Chemistry (CHM)

Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Attribute/Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 030</td>
<td>Introduction to Chemical Principles I 4 Credits</td>
<td>4</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>CHM 040</td>
<td>Honors General Chemistry I 4 Credits</td>
<td>4</td>
<td>(CHM 030 or CHM 040)</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 041</td>
<td>Honors General Chemistry II 4 Credits</td>
<td>4</td>
<td>(CHM 040 or CHM 030) and (MATH 021 or MATH 031 or MATH 051)</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 110</td>
<td>Organic Chemistry I 3 Credits</td>
<td>3</td>
<td>(CHM 031 or CHM 041)</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 111</td>
<td>Organic Chemistry Laboratory I 1 Credit</td>
<td>1</td>
<td>CHM 110</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 112</td>
<td>Organic Chemistry II 3 Credits</td>
<td>3</td>
<td>CHM 110</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 113</td>
<td>Organic Chemistry Laboratory II 1 Credit</td>
<td>1</td>
<td>CHM 111 and CHM 112</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 177</td>
<td>Introduction to Research 1-2 Credits</td>
<td>2</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>CHM 194</td>
<td>Physical Chemistry for Biological Sciences 3 Credits</td>
<td>3</td>
<td>(CHM 030 or CHM 040) and (CHM 031 or CHM 041)</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 250</td>
<td>Special Topics 1-4 Credits</td>
<td>1-4</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>CHM 300</td>
<td>Apprentice Teaching 3 Credits</td>
<td>3</td>
<td>Consent of instructor required</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 301</td>
<td>Chemistry Seminar 1 Credit</td>
<td>1</td>
<td>Consent of instructor required</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 332</td>
<td>Analytical Chemistry 3 Credits</td>
<td>3</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>CHM 334</td>
<td>Advanced Chemistry Laboratory I 3 Credits</td>
<td>3</td>
<td>(CHM 110 and CHM 111 and CHM 112 and CHM 113 and CHM 332)</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 335</td>
<td>Advanced Chemistry Laboratory II 3 Credits</td>
<td>3</td>
<td>CHM 334</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 336</td>
<td>Clinical Chemistry 3 Credits</td>
<td>3</td>
<td>CHM 332 or CHM 112</td>
<td>NS</td>
</tr>
<tr>
<td>CHM 337</td>
<td>Crystallography and Diffraction 3 Credits</td>
<td>3</td>
<td>MAT 203 or EES 131</td>
<td>NS</td>
</tr>
</tbody>
</table>

Prerequisites

- **CHM 110 Organic Chemistry I 3 Credits**
 - Systematic survey of the typical compounds of carbon, their classification, and general relations; study of synthetic reactions.
 - Prerequisites: CHM 031 or CHM 041
 - Attribute/Distribution: NS

- **CHM 112 Organic Chemistry II 3 Credits**
 - Continuation of CHM 110.
 - Prerequisites: CHM 110
 - Attribute/Distribution: NS

- **CHM 113 Organic Chemistry Laboratory II 1 Credit**
 - Continuation of Organic Chemistry Laboratory I.
 - Prerequisites: CHM 111 and CHM 112
 - Can be taken Concurrently: CHM 111, CHM 112
 - Attribute/Distribution: NS

- **CHM 177 Introduction to Research 1-2 Credits**
 - For advanced freshmen and sophomore chemistry majors. Consent of department chair required.
 - Repeat Status: Course may be repeated.
 - Attribute/Distribution: NS

- **CHM 194 Physical Chemistry for Biological Sciences 3 Credits**
 - The principles and applications of physical chemical concepts to systems of biological interest, including the gas laws, thermodynamics of metabolic reactions, colligative properties, electrochemical equilibria, reaction kinetics and enzyme catalysis, and transport of macromolecules and viruses.
 - Prerequisites: (CHM 030 or CHM 040) and (CHM 031 or CHM 041)
 - Attribute/Distribution: NS

- **CHM 250 Special Topics 1-4 Credits**
 - Selected topics in chemistry. Consent of instructor required.
 - Repeat Status: Course may be repeated.

- **CHM 300 Apprentice Teaching 3 Credits**
 - Consent of instructor required.
 - Repeat Status: Course may be repeated.

