Energy Systems Engineering (ESE)

Courses

ESE 401 Energy Generation 3 Credits
This course provides an overview of the different methods of generating electricity, such as turbine driven electrochemical generators, fuel cells, photovoltaics, and thermoelectric devices. Topics include the combustion of fossil fuels (coal, natural gas, and oil), nuclear fission and fusion, and renewable resources (solar, wind, hydro, tidal, and geothermal sources). Sustainability, energy efficiency issues, as well as public interest and policy drivers are also addressed.

ESE 402 Transmission & Distribution: Smart Grid 3 Credits
This course provides an overview of modern power transmission and distribution systems. Topics include transformer technology, transmission grids, load management, distribution optimization, power supply reliability, and infrastructure systems. Security and deregulation issues are also addressed.

ESE 403 Energy And The Environment 3 Credits
This course provides an overview of the direct and indirect impact of energy generation and transmission technologies on the environment. Topics include global climate change, clean energy technologies, energy conservation, air pollution, water resources, and nuclear waste issues.

ESE 405 Energy Systems Project Management 3 Credits
This course introduces students to the basics of project management in the field of energy systems, which includes the broad spectrum of empirical, theoretical and policy issues of managing the electric power grid, its generation facilities and equipment. This focuses on the key elements of case studies in engineering that focus on the effective project management of tomorrow's intelligent energy system.

ESE 460 Energy Systems Engineering Project 3-6 Credits
A collaborative and intensive study in an area of energy systems engineering, with an emphasis on direct industrial applications. A written report plus a poster presentation or oral presentation is required. Students typically begin this 10 month program in SummerSession II and will graduate spring of the following year with a Master of Engineering degree in energy systems engineering.