Electrical and Computer Engineering

The department of electrical and computer engineering (ECE) offers undergraduate and graduate programs of study along with supporting research for students interested in the field of electrical engineering. It also jointly supports undergraduate and graduate programs in computer engineering, and computer science with the computer science and engineering (CSE) department. Graduate study leads to the degrees, master of science, master of engineering, and doctor of philosophy in electrical engineering, and the master of science and doctor of philosophy in computer engineering.

The undergraduate programs emphasize the fundamental aspects of their respective areas. Engineering design concepts are introduced early in the curriculum, and required instructional laboratories introduce design as a hands-on activity. Electives permit students to tailor their programs according to their interests and goals, whether they be in preparation for graduate study or entry into industry. Students are free to select courses offered by other departments and are encouraged to do so when appropriate. In this way they can prepare themselves for activities which straddle departmental boundaries or for entry into professional schools such as medicine or management. Students have the opportunity to synthesize and apply their knowledge in a senior design project. Students may use the senior design project as a way to participate in the various research projects in the department.

The department maintains a number of laboratories in support of its curricular programs. These laboratories include the sophomore and junior lab electronic circuits and systems laboratory, microcomputer laboratory, electromechanics laboratory, digital signal processing laboratory, digital systems laboratory and senior projects laboratories. The department has research laboratories in computer architectures, wireless communications, optoelectronics, compound semiconductors, electron device physics, microelectronics fabrication, signal processing, and communications. These laboratories, among others, are available for undergraduate projects.

The graduate programs allow students to deepen their professional knowledge, understanding, and capability within their subspecialties. Each graduate student develops a program of study in consultation with his or her graduate advisor. Key research thrust areas in the department include:

1. Microelectronics and Nanotechnology.
2. Wireless Communications and Networking.
3. Optoelectronics.

Graduate research is encouraged in these and other areas. Computers and computer usage are an essential part of the student’s environment. The university provides a distributed network of about 75 high-performance workstations and over 300 PC-compatible microcomputers in public sites throughout the campus. The ECE department, in conjunction with the CSE department, has state-of-the-art systems to augment and extend the generally available university systems. A primary resource is a network of more than 60 Sun workstations, file servers, and compute servers, running the Unix operating system. In addition, the ECE department has a 16 node cluster that is used for high performance computing. Additional resources to facilitate learning are the approximately 90 workstations running the Microsoft and Linux platforms that are located in the various ECE teaching labs. These systems provide an array of software tools for students and researchers, such as Cadence, Freescale, Agilent Data Systems software, Silvaco, VPI, Matlab, and Labview. The workstations are connected via multiple high-speed ethernet, fiber optic, and ATM networks, which are in turn connected to the university’s backbone network, and to the external world through Internet 2. Students are not required by the department, nor the university, to own a personal computer, but many find such a tool a valuable asset.

A detailed description of the curricular programs follows with a listing of the required courses and with a listing of the departmental course offerings. The departmental courses carry the prefix ECE for electrical and computer engineering. Courses given by the Computer Science and Engineering department have the prefix CSE. Students are urged to search both listings for courses appropriate to their career goals.

Professors. Filbert J. Bartoli, PhD (Catholic University of America); Ricky S. Blum, PhD (University of Pennsylvania); David Richard Decker, PhD (Lehigh University); Stephen Paul DeWeerth, PhD (California Institute of Technology); Yujie Ding, PhD (Johns Hopkins University); Douglas R Frey, PhD (Lehigh University); Mittadi K. Hatalis, PhD (Carnegie Mellon University); James C. Hwang, PhD (Cornell University); Shalinee Kishore, PhD (Princeton University); Alan J. Snyder, PhD (The Pennsylvania State University); Nelson Tansu, PhD (University Wisconsin at Madison); Svetlana Tatic-Lucic, PhD (California Institute of Technology)

Associate Professors. Sushil Kumar, PhD (Massachusetts Institute of Technology); Jing Li, PhD (Texas A&M University); Karl H Norian, PhD (University of London); Parvathinathan Venkitasubramiam, PhD (Cornell University); Meghanad D. Wagh, PhD (Indian Institute of Technology Bombay); Jonathan J. Wierer, PhD (University of Illinois Urbana); Zhiyuan Yan, PhD (University of Illinois Urbana)

Assistant Professors. Yevgeny Berdichevsky, PhD (University of California San Diego); Xiaochen Guo, PhD (University of Rochester); Wenzin Liu, PhD (University Missouri, Rolla); Chao Zhou, PhD (University of Pennsylvania)

Professors Of Practice. William R. Haller, MS (Lehigh University); Ramesh Shankar, PhD (University of Delaware)

Emeriti. Bruce D. Fritchman, PhD (Lehigh University); Frank H. Hielscher, PhD (University of Illinois Urbana); Carl S. Holzinger, PhD (Lehigh University); Alastair D. McAulay, PhD (Carnegie Mellon University); Donald L. Talhelm, MS (Lehigh University); Eric D. Thompson, PhD (Massachusetts Institute of Technology); Kenneth Kai-Ming Tzeng, PhD (University of Illinois Urbana); George D. Watkins, PhD (Harvard University); Marvin H. White, PhD (Ohio State University)

UNDERGRADUATE PROGRAMS

Mission Statement for the Electrical Engineering and Computer Engineering Programs

The mission of the electrical engineering and computer engineering programs is to prepare engineers to meet the challenges of the future, to promote a sense of scholarship, leadership, and service among our graduates, to instill in the students the desire to create, develop, and disseminate new knowledge, and to provide international leadership to the electrical engineering and computer engineering professions.