- **CHM 301 Chemistry Seminar 1 Credit**
 - A course designed for seniors will involve the literature research of a topic of the student's choosing followed by a 35 minute oral presentation to the class and professor. Must have senior standing.

- **CHM 307 Advanced Inorganic Chemistry 3 Credits**
 - Introduction to transition metal complexes; theories of bonding; kinetics and mechanisms of transition metal complex reactions; selected aspects of organometallic chemistry; bioinorganic chemistry.
 - Prerequisites: CHM 031 or CHM 041
 - Attribute/Distribution: NS

- **CHM 332 Analytical Chemistry 3 Credits**
 - Theory and practice of chemical analysis. Principles of quantitative separations and determinations; theory and application of selected optical and electrical instruments in analytical chemistry; interpretation of numerical data, design of experiments, solute distribution in separation methods.
 - Prerequisites: (CHM 031 or CHM 041) and CHM 110
 - Attribute/Distribution: NS

- **CHM 334 Advanced Chemistry Laboratory I 3 Credits**
 - Exploration of synthetic methods and analysis techniques for inorganic and organic compounds. Determination of product structures and quantitative analysis using modern chemical analysis techniques, including NMR, GC-MS, GC, HPLC, FT-IR, and Electrochemistry.
 - Prerequisites: (CHM 110 and CHM 111 and CHM 112 and CHM 113 and CHM 332)
 - Can be taken Concurrently: CHM 332

- **CHM 335 Advanced Chemistry Laboratory II 3 Credits**
 - Continuation of CHM 334.
 - Prerequisites: (CHM 334)

- **CHM 336 Clinical Chemistry 3 Credits**
 - Applications of analytical chemistry to clinical problems. Discussion of methods in common use and the biochemical/medical significance of the results.
 - Prerequisites: CHM 332 or CHM 112
 - Attribute/Distribution: NS

- **CHM 337 Crystallography and Diffraction 3 Credits**
 - Introduction to crystal symmetry, point groups, and space groups. Emphasis on materials characterization by Xray diffraction and electron diffraction. Specific topics include crystallographic notation, stereographic projections, orientation of single crystals, textures, phase identification, quantitative analysis, stress measurement, electron diffraction, ring and spot patterns, convergent beam electron diffraction (CBED), and space group determination. Applications in mineralogy, metallurgy, ceramics, microelectronics, polymers, and catalysts. Lectures and laboratory work. Prerequisites may be waived if student has senior standing in chemistry.
 - Prerequisites: MAT 203 or EES 131
 - Attribute/Distribution: NS
CHM 341 Molecular Structure, Bonding and Dynamics 3 Credits
Nature of chemical bonding as related to structure and properties of molecules and extended systems. Quantum chemistry of atoms and molecules applied to chemical transformations and spectroscopic transitions. Symmetry analysis and selection rules. Interpretation of electronic, vibrational and rotational spectra.
Prerequisites: (MATH 022 or MATH 096 or MATH 032) and (PHY 011 or PHY 013) and (CHM 031 or CHM 041)
Attribute/Distribution: NS

CHM 342 Thermodynamics & Kinetics 3 Credits
Development of the principles of classical and statistical thermodynamics and their application to chemical systems. In classical thermodynamics emphasis will be on systems in which composition is of major concern: solutions, chemical and phase equilibria. Kinetic theory of gases; chemical reaction kinetics; chemical reaction dynamics.
Prerequisites: (CHM 031 or CHM 041) and (PHY 013 or PHY 021) and (MATH 022 or MATH 023)

CHM 343 Physical Chemistry Laboratory 2 Credits
Laboratory studies that illustrate and extend the various fields of study in experimental physical chemistry as discussed in CHM 341 and CHM 342. This course fulfills the junior year writing intensive course requirement in CAS.
Prerequisites: CHM 194 or CHE 210 or CHM 342
Attribute/Distribution: NS

CHM 350 Special Topics 1-3 Credits
Selected advanced topics in chemistry.
Repeat Status: Course may be repeated.
Attribute/Distribution: NS

