Pantano, Ph.D. (Penn State University), Co-Director
William R. Heffner, Ph.D., Associate Director
Ma.Florevel Fusin-Wischusen, Program Coordinator
Institute for Metal Forming
5 E. Packer Avenue; 758-4252
Wojciech Z. Misiolek Sc.D., director, Arlan O. Benscoter, John P. Coulter, Ph.D., John DuPont, Ph.D., Edwin W. Force II, Mikell P Groover, Ph.D., Thomas Lloyd, Ph.D., Arnold R. Marder, Ph.D.; Michael Rex; David B. Williams, Ph.D.
Lawrence Henry Gipsion Institute for Eighteenth-Century Studies
9 W. Packer Avenue; 758-3369/3360
Scott Paul Gordon, Ph.D., co-director; Monica Najar, Ph.D., co-director; Michael G. Baylor, Ph.D.; Marie-Helene Chabut, Ph.D.; Stephen H. Cutcliffe, Ph.D.; Elizabeth Dolan, Ph.D.; Jan Fergus, Ph.D.; Edward J. Gallagher, Ph.D., Philip A. Metzger, Ph.D.; James S. Saeger, Ph.D.; John Savage, Ph.D.; Jean R. Soderlund, Ph.D.
Martindale Center for the Study of Private Enterprise
621 Taylor Street; 758-4771
J. Richard Aronson, Ph.D., director; Robert J. Thornton, Ph.D., associate director; Todd Watkins, Ph.D., associate director and director of the Kalmbach Institute for the Study of Regional Political Economy; Judith McDonald, Ph.D., associate director and director, Canadian Studies Institute; Robert Kuchta, assistant director for marketing; Anne M. Anderson, Ph.D.; Henri Barkey, Ph.D.; Michael Baylor, Ph.D.; James Dearden, Ph.D.; Mary Beth Deily, Ph.D.; Thomas Huylak, Ph.D.; Arthur E. King, Ph.D.; Janet M. Liible, Ph.D.; Vincent Munley, Ph.D.; David H. Myers, Ph.D.; David Pankenier, Ph.D.; James Saeger, Ph.D.; Paul Salerni, Ph.D.; Roger Simon, Ph.D.; Richard Weisman, Ph.D.

Faculty Emeriti
Richard W. Barnness, Ph.D.; Carl R. Beidleman, Ph.D.; Raymond Bell, Ph.D.; Oles M. Smolansky, Ph.D.; Howard R. Whitcomb, Ph.D.

Staff:
Sharon P. Bernstein, Administrative Coordinator; Rosemary H. Krauss, Coordinator; Andrea C. Wuerth, Ph.D., Program Coordinator.

Center for Advanced Materials and Nanotechnology
5 E. Packer Ave; 758-3850
Faculty: Martin P. Harmer, Director, CAMN (Materials Science and Engineering); Chris Kiely, Director, Nanoncharacterization Laboratory (Materials Science & Engineering); Alec Bodzin (Education and Human Services); Hugo Caram (Chemical Engineering); Slade Cargill (Materials Science and Engineering); Lynne Casimiris (Biological Sciences); Helen Chan (Materials Science & Engineering); Steve Cutcliffe (Science, Technology, and Society); Volkmar Dierolf (Physics); Alwyn Eades (Materials Science & Engineering); Sharon Friedeman (Journalism and Communication); James Gilchrist (Chemical Engineering); Joachim Grenestedt (Mechanical Engineering & Mechanics); Anand Jagota (Chemical Engineering); Himanzhu Jain (Materials Science & Engineering); Bruce Koe (Chemistry); Charles Lyman (Materials Science & Engineering); Herman Nied (Mechanical Engineering & Mechanics); Ray Pearson (Materials Science & Engineering); Slava Rotkin (Physics); Andrey Soukhojak (Materials Science & Engineering); Michael Stavola (Physics); Svetlana Tatic-Lucic (Computer Science & Engineering); Richard Vinci (Materials Science & Engineering); David Williams (Materials Science and Engineering/Vice Provost for Research); Wei-Xian Zhang (Civil & Environmental Engineering);

Staff: David Ackland, Research Scientist; Arlan Berncote, Research Scientist; Andrea Harmer, Director of Web Based Instruction; Deanne Hoenscheid, Administrative Manager; Eugene Kozma, Electro Mechanical Technician; Gene Lucadamo, Industrial Liaison Officer; Alfred Miller, Research Scientist; William Mushock, Electron Microscope Technician; Susan Steeler, Secretary; Masashi Watanabe, Research Scientist; Xiaoqin Zhao, Web Developer.