Program Educational Objectives in Electrical Engineering and Computer Engineering

The graduates of the electrical engineering program will:

1. Solve technologically challenging problems in electrical engineering using their fundamental knowledge of math, science and engineering.
2. Attain positions of responsibility in their chosen careers, including industry, government, medicine, business, law and academia by applying their electrical engineering skills, professional attitudes and ethics.
3. Engage in lifelong learning through graduate studies, research, and continuing education.
4. Apply their knowledge of global, societal and environmental issues in solving engineering problems.
5. Function on multidisciplinary teams using their technical knowledge and effective communication skills.

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

The required courses for this degree contain the fundamentals of linear circuits, systems and control theory, electronic circuits, signal theory, physical electronics, electromagnetic theory, energy conversion, digital systems, and computing techniques. A strong foundation in the physical sciences and in mathematics is required. Approved electives, chosen with the advisor’s consent, are selected in preparation for graduate study or entry into industry according to
individual interests. The program requires a minimum of 134 credit hours. The recommended sequence of courses follows:

<table>
<thead>
<tr>
<th>First Year</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 001</td>
<td></td>
<td>3</td>
<td>ENGL 002</td>
<td>3</td>
</tr>
<tr>
<td>MATH 021</td>
<td></td>
<td>4</td>
<td>MATH 022</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 005</td>
<td></td>
<td>2</td>
<td>2 HSS Elective or ECO 001</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>5-6</td>
<td>Select one of the following:</td>
<td>5-6</td>
</tr>
<tr>
<td>CHM 030 & ENGR 010 1</td>
<td></td>
<td></td>
<td>CHM 030 & ENGR 010 1</td>
<td></td>
</tr>
<tr>
<td>PHY 011 & PHY 012 1</td>
<td></td>
<td></td>
<td>PHY 011 & PHY 012 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14-15</td>
<td></td>
<td>15-17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 033</td>
<td></td>
<td>4</td>
<td>ECE 121</td>
<td>2</td>
</tr>
<tr>
<td>ECE 081</td>
<td></td>
<td>4</td>
<td>ECE 123</td>
<td>3</td>
</tr>
<tr>
<td>PHY 021 & PHY 022</td>
<td></td>
<td>5</td>
<td>ECE 126</td>
<td>3</td>
</tr>
<tr>
<td>MATH 023</td>
<td></td>
<td>4</td>
<td>MATH 205</td>
<td>3</td>
</tr>
<tr>
<td>HSS elective</td>
<td></td>
<td></td>
<td>ECO 001</td>
<td>4</td>
</tr>
<tr>
<td>free elective</td>
<td></td>
<td></td>
<td>HSS elective</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 108</td>
<td></td>
<td>4</td>
<td>ECE 125</td>
<td>3</td>
</tr>
<tr>
<td>ECE 182</td>
<td></td>
<td>1</td>
<td>ECE 138</td>
<td>2</td>
</tr>
<tr>
<td>ECE 202</td>
<td></td>
<td>3</td>
<td>ECE 203</td>
<td>3</td>
</tr>
<tr>
<td>MATH 208</td>
<td></td>
<td>3</td>
<td>MATH 231</td>
<td>3</td>
</tr>
<tr>
<td>HSS elective</td>
<td></td>
<td>3-4 approved technical elective 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>free elective</td>
<td></td>
<td>3 free elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 136</td>
<td></td>
<td>3</td>
<td>ECE 258</td>
<td>2</td>
</tr>
<tr>
<td>ECE 257</td>
<td></td>
<td>3 approved technical electives 2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>HSS elective</td>
<td></td>
<td>3-4 HSS elective</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>approved technical electives 2</td>
<td></td>
<td>6 free elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>free elective</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-19</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 133-139

1 Required natural science courses, one taken fall semester and the other taken in spring

2 Approved technical electives are subjects in the area of science and technology. Students must select a minimum of four courses (totaling at least 12 credits) from the ECE or CSE course listings, with a minimum of two courses in one of the technical areas described in the following list. Students must also choose at least one engineering elective in either materials, mechanics, thermodynamics, fluid mechanics or physical chemistry, and at least one science elective in physics, chemistry or biology. For students interested in solid-state electronics, quantum mechanics is recommended for the science elective.

Approved Technical Electives for Electrical Engineering

Breadth Requirement
Minimum of 4 ECE or CSE elective courses spanning more than one technical area below.

Depth Requirement
Minimum of 2 courses in one of the technical areas described below.

