Technical Entrepreneurship (TE)

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE 212 Capstone Design Projects-2</td>
<td>2</td>
<td>2</td>
<td>Students work in cross disciplinary teams students on the detailed design, including fabrication and testing of a prototype following industry, business and engineering standards for the new products or processes designed in Capstone Design Experiences-1. Additional deliverables include a detailed production plan, marketing plan, and base-case financial models. Teams typically work on projects from industry or entrepreneurial start-ups. Oral presentations and written reports. Prerequisites: TE 211 Attribute/Distribution: ND</td>
</tr>
<tr>
<td>TE 250 (ENTP 250) Systematic Creativity Techniques</td>
<td>3</td>
<td>-</td>
<td>Systematic creativity methods including anthropological research, painstomring, bisociation, the Kano model, trimming technique, DeBono's Six Hats technique, biomimicry, lateral benchmarking, Blue Ocean Strategy, & the art of tinkering, along with other innovation methods. This course includes hands-on labs, individual & team projects, & the creation of a creativity portfolio. Open to students in any college and major. (ND). Attribute/Distribution: ND</td>
</tr>
<tr>
<td>TE 301 Creativity and Systematic Innovation Methods</td>
<td>3</td>
<td>-</td>
<td>Creativity methods, anthropological research, painstomring, bisociation, the Kano model, axiomatic design, the trimming technique, parameter analysis, decomposition, nonlinear design, Taguchi's method, DeBono's Six Hats technique, biomimicry, TRIZ, lateral benchmarking, Blue Ocean Strategy, the art of tinkering and other innovation methods. Hands-on labs, individual and team projects.</td>
</tr>
<tr>
<td>TE 302 Methods in Visual Thinking</td>
<td>2</td>
<td>-</td>
<td>Visualization techniques, visual thinking and envisioning information as taught by Edward Tufte and others, multimedia tools and methods. Appropriate use of technology as applied to new product development, no programming required.</td>
</tr>
<tr>
<td>TE 303 Methods in Prototyping, Modeling and Testing</td>
<td>2</td>
<td>-</td>
<td>Generation of mock-ups and looks-like prototypes, electromechanical-optical bread-boards design, fabricate, build and test multiple generations of prototypes, computer modeling methods, shop methods, testing, sensors and data collection.</td>
</tr>
<tr>
<td>TE 304 (CSB 304, ENTP 304) Technology and Software Ventures</td>
<td>3</td>
<td>-</td>
<td>Designed from the perspective of functional leaders, course provides a holistic perspective of developing successful software ventures across various industries in an interdisciplinary and experiential environment. Students develop a software-oriented idea, concurrent with module delivery containing best practices, case studies, and subject-matter experts. Examines business model fundamentals, customer discovery, translating requirements to a minimum viable product, agile development, user acquisition, and traction. ENTP Capstone. Prior programming experience or technical background not required. Open to students in any college and major. Prerequisites: ENTP 101 or CSE 002 or BIS 111</td>
</tr>
<tr>
<td>TE 310 (ME 310) Directed Study</td>
<td>1-3</td>
<td>-</td>
<td>Project work on any aspect of technical entrepreneurship, performed either individually or as a member of a team made up of students, possibly from other disciplines. Project progress is reported in the form of several planning and project reports. Direction of the project may be provided by faculty from several departments (possibly interacting with outside consultants, communities and industries). Consent of the Technical Entrepreneurship program director is required. Repeat Status: Course may be repeated.</td>
</tr>
<tr>
<td>TE 400 Technical Entrepreneurship Projects</td>
<td>1</td>
<td>1</td>
<td>An introduction to technical entrepreneurship projects, customer discovery in selected industry segments, research of target technologies, industries and markets. Prerequisites: TE 400</td>
</tr>
<tr>
<td>TE 401 Integrated Product Development (IPD) Process-1</td>
<td>3</td>
<td>-</td>
<td>An integrated and interdisciplinary approach to engineering design, concurrent engineering, design for manufacturing, industrial design and the business of new product development. Topics include design methods, philosophy and practice, the role of modeling and simulation, decision making, risk, cost, material and manufacturing process selection, platform and modular design, mass customization, quality, planning and scheduling, business issues, teamwork, group dynamics, creativity and innovation. Case studies and semester-long team projects. Prerequisites: TE 401</td>
</tr>
<tr>
<td>TE 402 Integrated Product Development (IPD) Process-2</td>
<td>3</td>
<td>-</td>
<td>Continuation of TE 401, the parallel development of the product, the development of the marketing and manufacturing system, manufacturing and marketing launch, sales, service and customer support. Case studies and semester-long team projects. Prerequisites: TE 401</td>
</tr>
<tr>
<td>TE 403 Entrepreneurial Startup Process-1</td>
<td>3</td>
<td>-</td>
<td>Key aspects surrounding company startups, including feasibility analysis, business model development and evaluation, formation of new venture teams, financial forecasts, sources of financing. Readings, financial templates, live case studies and guest entrepreneurs.</td>
</tr>
<tr>
<td>TE 404 Entrepreneurial Startup Process-2</td>
<td>3</td>
<td>-</td>
<td>Continuation of TE 403, integration of key business components to form and launch your venture: industry analysis, marketing plan and sales strategy; mobilization of the new venture team; operations, including space, legal and insurance consideration; and financial management. Selected topics related to respective venture types (i.e. social entrepreneurship, family business, franchising, immigrant entrepreneurs). Lectures, workshops and guest entrepreneurs. Prerequisites: TE 403</td>
</tr>
<tr>
<td>TE 405 Entrepreneurial Startup Projects-1</td>
<td>1</td>
<td>-</td>
<td>Credit</td>
</tr>
<tr>
<td>TE 406 Entrepreneurial Startup Projects-2</td>
<td>3</td>
<td>-</td>
<td>Credit</td>
</tr>
<tr>
<td>TE 407 Intellectual Property (IP) Creation and Management</td>
<td>2</td>
<td>-</td>
<td>Intellectual property issues: confidentiality, nondisclosure, agreement not to compete, founders agreements, patents, copyrights, trademarks, trade secrets both domestic and international.</td>
</tr>
<tr>
<td>TE 450 Special topics</td>
<td>1-3</td>
<td>-</td>
<td>Credit</td>
</tr>
<tr>
<td>TE 461 Integrated Product Development (IPD) Projects-1</td>
<td>1</td>
<td>Credit</td>
<td>Technical and economic feasibility study of new products. Selection and content of the project is determined by the faculty project adviser in consultation with the student, progress and final reports, oral and posters presentations. Consent of the program director and faculty project adviser required. Prerequisites: TE 400</td>
</tr>
</tbody>
</table>
TE 462 Integrated Product Development (IPD) Projects-2

Credits
Detailed design specification, fabrication, building and testing prototype new products and plan for production, selection and content of the project is determined by the faculty project advisor in consultation with individual students or student teams. Progress and final reports, oral and poster presentations. Consent of program director and faculty project adviser required.

Prerequisites: TE 400 and TE 461