Murray H. Goodman Center for Real Estate Studies
621 Taylor Street; 758-4778
Stephen F. Thode, DBA, director.

Philip and Muriel Berman Center for Jewish Studies
9 W. Packer Avenue; 758-4869, fax 758-4858
Laurence J. Silberstein, Ph.D., director; Chava Weissler, Ph.D.; Robert L. Cohn, Ph.D. (Lafayette College); Ruth Knafo Setton, Writer in Residence. Associated faculty: David C. Amidon, Jr., M.A.; Bunnie Piltch, M.A.; Roslyn Weiss, Ph.D.; Benjamin G. Wright III, Ph.D.

Sherman Fairchild Center for Solid-State Studies
16A Memorial Drive, East
Marvin H. White, Ph.D., Director and Sherman Fairchild Professor of Solid-State Studies; W. Beall Fowler, Ph.D. (Emeritus); Miltiadis Hatalis, Ph.D.; James Hwang, Ph.D.; Ralph Jacobson, Ph.D., Sherman Fairchild (Emeritus) Professor of Solid State Studies; H. Daniel Ou-Yang, Ph.D.; Michael Stavola, Ph.D., Sherman Fairchild Professor of Solid-State Studies; Jean Toulouse, Ph.D.; George D. Watkins, Ph.D. (Emeritus), Sherman Fairchild Professor of Solid-State Studies; Slade Cargill, PhD; Sherman Fairchild Professor of Solid-State Studies; Svetlana Tatic-Lucic, Ph.D.

Center for Manufacturing Systems Engineering
200 W. Packer Avenue; (610) 758-5157
Keith M. Gardiner, Ph.D., director; John P. Coulter, Ph.D.; Steven L. Goldstein, Ph.D.; Mikell P. Groover, Ph.D.; Parveen P. Gupta, Ph.D.; Roger N. Nagel, Ph.D.; Raymond Pearson, Ph.D.; Theodore Schlie, Ph.D.; Harvey Stenger, Ph.D.; Robert J. Trent, Ph.D.; George R. Wilson, Ph.D.
Science, Technology and Society
Program and Technology Studies
Resource Center
9 W. Packer Avenue; 758-3350
Stephen H. Cutcliffe, director; Henri J. Barkey, international relations; Gordon Bearn, philosophy; Lynn S. Beedle, civil engineering; Susan Cady, library and technology services; Gail Cooper, history; Jack A. DeBella, English; Robin Dillon, philosophy; Nikolai Eberhardt, electrical engineering and computer science; Edward B. Evenson, geological sciences; Sharon M. Friedman, journalism; Edward J. Gallagher, English; Norman J. Girardot, religion studies; Steven L. Goldman, philosophy and history; Mikell P. Groover, industrial engineering; Ned D. Heindel, chemistry; Roy C. Herrenkohl, sociology; Chaim D. Kaufmann, international relations; Kenneth L. Kraft, religion studies; Judith N. Lasker, sociology; Benjamin Litt, management and marketing; John R. McNamara, economics; Anne S. Meltzer, earth and environmental sciences; Philip A. Metzger, Linderman Library; Jeffrey Milet, speech and theater; Vincent G. Munley, economics; Roger N. Nagel, electrical engineering and computer science; Michael R. Notis, materials science and engineering; Anthony O'Brien, economics; Alan W. Pense, materials science and engineering; Tom P. Peters, art and architecture; Michael Raposa, religion studies; Robert E. Rosenwein, sociology and anthropology; Christine M. Roysdon, Linderman Library; William E. Schiesser, chemical engineering; Keith J. Schray, chemistry; Roger D. Simon, history; Bruce M. Smackey, management and marketing; David Small, sociology and classical studies; John K. Smith, history; Drew Snyder, art and architecture; Bruce Thomas, art and architecture; Ricardo Viera, art and architecture; Todd Watkins, economics; Albert H. Wurth, political science; Raymond F. Wykle, international relations; Ivan Zaknic, art and architecture; Peter K. Zeithler, earth and environmental sciences.