Solid-State Circuits
- ECE 308 Physics and Models of Electronic Devices 3
- ECE 332 Design of Linear Electronic Circuits 3
- ECE 333 Medical Electronics 3
- ECE 337 Introduction to Micro- and Nanofabrication 3
- ECE 351 Microelectronics Technology 3
- ECE 355 Applied Integrated Circuits 3
- ECE 361 Introduction to VLSI Circuits 3
- ECE 362 Introduction to VLSI System Design 3

Signal Processing and Communications
- ECE 212 Control Theory 3
- ECE 339 Graphical Signal Processing 3
- ECE 341 Fundamentals of Wireless Communications 3
- ECE 342 Communication Theory 3
- ECE 343 Digital Signal Processing 3
- ECE 344 Statistical Signal Processing 3
- ECE 364 Introduction to Cryptography and Network Security 3
- ECE 387 Digital Control 3
- ECE 389 Control Systems Laboratory 2

Microwaves and Lightwaves
- ECE 310 Wireless Circuits 3
- ECE 325 Semiconductor Lasers I 3
- ECE 326 Semiconductor Lasers II 3
- ECE 338 Quantum Electronics 3
- ECE 347 Introduction to Integrated Optics 3
- ECE 348 Lightwave Technology 3
- ECE 371 Optical Information Processing 3
- ECE 372 Optical Networks 3

Computers
- Any CSE course except CSE 012, CSE 015, or CSE 252 3
- ECE 201 Computer Architecture 3
- ECE 316 Microcomputer System Design 3
- ECE 319 Digital System Design 3
- ECE 320 Logic Design 3
- ECE 324 Microprocessors 3
- ECE/CSE 336 Embedded Systems 3

Note: Special Topics (3) (The area of each course must be evaluated individually)

MINOR IN ELECTRICAL ENGINEERING

Minor Program Director: William R. Haller The purpose of the Electrical Engineering minor is to enable students to supplement their major with knowledge and skills that increase their ability to realize their multi-disciplinary goals and/or make them more marketable upon graduation.

Required Courses
- ECE 081 Principles of Electrical Engineering 1 4
- ECE 083 or ECE 162 Introduction to Electrical Engineering and Electrical Laboratory 4
- ECE 108 Signals and Systems 2 4
- ECE 123 Electronic Circuits 3

Select one of the following Electrical and Computer Engineering Courses or Other Approved Elective: 3-4
A program of study must be submitted in compliance with the college rules. An oral presentation of the project is required.

The Ph.D. degree in electrical engineering requires the completion of 42 credit hours of work (including the dissertation) beyond the master’s degree (48 hours if the master’s degree is non-Lehigh), the passing of a departmental qualifying examination appropriate to each degree within one year after entrance into the degree program, the passing of a general examination in the candidate’s area of specialization, the admission into candidacy, and the writing and defense of a dissertation. Competence in a foreign language is not required.

The ECE Department has a core curriculum requirement for graduate students in each of the degree programs. The purpose of this requirement is to guarantee that all students pursuing graduate studies in the department acquire an appropriate breadth of knowledge of their discipline.

Electrical Engineering

To satisfy the core curriculum requirements in Electrical Engineering:

- Select three courses from the following five different areas: 9
 - ECE 401: Advanced Computer Architecture
 - ECE 402: Advanced Electromagnetics
 - ECE 441: Fundamentals of Wireless Communications
 - ECE 420: Advanced Circuits and Systems
 - ECE 451: Physics of Semiconductor Devices

Total Credits: 9

Computer Engineering

See catalog entry for Computer Engineering (http://catalog.lehigh.edu/coursesprogramsandcurricula/engineeringandappliedscience/computerengineering).

M.S. in Photonics

The Masters of Science degree in Photonics is an interdisciplinary degree that is designed to provide students with a broad training experience in the various aspects of photonics, including topics in Physics, Electrical Engineering and Materials Science and Engineering. It covers both theoretical and practical topics in areas such as fiber optics, integrated optics, lasers, nonlinear optics and optical materials to prepare the students to work in industry directly after graduation. The program is also designed so as to make it possible for students who wish to continue on for a Ph.D. to still satisfy the requirements of their individual departments for the more advanced degree. For details on this program, see the separate catalog section under Interdisciplinary Graduate Study and Research.

M. S. in Wireless Communications and Network Engineering

The Master of Science degree in Wireless Communications and Network Engineering at Lehigh University is designed to prepare the next generation of engineers for the communications and networking industries. The curriculum aims to produce graduates that can contribute to the design and analysis of communication systems in the broadest context. To accommodate the student’s study of various aspects of wireless communications and networking, we have limited the number of required core courses to allow maximum flexibility in pursuing specific interests.

Required Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 342</td>
<td>Communication Theory</td>
</tr>
<tr>
<td>ECE 441</td>
<td>Fundamentals of Wireless</td>
</tr>
<tr>
<td></td>
<td>Communications</td>
</tr>
<tr>
<td>ECE 404</td>
<td>Computer Networks</td>
</tr>
</tbody>
</table>

Advanced Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 342</td>
<td>Communication Theory</td>
</tr>
<tr>
<td>ECE 441</td>
<td>Fundamentals of Wireless</td>
</tr>
<tr>
<td></td>
<td>Communications</td>
</tr>
</tbody>
</table>

1. ECE 342 must be the first course taken and the core courses should precede advanced courses.
2. In addition to the core courses, the students will take advanced courses that are aimed to furnish the student with a deeper knowledge of more specific types and aspects of information networks.
DEPARTMENTAL COURSES

Courses are listed under the prefixes ECE and CSE. Generally, electrical engineering courses carry the ECE prefix and appear in the following listing. Computer science courses carry the CSE prefix. Computer engineering courses are found under either prefix. The CSE courses are listed in the Computer Science and Engineering department section in this catalog. The reader should consult both listings.