CHM 351 Professional Development Seminar 2 Credits
Topics for the developing professional chemist include lab safety, using a laboratory notebook, searching the scientific literature, reading and writing scientific papers, ethics, and developing both a poster and an oral presentation. Students will present their own poster and a short talk on the same subject. Each student will write his/her own resume and participate in a mock interview session.
Attribute/Distribution: NS

CHM 358 Advanced Organic Chemistry 3 Credits
Reaction mechanism types and supporting physical-chemical data. Classes of mechanisms include elimination, substitution, rearrangement, oxidation-reduction, enolate alkylations, and others. Must have completed one year of organic chemistry.
Prerequisites: CHM 112
Attribute/Distribution: NS

CHM 371 (BIOS 371) Elements of Biochemistry I 3 Credits
A general study of carbohydrates, proteins, lipids, nucleic acids and other biological substances and their importance in life processes. Protein and enzyme chemistry are emphasized. Must have completed one year of organic chemistry.
Prerequisites: CHM 112
Attribute/Distribution: NS

CHM 372 (BIOS 372) Elements of Biochemistry II 3 Credits
Dynamic aspects of biochemistry: enzyme reactions including energetics, kinetics and mechanisms, metabolism of carbohydrates, lipids, proteins and nucleic acids, photosynthesis, electron transport mechanisms, coupled reactions, phosphorylations, and the synthesis of biological macromolecules.
Prerequisites: (BIOS 371 or CHM 371) and BIOS 041
Attribute/Distribution: NS

CHM 375 Research Chemistry Laboratory 1-3 Credits
An introduction to independent study or laboratory investigation under faculty guidance. Consent of instructor required.
Repeat Status: Course may be repeated.
Attribute/Distribution: NS

CHM 376 Advanced Research Chemistry Laboratory 1-6 Credits
Advanced independent study or laboratory investigation under faculty guidance. Consent of faculty research supervisor.
Repeat Status: Course may be repeated.
Attribute/Distribution: NS

CHM 377 (BIOS 377) Biochemistry Laboratory 3 Credits
Laboratory studies of the properties of chemicals of biological origin and the influence of chemical and physical factors on these properties. Laboratory techniques used for the isolation and identification of biochemicals.
Prerequisites: (BIOS 371 or CHM 371) and (BIOS 031 or BIOS 041)
Can be taken Concurrently: BIOS 371, CHM 371
Attribute/Distribution: NS

CHM 388 (CHE 388, MAT 388) Polymer Synthesis and Characterization Laboratory 3 Credits
Techniques include: free radical and condensation polymerization; molecular weight distribution by gel chromatography; crystallinity and order by differential scanning calorimetry; pyrolysis and gas chromatography; dynamic mechanical and dielectric behavior; morphology and microscopy; surface properties.
Prerequisites: (CHM 341 or CHE 210 or CHM 342) and CHM 110
Attribute/Distribution: NS

CHM 389 Honors Project 1-6 Credits
Repeat Status: Course may be repeated.

CHM 391 (CHE 391) Colloid and Surface Chemistry 3 Credits
Physical chemistry of everyday phenomena. Intermolecular forces and electrostatic phenomena at interfaces, boundary tensions and films at interfaces, mass and charge transport in colloidal suspensions, electrostatic and London forces in disperse systems, gas adsorption and heterogeneous catalysis.
Prerequisites: CHM 342
Attribute/Distribution: NS

CHM 393 (CHE 393, MAT 393) Physical Polymer Science 3 Credits
Structural and physical aspects of polymers (organic, inorganic, natural). Molecular and atomic basis for polymer properties and behavior. Characteristics of glassy, crystalline, and paracrystal-line states (including viscoelastic and relaxation behavior) for single- and multi-component systems. Thermodynamics and kinetics of transition phenomena. Structure, morphology, and behavior. Available to graduate and undergraduate students (with senior level standing) in CHE, CHEM or MAT.