The Philip Rauch Center for Business Communications
621 Taylor Street; 758-4863
Robert R. Kendi, M.S., director.

Small Business Development Center
Sandra F. Holsonback, M.B.A., director; Mary Beth Zingone, A.C.A.S.; associate director; Kim Edwards, B.S.Ed., program director, financing assistance program; Jim Sintz, M.A., program director, government marketing assistance program; Cora Landis, program director, lexnet; Sally Handlon, M.B.A., program director, business education and training program; Greg Maclin, M.S.; Mo Elbanna, B.A.
Index

A
Academic Rules and Regulations 29
Accounting 90
Accreditation 6
Admission Guidelines 6
Admission to Graduate Study 56
Advanced Placement 8
Advanced Technology For Large Structural Systems (ATLSS) Research Center 79
Advisement 29
African Studies 92
Alcohol and Other Drug Programs 25
American Studies 94
Application for Degree 30
Application Procedures 12
Applied Mathematics and Statistics 97
Applied Science 97
Apprentice Teaching 52, 98
Arabic 336
Art and Architecture 98
Art Galleries 22
Arts and Sciences Courses 106
Arts-Engineering Courses 106
Asian Studies 112
Astronomy and Astrophysics 118
Athletic Opportunities 18
Auditing 33

B
Ben Franklin Technology Partners 85
Bethlehem 19
Biochemistry 120
Bioengineering Program 121
Biological Sciences 125
Biology 134
Bioscience and Biotechnology Program 135
Board of Trustees 410
Business 135
Business and Economics Graduate Courses 139
Business Information Systems 137

C
Calendar 5
Campus Life 15
Campus Visits 7
Career Services 26
Center for Advanced Materials and Nanotechnology (CAMN) 83
Center for Manufacturing Systems Engineering 87
Center for Optical Technologies (COT) 75
Center for Polymer Science and Engineering 73
Center for Promoting Research to Practice 74
Center for Value Chain Research 75
Centers and Institutes 42
Chemical Engineering 107, 148
Chemical Process Modeling and Control Research Center 76
Chemistry 155
Chinese 336
Civil and Environmental Engineering 168
Civil and Environmental Engineering and Earth and Environmental Sciences 178
Civil Engineering 107
Classical Studies 180
Cognitive Science 183
Colleges
Arts and Sciences 34
Business and Economics 41
Education 45
Engineering and Applied Science 45
Communication 186
Computer Engineering 108, 186
Computer Science 108
Computer Science and Business Program 42, 188
Computer Science and Engineering 190
Continuing Education 28
Cooperative Education 199
Counseling and Psychological Service 25
Credit and Grades
Graduate 58
Undergraduate 30

D
Degree Information
Graduate 61
Undergraduate 29
Dentistry Program 39
Department Honors 33
Design Arts 200
Disability Support Services 25
Distance Education 28

E
Early Decision 7
Earth and Environmental Sciences 204
Eckardt Scholars Program 34
Economics 214
Education, College of 220
Education, Graduate Degrees in 68
Electrical and Computer Engineering 233
Electrical Engineering 109, 243
Electrical Engineering and
Engineering Physics 243
Emulsion Polymers Institute 78
Energy Research Center 78
Engineering 244
Engineering Mathematics 244
English as a Second Language 50, 254
English Courses 244
English Language Learning Center
(ELLC) 28
Enterprise Systems Center (ESC) 80
Entrance Examinations 6
Entrepreneurship 255
Environmental Engineering 110
Environmental Studies 256