Courses

ECE 033 Introduction to Computer Engineering 4 Credits
Analysis, design and implementation of small digital circuits. Boolean algebra. Minimization techniques, synchronous sequential circuit design, number systems and arithmetic. Microcomputer architecture and assembly level programming.
Prerequisites: CSE 017 or ENGR 010 or ENGR 097

ECE 081 Principles of Electrical Engineering 4 Credits
Circuit elements and laws. Behavior of simple linear networks, include equivalent circuits and solution techniques. Solution of DC circuits and AC circuits using phasor techniques. Introduction to operational amplifiers. Steady state and transient response of simple circuits. Includes a weekly session for review and discussion. May not be taken with ECE 083 for credit.
Prerequisites: (MATH 022 or MATH 096) and PHY 021
Can be taken Concurrently: PHY 021

ECE 083 Introduction to Electrical Engineering 3 Credits
Circuit elements and laws. Behavior of simple linear networks. Characteristics of electronic circuits and modeling. Introduction to functional circuits, such as operational amplifiers, instrumentation amplifiers, and power systems. Introduction to basic filters and data converters. May not be taken with ECE 081 for credit.
Prerequisites: MATH 022 and PHY 021
Can be taken Concurrently: PHY 021

ECE 108 Signals and Systems 4 Credits
Continuous and discrete signals and system descriptions using signal space and transform representations. Includes Fourier series, continuous and discrete Fourier transforms, Laplace transforms, and z-transforms. Introduction to sampling.
Prerequisites: ECE 081

ECE 121 Electronic Circuits Laboratory 2 Credits
One lecture and one laboratory per week. Experiments illustrating the principles of operation of electronic devices and their circuit applications. Basic electronic instrumentation and measurement techniques.
Prerequisites: ECE 081

ECE 123 Electronic Circuits 3 Credits
Methods for analyzing and designing circuits containing electronic devices. Topics include device models, basic amplifier configurations, operating point stabilization, frequency response analysis, and computer-aided analysis of active circuits.
Prerequisites: ECE 081

ECE 125 Circuits and Systems 3 Credits
Prerequisites: ECE 108

ECE 126 Fundamentals of Semiconductor Devices 3 Credits
Introduction to the physics of semiconductors in terms of atomic bonding and electron energy bands in solids. Charge carriers in semiconductors and carrier concentration at thermal equilibrium. Principles of electron and hole transport, drift and diffusion currents, generation and recombination processes, continuity. Treatment of semiconductor devices including p-n junctions, bipolar junction transistors and field effect transistors.
Prerequisites: ECE 081

ECE 136 Electromechanics 0-3 Credits
Two lectures and one laboratory per week. An experimental introduction to electromechanical energy conversion. Basic concepts of magnetic fields and forces and their application to electrical apparatus including electromechanical transducers, transformers, AC and DC machines.
Prerequisites: ECE 081

ECE 138 Digital Systems Laboratory 2 Credits
Implementation issues and techniques for digital logic design. Combinational and sequential logic design using standard integrated circuits, I/O and interrupt processing. Design and implementation of real-time complex digital logic using microprocessor systems.
Prerequisites: ECE 033

ECE 162 Electrical Laboratory 1 Credit
Experiments on circuits, machines, and electronic devices. Elementary network theory. Survey laboratory for students not majoring in electrical or computer engineering.
Prerequisites: ECE 081 or ECE 083
Can be taken Concurrently: ECE 081, ECE 083

ECE 182 Junior Laboratory 1 Credit
Experiments designed to exploit the students understanding of basic circuits and filters. Experiments designed to help students understand basic signals and systems concepts such as time-frequency domain duality, power measurement, modulation, sampling and data conversion. Students are introduced to a variety of integrated circuits including multipliers, analog switches, digital electronics, S/H, A/D, and D/A converters. Computer software design aids, especially Spice and LabView, are used throughout the semester. One three-hour laboratory per week.
Prerequisites: ECE 033 and ECE 121 and ECE 123

ECE 201 Computer Architecture 3 Credits
Prerequisites: ECE 033

ECE 202 Introduction to Electromagnetics 3 Credits
Elements of vector analysis, Coulomb’s law, Biot-Savart’s and Ampere’s laws, Lorentz Forces, Laplace’s, and Maxwell’s equations, boundary conditions, methods of solution in static electric and magnetic fields, including finite element numerical approach. Quasi-stationary fields, inductance.
Prerequisites: MATH 205 and PHY 021

ECE 203 Introduction to Electromagnetic Waves 3 Credits
Uniform plane waves in free space and in materials, skin effect. Waves in transmission lines and waveguides, including optical fibers. Energy and power flow, Poynting’s theorem. Reflection and refraction. Resonators. Radiation and diffraction.
Prerequisites: ECE 202

ECE 212 Control Theory 3 Credits
Prerequisites: ECE 125

ECE 256 Honors Project 1 Credit
Open by invitation only to students who have completed ECE 257, Senior Project. Selection is based upon the quality of the senior project with regard to ingenuity, design approach and completeness. The objective of this course is to carry the successful senior projects forward to completion of a technical paper suitable for publication or submission to a technical conference. A written paper and oral presentation are required by mid-term. Oral presentations will be made before an appropriate public forum. Enrollment limited.
ECE 257 Senior Lab I 0,3 Credits
With ECE 258, provides a complete design experience for Electrical and Computer Engineers. Research, planning, and completion of the initial design for a project involving hardware and/or software, integrating the many facets of their undergraduate program. Instruction in technical writing, product development, ethics and professional engineering, and presentation of design and research. Two three hour sessions and one additional two hour lecture per week. Must have senior status.