CHM 394 (CHE 394) Organic Polymer Science I 3 Credits
Organic chemistry of synthetic high polymers. Polymer nomenclature, properties, and applications. Functionality and reactivity of monomers and oligomers. Mechanism and kinetics of step-growth and chain-growth polymerization in homogenous and heterogenous media. Brief description of emulsion polymerization, ionic polymerization, and copolymerization. Must have completed one year of physical chemistry and one year of organic chemistry.
Prerequisites: CHM 112 or CHM 342 or CHE 210
Attribute/Distribution: NS

CHM 400 First Year Graduate Student Seminar 0 Credits
First year graduate student seminar course and introduction to research. Topics include: research opportunities in the department, introduction to instrumentation facilities, ethics in science, use of library facilities, effective teaching methods.

CHM 405 Organometallic Chemistry 3 Credits
The chemistry of compounds containing carbon to metal bonds. Among topics covered are the following: organic compounds of the representative elements from Group I to IV; the chemistry of ferrocene and related pi-bonded organometallic complexes; metal carbonyl and nitrosyl complexes; dioxygen and dinitrogen complexes; organic synthesis utilizing organometallic catalysts.

CHM 407 Advanced Inorganic Chemistry 3 Credits
Introduction to transition metal complexes; theories of bonding; kinetics and mechanisms of transition metal complex reactions; selected aspects of organometallic chemistry; bio-inorganic chemistry. Must have completed one semester of physical chemistry and have CAS graduate student status.

CHM 421 Chemistry Research 1-6 Credits
Research in one of the following fields of chemistry: analytical, inorganic, organic, physical, polymer, biochemistry.
CHM 423 Chemical Biology 3 Credits
Chemical biology is a discipline at the interface of chemistry and biology. It entails the design, synthesis, and evaluation of probes, substrates, and materials for the study of biological systems using chemical principles. Chemical biology can take inspiration from living cells for the design and synthesis of novel molecules and materials for non-biological applications. The course is designed to be an introduction to chemical biology for upper-level undergraduates and graduate students.

CHM 424 Medicinal and Pharmaceutical Chemistry 3 Credits
Principles of drug design, structure-reactivity relationships in antibacterial, antimalarial, antiinflammatory and psychoactive drugs; synthesis and modes of action of pharmacologically active agents of radioactive pharmaceuticals.
Prerequisites: CHM 358

CHM 425 Pharmaceutical Regulatory Affairs 1: Drug Discovery to Approval 3 Credits
Coverage includes the stages of the drug approval process and how these relate to the laboratory activities that provide the scientific basis of the New Drug Application (NDA). Lectures treat drug discovery, chemical process development of the active pharmaceutical ingredient (API), and pharmaceutical process development of the drug product. Regulatory issues in screening and testing, the management of the preclinical trials, and the management of clinical trials will be covered.
Attribute/Distribution: NS

CHM 426 3 Credits
Principles and applications of statistical mechanics to chemical problems. A study of the techniques for evaluating the properties of matter in bulk from the properties of molecules and their interactions.

CHM 427 Thermodynamics & Kinetics 3 Credits
Development of the principles of classical and statistical thermodynamics and their applications to chemical systems. In classical thermodynamics, emphasis will be on systems in which composition is of major concern: solutions, chemical and phase equilibria. Kinetic theory of gases; chemical reaction kinetics. Must have CAS graduate student status. This course cannot be taken by students who have already taken CHM 342.

CHM 428 Pharmaceutical Regulatory Affairs-II-Biomarkers for Pharmaceutics and Diagnostics: Laws & Regulation 3 Credits
For decades diagnostic products and technologies have been used to monitor or detect a variety of indicators for disease and infection. Each year, over 4,000 devices are reviewed by the U.S. Food & Drug Administration for safety and efficacy before being allowed to enter the marketplace. Today, regulations have set in motion the use of Biomarkers as a key element for new pharmaceutical development. Biomarkers in a way similar to Diagnostic markers will become a method to demonstrate safety and efficacy of experimental drugs during human trials. This course will review the history of Biomarker and medical device law and regulations in the United States. It will also define the current scientific requirements for Biomarkers to meet the new regulations. Case studies will be used to educate participants on the use of Biomarkers in pharmaceutical development as well as Design Controls, Quality System Regulations, Manufacturing Requirements for diagnostic testing technologies. Specific examples include Nucleic Acid Diagnostics, Cardiovascular Stents, Drug Delivery, Cancer Diagnostics, and Consumer Self-Testing. Students will also use knowledge gained to prepare class presentations to address current issues within the field. This course is one of four courses required to fulfill the requirements for a Certificate in Regulatory Affairs. It may be applied as a 400-level credit in the Masters of Chemistry degree program.
Attribute/Distribution: NS