F
Faculty and Emeriti 413
Faculty Development and
Learning Innovations 23
Finance 260
Financial Aid 12
Financial Aid, Graduate 59
Fine Arts 262
First-Year Class (FYC) 37
Five-Year Programs 29, 262
Foreign Culture and Civilization 262
Foreign Language Study 36
Foreign Literature 262
Fraternities and Sororities 15, 409
French 262

G
Geology 262
German 262, 339
Global Citizenship 262
Global Studies Program 263
Global Union: 49
Good Citizenship 18
Government 263
Graduate Studies Organizations 68
Graduate Study 54
Graduation 58
Graduation Honors 33
Graduation Requirements 29
Greek 263
Guest Speakers 18

H
Health & Wellness Center 25
Health Professions Programs 38
Hebrew 263, 340
History 263
History and Purpose 401
Honor Societies 33
Humanities 271

I
Iacocca Institute 81
Industrial and Systems Engineering 274
Industrial Engineering 110
Information and Systems
Engineering 111, 282
Institute for Metal Forming 81
Integrated Business and Engineering Honors
Program 42
Integrated Real Estate @t Lehigh
Program 285
Interdisciplinary Graduate Programs 69
Interdisciplinary Graduate Study
and Research 69
Interdisciplinary Programs 48
Interdisciplinary Technology 287
International Materials Institute for New
Functionality in Glass 82
International Multimedia Resource
Center 50
International Relations 287
International Students, Special
Services for 49
Internships 36
Intramural/Club Sports 18

J
Japanese 291, 340
Jewish Studies 291
Journalism and Communication 291
Junior-Year Writing Certification 36

L
Languages 297
Latin American Studies 297
Law 298
Lawrence Henry Gipson Institute for Eighteenth-
Century Studies 82
Library and Technology Services 21

M
Management 298
Management Science 299
Manufacturers Resource Center 86
Manufacturing Systems Engineering 300
Marketing 301
Martindale Center for the Study of Private
Enterprise 83
Materials Science and Engineering 111, 304
Mathematics 312
Mechanical Engineering and
Mechanics 112, 320
Media Center and Services 22
Military Science 331
Modern Languages and Literature 334
Murray H. Goodman Center for Real
Estate Studies 84
Music 343

N
Networking and Voice Communications 21

O
Office of Fellowship Advising 27
Office of International Programs 55
Office of International Students and
Scholars 48
Offices and Resources 412
Optometry Program 39

P
Pass-Fail Systems for Undergraduates 32
Philip and Muriel Berman Center for
Jewish Studies 83
Philip Rauch Center for
Business Communications 86
Philosophy 347
Physics 352
Political Science 359
Pre-Law Programs 38
Premedical Education Program 39
Presidents of the University 402
Principal Officers 411
Psychology 365

R
Refunds of Charges 11
Registration, Graduate 57
Religion Studies 373
Religious Activities 16
Research Centers and Institutes 73
Research Organizations/ Directors and
Staff 429
Residence Halls 15
Residency Requirement, Undergraduate 29
Residential Facilities 408
Review-Consultation-Study Period 33
Russian 341, 379
Russian Studies 379

S
Scholastic Averages and Probation 31
School Psychology 379
Science, Environmental and
Technical Writing 379
Science, Technology and Society 380
Sherman Fairchild Center for Solid-State
Studies 85
Small Business Development Center 87
Social Psychology 382
Sociology and Anthropology 382
Spanish 341, 391
Special Academic Programs 28
Special Education 391
Special Undergraduate
Academic Opportunities 47
Speech 391
Statistics 391
Student Council, Graduate 69
Student Employment 22
Student Resources 24
Student Responsibilities 15
Student Rights 14
Study Abroad 49
Summer Studies 28
Supply Chain Management 391

T
Teacher Certification Program 40
Technology, Interdisciplinary Courses 392
The General College Division 53
Theatre 16, 393
Thesis 30
Transfer Students 8
Tuition and Fees 10
Tuition and Fees, Graduate 59
Tuition Refunds 59
Two-Bachelor-Degree Programs 29

U
University Aid 13
University Buildings 405
University Press 23
University Related Centers 85
Urban Studies 396

V
Volunteer and Community Services 17

W
Women's Studies 397
Notes