ECE 258 Senior Lab II 2 Credits
Continuation of ECE 257. Complete design, construction, and testing of projects selected and developed in ECE 257. Present final design reviews and project presentations. Submit a final written report. Discuss development issues, including manufacturability, patents, and ethics. Two three-hour sessions per week.
Prerequisites: ECE 257

ECE 300 Apprentice Teaching 1-4 Credits

ECE 308 Physics and Models of Electronic Devices 3 Credits
Prerequisites: ECE 056.
Topics covered include: Solid-state physics; p-n junctions and MOS capacitors. Models of Schottky barrier and p-n junction diodes, JFET, MOSFET, and bipolar transistors.
Prerequisites: ECE 126

ECE 310 Wireless Circuits 3 Credits
Prerequisites: ECE 203
Theory and design of high-frequency circuits for wireless communications. Transmission lines and microwave networks. Types of circuits explored include filters, amplifiers, mixers, voltage controlled oscillators (VCOs), phase locked loops (PLLs), synthesizers, modulators and demodulators, and antennae. Design using scattering parameters, Smith chart and RF/microwave CAD programs for simulation. System performance analysis based on noise figure, antenna gain and the Friis equation will be developed. Modulation techniques of AM, FM, PM, and QPSK systems will be compared based on bit error rates (BER) calculated from system parameters.
Prerequisites: ECE 203

ECE 319 Digital System Design 3 Credits
Prerequisites: ECE 203
Design techniques at the register transfer level. Control strategies for hardware architectures. Implementation of microprogramming, intersystem communication and peripheral interfacing. Hardware design languages and their use in design specification, verification and simulation.
Prerequisites: ECE 138

ECE 320 Logic Design 3 Credits
Prerequisites: ECE 123
Review of basic switching theory, vector boolean algebra, canonical implementations of medium size circuits, threshold logic, fault detection in combinational and sequential logic, Multivalued and Fuzzy logic, regular expressions, nondeterministic sequential machines.
Prerequisites: ECE 033

ECE 325 Semiconductor Lasers I 3 Credits
Prerequisites: (ECO 001 and MATH 023) or ECO 146
Introduction to nonlinear optics—second-harmonic generation. Credit will not be given for both ECE 325 and ECE 425.
Prerequisites: ECE 203

ECE 326 Semiconductor Lasers II 3 Credits
Continuation of Semiconductor Lasers I. Topics covered include: Gain and current relations; dynamic effects; perturbation and coupled-mode theory; dielectric waveguides; and photonic integrated circuits. Credit will not be given for both ECE 326 and ECE 426.
Prerequisites: ECE 325

ECE 328 (ECO 328) Electricity Systems 3 Credits
The course is intended primarily for students who are interested in a exploration of the electricity market, its operation and the main considerations to implement it, in the wake of a smart grid implementation, with basic college-level calculus.
Prerequisites: ECE 001 and MATH 023 or ECO 146
Attribute/Distribution: ND

ECE 333 Medical Electronics 3 Credits
Bioelectric events and electrical methods used to study and influence them in medicine, electrically excitable membranes, action potentials, electrical activity of muscle, the heart and brain, bioamplifiers, pulse circuits and their applications.
Prerequisites: ECE 123

ECE 336 (CSE 336) Embedded Systems 3 Credits
Prerequisites: (MAT 033 and MATH 231) or ECE 351
Prerequisites: ECE 123

ECE 338 Quantum Electronics 3 Credits
Prerequisites: ECE 123
Prerequisites: ECE 203

ECE 339 Graphical Signal Processing 3 Credits
Prerequisites: ECE 203
Application of graphical programming to mathematical principles in data analysis and signal processing. Review of digital signal processing, use of structures, arrays, charts, building virtual instruments, graphical programming for linear algebra, curve fitting, solving differential and difference equations, signal generation, DFT and FFT analysis, windowing and filtering.
Prerequisites: ECE 108

ECE 341 Fundamentals of Wireless Communications 3 Credits
Prerequisites: ECE 108
Prerequisites: ECE 108
ECE 342 Communication Theory 3 Credits
Theory and application of analog and digital modulation. Sampling theory with application to analog-to-digital and digital-to-analog conversion techniques. Time and frequency division multiplexing. Introduction to random processes including filtering and noise problems. Introduction to statistical communication theory with primary emphasis on optimum receiver principles.
Prerequisites: ECE 125 and (MATH 309 or MATH 231)

ECE 343 Digital Signal Processing 3 Credits
Study of orthogonal signal expansions and their discrete representations, including the Discrete Fourier Transform and Walsh-Hadamard Transform. Development of fast algorithms to compute these, with applications to speech processing and communication. Introduction to the z-transform representation of numerical sequences with applications to input/output analysis of discrete systems and the design of digital filters. Analysis of the internal behavior of discrete systems using state variables for the study of stability, observability and controllability.
Prerequisites: ECE 108

ECE 344 Statistical Signal Processing 3 Credits
Introduction to random processes, covariance and spectral density, time average, stationarity, and ergodicity. Response of systems to random inputs. Sampling and quantization of random signals. Optimum filtering, estimation, and hypothesis testing.
Prerequisites: (ECE 108) and (MATH 231 or MATH 309)

ECE 345 Fundamentals of Data Networks 3 Credits
Analytical foundations in the design and evaluation of data communication networks. Fundamental mathematical models underlying network design with their applications in practical network algorithms. Layered network architecture, queuing models with applications in network delay analysis, Markov chain theory with applications in packet radio networks and dynamic programming with applications to network routing algorithms. Background on stochastic processes and dynamic programming will be reviewed. Prereq: MATH 231 and ECE125.
Prerequisites: MATH 231 and ECE 125