CHM 430 Chemical and Biochemical Separations 3 Credits
Theory and applications of equilibrium and nonequilibrium separation techniques at both the analytical and preparative levels. Solvent and buffer extractions, chromatographic separations (e.g., thin layer, partition, gas liquid, gel filtration, ion exchange, affinity, supercritical fluid), electrophoretic separations (e.g., gel, capillary, isoelectric focusing, immunoelectrophoresis), centrifugal separations (e.g., differential, velocity sedimentation, density gradient) and other separation methods (e.g., dialysis, ultrafiltration). Examples will focus on biological applications.

CHM 431 Contemporary Topics in Analytical Chemistry 1 Credit
Discussion of the current literature in analytical chemistry, including spectroscopy, separations, and electrochemistry. Students find current papers and lead discussions.
Repeat Status: Course may be repeated.

CHM 432 Chemometrics 3 Credits
Mathematical and statistical methods for experimental design, calibration, signal resolution, and instrument control and optimization.

CHM 434 Advanced Topics in Spectroscopy 3 Credits
Fundamentals of interactions of electromagnetic radiation with matter: electronic, vibrational, scattering based spectroscopies, instrumentation and signal processing. Advanced applications to the analysis of molecular structure and chemical processes including surface analysis, time-resolved spectroscopies, and ultrasensitive spectroscopic techniques.

CHM 436 Special Topics in Analytical Chemistry 1-3 Credits
Topics of contemporary interest in analytical chemistry.
Repeat Status: Course may be repeated.

CHM 437 (BIOS 437) Pathophysiological Chemistry 3 Credits
Biochemical basis of human diseases involving abnormal metabolism of proteins, nucleic acids, carbohydrates, and lipids. Emphasis on the correlation of the clinical presentation of disease processes seen as physiological dysfunctions with clinical laboratory methods. Lectures, student presentations, and clinical case discussions. Must have completed one semester of biochemistry.

CHM 438 Analytical Chemistry 3 Credits
Theory and practice of chemical analysis. Principles of quantitative separations and determinations; theory and application of selected optical and electrical instruments in analytical chemistry; interpretation of numerical data; design of experiments; solute distribution in separation methods. Must have CAS graduate student status.

CHM 442 Pharmaceutical Regulatory Affairs 3: Analytical Methods, Validation, and Data Manipulation 3 Credits
A review of the FDA guidance and common industry practices. A presentation of the more user-friendly and higher accuracy analytical methods, which are supplanting traditional analyses. Lectures will cover the eight fundamentals of analytical method validation: accuracy, linearity, precision, limits of detection, selectivity, limits of quantification, specificity, and ruggedness of method. In addition, the student will be taught what to do when the results do not meet the Acceptance Criteria. Lectures also cover evaluation of data streams for supporting conclusions.

CHM 443 (MAT 443) Solid-State Chemistry 3 Credits
Crystal structure, diffraction in crystals and on surfaces, bonding and energy spectra in solids dielectrics, surface states and surface fields in crystals. Must have completed one course in linear algebra and one course in quantum mechanics.

CHM 444 Molecular Structure, Bonding and Dynamics 3 Credits
Nature of chemical bonding as related to structure and properties of molecules and extended systems. Quantum chemistry of atoms and molecules applied to chemical transformations and spectroscopic transitions. Symmetry analysis and selection rules. Interpretation of electronic, vibrational and rotational spectra. Must have CAS graduate student status.
CHM 452 Advanced Organic Chemistry 3 Credits
Reaction mechanism types and supporting physical chemical data. Classes of mechanisms include elimination, substitution, rearrangement, oxidation reduction, enolate alkylations, and others. Must have completed one year of organic chemistry and have CAS graduate student status.