ECE 347 Introduction to Integrated Optics 3 Credits
Prerequisites: (ECE 202 and ECE 203)

ECE 348 Lightwave Technology 3 Credits
Concepts of signal generation, modulation, transmission, isolation, detection, and switching in current optical fiber networks. Classical and quantum properties of radiation and matter in optoelectronic devices. Physical optics of light, optical waveguides, and of light generation and detection in optoelectronic devices. Fundamentals of operation of common types of discrete and integrated optical components such as light-emitting diodes and lasers, photodetectors, modulators, and optical couplers. Credit will not also be given for ECE 448. Prereq: ECE 203.
Prerequisites: ECE 203

ECE 350 Special Topics 3 Credits
Selected topics in the field of electrical and computer engineering not included in other courses.
Repeat Status: Course may be repeated.

ECE 355 Applied Integrated Circuits 3 Credits
Analysis and design of contemporary mixed signal electronic circuits, including phase-locked loops, A/D and D/A converters, sigma-delta converters, and switching power supplies. Continuous and discrete time simulation of mixed signal systems starting with operational amplifiers as a prototype feedback system using Spice and Matlab.
Prerequisites: ECE 108 and ECE 123

ECE 361 Introduction to VLSI Circuits 3 Credits
The design of Very Large Scale Integrated (VLSI) Circuits, with emphasis on CMOS Standard Cell design. Topics include MOS transistor physics, device behavior and device modeling, MOS technology and physical layout, design of combinational and sequential circuits, static and dynamic memories, and VLSI chip organization. The course includes a design project using CAE tools for layout, design rule checking, parameter extraction, and SPICE simulations for performance prediction. Two one-hour lectures and three hours of laboratory per week.
Prerequisites: ECE 123

ECE 364 Introduction to Cryptography and Network Security 3 Credits
Introduction to cryptography, classical cipher systems, cryptanalysis, perfect secrecy and the one time pad, DES and AES, public key cryptography covering systems based on discrete logarithms, the RSA and the knapsack systems, and various applications of cryptography. May not be taken with ECE 464 for credit. Must have junior or senior standing.

ECE 366 (BIOE 366) Neural Engineering 3 Credits
Neural system interfaces for scientific and health applications. Basic properties of neurons, signal detection and stimulation, instrumentation and microfabricated electrode arrays. Fundamentals of peripheral and central neural signals and EEG, and applications such as neural prostheses, implants and brain-computer interfaces. Closed to students who have taken BIOE 368, BIOE 466, and ECE 466.
Prerequisites: ECE 081

ECE 368 (BIOE 368) Introduction to Biophotonics and Optical Biomedical Imaging 3 Credits
Optical principles, techniques, and instruments used in biomedical research and clinical medicine. Fundamental concepts of optical imaging and spectroscopy systems, and details of light-tissue interaction. Commercial devices and instruments, as well as novel optical imaging technologies in development. Closed to students who have taken ECE 468, BIOE 368, or BIOE 468.
Prerequisites: ECE 202 or PHY 212

ECE 371 Optical Information Processing 3 Credits
Introduction to optical information processing and applications. Interference and diffraction of optical waves. 2D optical matched filters that use lenses for Fourier transforms. Methods and devices for modulating light beams for information processing, communications, and optical computing. Construction and application of holograms for optical memory and interconnections.
Prerequisites: (ECE 108 and ECE 202)

ECE 372 Optical Networks 3 Credits
Study the design of optical fiber local, metropolitan, and wide area networks. Topics include: passive and active photonic components for optical switching, tuning, modulation and amplification; optical interconnection switches and buffering; hardware and software architectures for packet switching and wavelength division multiaccess systems. The class is supported with a laboratory.
Prerequisites: (ECE 081 and ECE 202)

ECE 387 (CHE 387, ME 387) Digital Control 3 Credits
Sampled-data systems; z-transforms; pulse transfer functions; stability in the z-plane; root locus and frequency response design methods; minimal prototype design; digital control hardware; discrete state variables; state transition matrix; Liapunov stability; state feedback control.
Prerequisites: CHE 386 or ECE 212 or ME 343

ECE 389 (CHE 389, ME 389) Control Systems Laboratory 2 Credits
Experiments on a variety of mechanical, electrical and chemical dynamic control systems. Exposure to state of the art control instrumentation: sensors, transmitters, control valves, analog and digital controllers. Emphasis on comparison of theoretical computer simulation predictions with actual experimental data. Lab teams will be interdisciplinary.
Prerequisites: CHE 386 or ECE 212 or ME 343
ECE 392 Independent Study 1-3 Credits
An intensive study, with report of a topic in electrical and computer engineering which is not treated in other courses. Consent of instructor required.

Repeat Status: Course may be repeated.

ECE 401 (CSE 401) Advanced Computer Architecture 3 Credits
Design, analysis and performance of computer architectures; high-speed memory systems; cache design and analysis; modeling cache performance; principle of pipeline processing, performance of pipelined computers; scheduling and control of a pipeline; classification of parallel architectures; systolic and data flow architectures; multiprocessor performance; multiprocessor interconnections and cache coherence.

Prerequisites: ECE 201

ECE 402 Advanced Electromagnetics 3 Credits

Prerequisites: (ECE 202 and ECE 203)

ECE 404 (CSE 404) Computer Networks 3 Credits
Study of architecture and protocols of computer networks. The ISO model; network topology; data-communication principles, including circuit switching, packet switching and error control techniques; sliding window protocols, protocol analysis and verification; routing and flow control; local area networks; network interconnection; topics in security and privacy.

ECE 410 Digital Communication Systems 3 Credits
Unified description of digital communication systems based on signal space concepts. Analysis of system performance in the presence of channel noise and bandwidth limitations. Comparison of many different types of digital-modulation techniques, combined with error correction, against theoretical limits. Both bandpass and baseband systems are considered. Optimum methods of detection are considered for all systems. Suboptimum techniques such as adaptive equalization are considered for baseband systems. Basic spread-spectrum concepts are introduced.

ECE 411 Information Theory 3 Credits
Introduction to information theory. Topics covered include: development of information measures for discrete and continuous spaces study of discrete-stochastic information courses, derivation of noiseless coding theorems, investigation of discrete and continuous memoryless channels, development of noisy channel coding theorems.

ECE 414 Signal Detection and Estimation 3 Credits
Brief review of probability and random process theory. Hypothesis Testing as applied to signal detection. Various optimality criterion including Bayes and Neyman-Pearson and their applications in digital communications, radar, and sonar systems. Optimum and locally optimum detection schemes for Gaussian and non-Gaussian noise. Estimation of unknown signal parameters. Topics of current interest including, distributed signal detection, robust signal detections and quantization for detection as time permits.

Prerequisites: ECE 108 and MATH 231 or MATH 309

ECE 416 VLSI Signal Processing 3 Credits
The fundamentals of performance-driven VLSI systems for signal processing. Analysis of signal processing algorithms and architectures in terms of VLSI implementation. VLSI design methodology. Includes a design project which requires use of a set of tools installed on SUN workstations for behavioral simulation, structural simulation, circuit simulation, layout, functional simulation, timing and critical path analysis, functional testing, and performance measurement.

ECE 420 Advanced Circuits and Systems 3 Credits
Review of the fundamentals of Circuits and Systems theory, including the time and frequency domain response of linear time-invariant circuits. Equation formulation for general lumped circuits, including node voltage and loop current analysis. Basic graph theoretic properties of circuits including Tellegen’s Theorem. Discussion of passivity and reciprocity including multiport network properties. State space formulation and solution of general circuits (and systems). Modern filter concepts, including synthesis techniques for active filters and externally linear filters, such as Log Domain filters. Techniques for the analysis of weakly nonlinear systems, as time permits. Must have graduate standing.

Prerequisites: ECE 125

ECE 425 Semiconductor Lasers I 3 Credits
Review of elementary solid-state physics. Relationships between Fermi energy and carrier density and leakage. Introduction to optical waveguiding in simple doubleheterostructures. Density of optical modes, Blackbody radiation and the spontaneous emission factor. Modal gain, modal loss, and confinement factors. Einstein's approach to gain and spontaneous emission. Periodic structures and the transmission matrix. Ingredients. A phenomenological approach to diode lasers. Mirrors and resonators for diode lasers. Gain and current relations. This course, a version of ECE 325 for graduate students, requires research projects and advanced assignments. Credit will not be given for both ECE 325 and ECE 425.

Prerequisites: ECE 203

ECE 426 Semiconductor Lasers II 3 Credits
Continuation of Semiconductor Lasers I. Topics covered include: Gain and current relations; dynamic effects; perturbation and coupled-mode theory; dielectric waveguides; and photonic integrated circuits. This course, a version of ECE 326 for graduate students, requires research projects and advanced assignments. Credit will not be given for both ECE 326 and ECE 426.

Prerequisites: ECE 203

ECE 432 Spread Spectrum and CDMA 3 Credits
Fading and dispersive channel model, direct sequence spread spectrum, frequency hopping spread spectrum, DS-CDMA, FH-CDMA, spread sequences and their properties, multi-user detection, PN code acquisition, wireless communication systems, industrial standards (IS-95, WCDMA, CDMA2000).

ECE 433 (CHE 433, ME 433) State Space Control 3 Credits
State-space methods of feedback control system design and design optimization for invariant and time-varying deterministic, continuous systems; pole positioning, observability, controllability, modal control, observer design, the theory of optimal processes and Pontryagin’s Maximum Principle, the linear quadratic optimal regulator problem, Lyapunov functions and stability theorems, linear optimal open loop control; introduction to the calculus of variations; introduction to the control of distributed parameter systems. Intended for engineers with a variety of backgrounds. Examples will be drawn from mechanical electrical and chemical engineering applications.

Prerequisites: ME 343 or ECE 212 or CHE 386

ECE 434 (CHE 434, ME 434) Multivariable Process Control 3 Credits
A state-of-the-art review of multivariable methods of interest to process control applications. Design techniques examined include loop interaction analysis, frequency domain methods (Inverse Nyquist Array, Characteristic Loci and Singular Value Decomposition) feed forward control, internal model control and dynamic matrix control. Special attention is placed on the interaction of process design and process control. Most of the above methods are used to compare the relative performance of intensive and extensive variable control structures.