CHM 453 Heterocyclic Compounds 3 Credits
An intensive study of the syntheses, reactions and properties of heteroaromatic compounds including derivatives of thiophene, pyrrole, furan, indole, pyridine, quinoline, the azoles and the diazines all considered from the viewpoint of modern theories of structure and reaction mechanisms.
Prerequisites: CHM 358 or CHM 452

CHM 455 Organic Reactions 3 Credits
Prerequisites: or CHM 452, CHM 358 or CHM 452

CHM 456 Spectral Analysis 3 Credits
Use of data from nuclear magnetic resonance, infrared, ultraviolet, and mass spectrometric techniques for the determination of structure of organic compounds. Emphasis on information from one- and two-dimensional proton and carbon NMR, and a mechanistic interpretation of data from mass spectrometry.

CHM 457 Organic Reaction Mechanisms 3 Credits
Intensive in class problem solving that involves the formulation of reasonable reaction mechanisms for complex multistep pathways, i.e. organic transformations that proceed via highly energetic intermediates such as carbocations, carbanions, free radicals, carbene, and nitrenes.

CHM 458 Topics in Organic Chemistry 1-3 Credits
An intensive study of limited areas in organic chemistry.
Repeat Status: Course may be repeated.

CHM 462 3 Credits
This course focuses on the physical tools that exist to obtain information about biological macromolecules, with an emphasis on spectroscopic and imaging techniques (e.g., circular dichroism, fluorescence spectroscopy, FRET, BRET, calorimetry, analytical ultracentrifugation, X-ray crystallography, electron microscopy, dynamic light scattering, surface plasmon resonance). Lectures and discussion of research articles are used to illustrate the use of the different tools and methods.

CHM 463 Pharmaceutical Regulatory Affairs 4: Commercial Production, Validation, and Process Qualification 3 Credits
This course covers the scientific principles and the registry requirements for polymeric implants, controlled-release drug depot units, pumps, point-of-care testing kits, contrast media for MRI, x-ray, and ultrasound and all FDA controlled products not defined as therapeutic pharmaceuticals.

CHM 465 Protein Separation & Biophysical Analysis 3 Credits
Laboratory studies of techniques and principles used for the isolation, characterization, and biophysical analysis of proteins.
Attribute/Distribution: NS

CHM 467 (BIOS 467) Principles of Nucleic Acid Structure 3 Credits
An examination of the principles underlying nucleic acid structure including stereochemistry, electrostatics, hydration, torsional constraints, sequence specific effects, and interaction with nuclear proteins. Special emphasis will be placed on DNA structure. Must have completed one year of biochemistry and one year of physical chemistry or have consent of the department chair.

CHM 468 (BIOS 468) Principles of Protein Structure 3 Credits
An examination of the principles underlying protein structure including stereochemistry, preferred tertiary structures, protein homology, excluded volume effects, time dependent structural fluctuations, and prediction of protein structure from sequence information. Must have completed one year of biochemistry and one year of physical chemistry or consent of department required.

CHM 469 (BIOS 469) Biochemical Problem Solving I 1 Credit
Applications of material covered in BIOS/CHM 371 including techniques used in research.

CHM 470 (BIOS 470) Biochemical Problem Solving II 1 Credit
Applications of concepts covered in BIOS/CHM 372 including techniques used in research.

CHM 472 (BIOS 472) Lipids and Membranes 3 Credits
Structure, physical properties and functions of lipids and their biological aggregates. Techniques for studying lipid assemblies, enzymes which act on lipids, membrane proteins and lipoproteins will also be discussed. Consent of department chair.
Prerequisites: BIOS 372 or CHM 372

CHM 473 (BIOS 473) Principles of Biochemistry I 3 Credits
Study of proteins, carbohydrates, lipids, nucleic acids and other biological substances. Protein and enzyme chemistry are emphasized. Must have completed one year each of general chemistry and organic chemistry.

CHM 474 Pharmaceutical Regulatory Affairs 5: Pharmaceutics 3 Credits
This course covers the development of therapeutic products subsequent to the initial discovery of the active pharmaceutical ingredient (API) through to the final dosage form. Both small molecule drugs and biotechnological pharmaceuticals will be included. Issues of API formulation, choice of excipients, control of release, target specificity, mode of delivery, drug-drug interactions, and product stabilization will be addressed with special reference to the regulatory issues involved at that stage of drug development. This course builds upon a foundation in organic, analytical, and biochemistry.