Prerequisites: CHE 433 or ME 433 or ECE 433
ECE 435 Error-Correcting Codes 3 Credits
Error-correcting codes for digital computer and communication systems. Review of modern algebra concentrating on groups and finite fields. Structure and properties of linear and cyclic codes for random or burst error correction covering Hamming, Golay, Reed-Muller, BCH and Reed-Solomon codes. Decoding algorithms and implementation of decoders.
Prerequisites: CSE 261

ECE 436 (CHE 436, ME 436) Systems Identification 3 Credits
The determination of model parameters from time-history and frequency response data by graphical, deterministic and stochastic methods. Examples and exercises taken from process industries, communications and aerospace testing. Regression, quasilinearization and invariant-implbedding techniques for nonlinear system parameter identification included.
Prerequisites: ECE 433 or ME 433 or ECE 433

ECE 437 (CHE 437, ME 437) Stochastic Control 3 Credits
Prerequisites: ME 433 or CHE 433 or ECE 433

ECE 438 Quantum Electronics 3 Credits
Electromagnetic fields and their quantization. propagation of optical beams in homogeneous and lens-like media. Modulation of optical radiation. Coherent interactions of radiation fields and atomic systems. Introduction to nonlinear optics-second-harmonic generation. Parametric amplification, oscillation, and fluorescence. Third-order optical nonlinearities. This course, a version of ECE 338 for graduate students, requires research projects and advanced assignments. Credit will not be given for both ECE 338 and ECE 438.

ECE 441 Fundamentals of Wireless Communications 3 Credits
Characterization of mobile radio channels. Wireless information transmission: modulation/demodulation, equalization, diversity combining, coding/decoding, multiple access methods. Overview of cellular concepts and wireless networking. This course, a version of ECE 341 for graduate students, requires research projects and advanced assignments. Credit will not be given for both ECE 341 and ECE 441.
Prerequisites: ECE 342 or ECE 342

ECE 443 RF Power Amplifiers for Wireless Communications 3 Credits
Review of linear power amplifier design. Discussion of major nonlinear effects, such as high-efficiency amplifiers modes, matching network design for reduced conduction angle, overdrive and limiting effects, and switching mode amplifiers. Discussion of other nonlinear effects, efficiency enhancement and linearization techniques. Companion course to ECE 463.

ECE 448 Lightwave Technology 3 Credits
Overview of optical fiber communications. Optical fibers, structures and waveguiding fundamentals. Signal degradation in fibers arising from attenuation, intramodal and intermodal dispersion. Optical sources, semiconductor lasers and LEDs. Rate equations and frequency characteristics of a semiconductor laser. Coupling efficiency of laser diodes and LEDs to single-mode and multimode fibers. PIN and avalanche photodetectors. Optical receiver design. Transmission link analysis. The course is an extension of ECE 348 for graduate students and it will include research projects and advanced assignments.

ECE 450 Special Topics 1-3 Credits
Selected topics in electrical and computer engineering not covered in other courses.
Repeat Status: Course may be repeated.
ECE 471 Optical Information Processing 3 Credits
Introduction to optical information processing and applications. Interference and diffraction of optical waves. 2D optical matched filters that use lenses for Fourier transforms. Methods and devices for modulating light beams for information processing, communications, and optical computing. Construction and application of holograms for optical memory and interconnections. The course is an extension of ECE 371 for graduate students and it will include research projects and advanced assignments.
Prerequisites: (ECE 108)

ECE 472 Optical Networks 3 Credits
Study the design of optical fiber local, metropolitan, and wide area networks. Topics include: passive and active photonic components for optical switching, tuning, modulation and amplification; optical interconnection switches and buffering; hardware and software architectures for packet switching and wavelength division multiplexing systems. This class is supported with a laboratory. The course is an extension of ECE 372 for graduate students and it will include research projects and advanced assignments.
Prerequisites: ECE 081

ECE 483 Advanced Semiconductor Devices for VLSI Circuits 3 Credits
Theory of small geometry devices for VLSI circuits. Emphasis of MOS bipolar device static and dynamic electrical characteristics. Carrier injection, transport, storage, and detection in bulk and interfacial regions. Limitations of physical scaling theory for VLSI submicron device structures. MOS physics and technology, test pattern device structures, charge-coupled devices, MNOS nonvolatile memory devices, and measurement techniques for device and process characterization. The influence of defects on device electrical properties.

ECE 485 Heterojunction Materials and Devices 3 Credits
Material properties of compound semiconductor heterojunctions, quantum wells and superlattices. Strained layer epitaxy and band-gap engineering. Theory and performance of novel devices such as quantum well lasers, resonant tunneling diodes, high electron mobility transistors, and heterojunction bipolar transistors. Complementary to ECE 452.
Prerequisites: ECE 451

ECE 490 Thesis 1-6 Credits
ECE 491 Research Seminar 1-3 Credits
Regular meetings focused on specific topics related to the research interests of department faculty. Current research will be discussed. Students may be required to present and review relevant publications. Consent of instructor required.
Repeat Status: Course may be repeated.

ECE 492 Independent Study 1-3 Credits
An intensive study, with report, of a topic in electrical and computer engineering which is not treated in other courses. Consent of instructor required.
Repeat Status: Course may be repeated.

ECE 493 Solid-State Electronics Seminar 3 Credits
Discussion of current topics in solid-state electronics. Topics selected depend upon the interests of the staff and students and are allied to the research programs of the Sherman Fairchild Laboratory for Solid State Studies. Student participation via presentation of current research papers and experimental work. Consent of instructor required.
Repeat Status: Course may be repeated.

ECE 499 Dissertation 1-15 Credits
Repeat Status: Course may be repeated.