CHM 475 Advanced Topics in Chemistry 1 Credit
Audiovisual courses in topics such as acid-base theory, NMR, chromatography, electroanalytical chemistry and mass-spectroscopy interpretation; course material obtained from the American Chemical Society.
Repeat Status: Course may be repeated.

CHM 477 (BIOS 477) Topics In Biochemistry 1-3 Credits
Selected areas of biochemistry, such as mechanisms of enzyme action, new developments in the chemistry of lipids, nucleic acids, carbohydrates and proteins. Must have completed one semester of biochemistry.
Repeat Status: Course may be repeated.

CHM 479 (BIOS 479) Biochemical Techniques 3 Credits
Laboratory studies of the techniques and principles involved in the isolation, identification, and biochemical transformation of carbohydrates, lipids, nucleic acids and proteins.

CHM 480 (BIOS 480) Advanced Biochemical Preparations 1-3 Credits
An advanced laboratory course in the preparation, isolation, purification, and identification of biochemically produced materials. Emphasis is placed on materials and procedures of current interest in biochemistry. Must have completed two semesters of biochemistry.

CHM 481 Chemistry Seminar 1-6 Credits
Student presentations on current research topics in the student's discipline but not on subjects close to the thesis. A one-hour presentation and attendance at other presentations are required for credit.
Repeat Status: Course may be repeated.

CHM 482 (CHE 482, MAT 482) Mechanical Behaviors of Polymers 3 Credits
Mechanical behavior of polymers. Characterization of experimentally observed viscoelastic response of polymeric solids with the aid of mechanical model analogs. Topics include time-temperature superposition, experimental characterization of large deformation and fracture processes, polymer adhesion, and the effect of fillers, plasticizer, moisture, and aging on mechnica/behavior.
CHM 483 (CHE 483, MAT 483) Emulsion Polymers 3 Credits
Fundamental concepts important in manufacture, characterization, and application of polymer latexes. Topics include colloidal stability, polymerization mechanisms and kinetics, reactor design, characterization of particle surfaces, latex rheology, morphology considerations, polymerization with functional groups, film formation and various application problems.

CHM 485 (CHE 485, MAT 485) Polymer Blends and Composites 3 Credits
Synthesis, morphology, and mechanical behavior of polymer blends and composites. Mechanical blends block and graft copolymers, interpenetrating polymer networks, polymer impregnated solids and fiber and particulate-reinforce polymers are emphasized.

CHM 487 Topics in Colloid and Surface Chemistry 3 Credits
Applications of colloid chemistry; special topics in surface chemistry. Lectures and seminar.
Repeat Status: Course may be repeated.

CHM 488 Advanced Topics in Physical Chemistry 1-3 Credits
Advanced topics in physical chemistry, such as photochemistry and molecular beam dynamics, Fourier transform spectroscopy, kinetics of rapid reactions, theory of magnetic resonance, liquids and solutions.
Repeat Status: Course may be repeated.

CHM 489 Organic Polymer Science II 3 Credits
Continuation of CHM 394. Theory and mechanism of ionic vinyladdition chaingrowth polymerization. Chain copolymerization by radical and ionic mechanism. Mechanism of ring-opening polymerization, stereochemistry of polymerization including ionic, coordination, and Ziegler-Natta mechanisms. Reactions of polymers, including crosslinking, reaction of functional groups, graft and block copolymers, and polymer carriers and supports.

CHM 490 Thesis 1-6 Credits
Repeat Status: Course may be repeated.

CHM 492 (CHE 492, MAT 492) Topics in Polymer Science 3 Credits
Intensive study of topics selected from areas of current research interest such as morphology and mechanical behavior, thermodynamics and kinetics of crystallization, new analytical techniques, molecular weight distribution, non-Newtowinian flow behavior, second-order transition phenomena, novel polymer structures. Credit above three hours is granted only when different material is covered.

CHM 494 Quantum Chemistry 3 Credits
Principles and applications of quantum mechanics to chemical problems. Applications to chemical bonding, molecular structure, reactivity and spectroscopy.

CHM 499 Dissertation 1-15 Credits
Repeat Status: Course may be repeated.