Astronomy (ASTR)

Courses

ASTR 007 Introduction to Astronomy 3 Credits
Introduction to planetary, stellar, galactic, and extragalactic astronomy. An examination of the surface characteristics, atmospheres, and motions of planets and other bodies in our solar system. Properties of the sun, stars, and galaxies, including the birth and death of stars, stellar explosions, and the formation of stellar remnants such as white dwarfs, neutron stars, pulsars, and black holes. Quasars, cosmology, and the evolution of the universe. May not be taken by students who have previously completed ASTR 105, PHY 105, ASTR 301, PHY 301, ASTR 302 OR PHY 302.

Attribute/Distribution: NS

ASTR 008 Introduction to Astronomy Laboratory 1 Credit
Laboratory to accompany ASTR 007. Must be enrolled concurrently in ASTR 007.

Corequisites: ASTR 007

Repeat Status: Course may be repeated.

ASTR 105 Introduction to Planetary Astronomy 3 Credits
This course is an introduction to the solar system. Topics include observations of the sky, transition from the geocentric to the heliocentric paradigm, gravitational interactions, formation and evolution of the solar system, the structure of and energy production in the Sun, survey of the planets in the solar system, including their dynamics, interiors, atmospheres, composition, and moons, the nature of asteroids, comets, and the Kuiper belt, and the study of exoplanets. Instructor permission required in lieu of Phy 5/10/11.

Prerequisites: PHY 005 or PHY 010 or PHY 011

Attribute/Distribution: NS

ASTR 110 Methods of Observational Astronomy 1 Credit
Techniques of astronomical observation, data reduction, and analysis. Photometry, spectroscopy, CCD imaging, and interferometry. Computational analysis. Examination of ground-based and spacecraft instrumentation, and data transmission, reduction, and analysis.

Attribute/Distribution: NS

ASTR 272 Special Topics in Astronomy 1-4 Credits
Selected topics not sufficiently covered in other courses.

Repeat Status: Course may be repeated.

Attribute/Distribution: NS

ASTR 273 Research 2-3 Credits
Participation in current research projects being carried out within the department.

Repeat Status: Course may be repeated.

Attribute/Distribution: NS

ASTR 300 Apprentice Teaching 3 Credits

ASTR 301 Modern Astrophysics I 3 Credits

Prerequisites: (PHY 010 or PHY 011) and (PHY 013 or PHY 021 or PHY 023) and PHY 031 and (MATH 022 or MATH 032 or MATH 052)

Attribute/Distribution: NS

ASTR 302 Modern Astrophysics II 3 Credits

Prerequisites: (PHY 010 or PHY 011) and (PHY 013 or PHY 021 or PHY 023) and (MATH 022 or MATH 032 or MATH 052)

Attribute/Distribution: NS

ASTR 303 (PHY 332) High-Energy Astrophysics 3 Credits
Observation and theory of X-ray and gamma-ray sources, quasars, pulsars, radio galaxies, neutron stars, black holes. Results from ultraviolet, X-ray and gamma-ray satellites. Generally offered in the spring of odd-numbered years.

Prerequisites: (PHY 021 or PHY 023) and (MATH 023 or MATH 033)

Can be taken Concurrently: MATH 023, MATH 033

Attribute/Distribution: NS

ASTR 304 (PHY 342) Relativity and Cosmology 3 Credits
Special and general relativity. Schwarzschild and Kerr black holes. Super massive stars. Relativistic theories of the origin and evolution of the universe. Generally offered in the spring of even-numbered years.

Prerequisites: (PHY 021 or PHY 023) and (MATH 023 or MATH 033)

Can be taken Concurrently: MATH 023, MATH 033

Attribute/Distribution: NS

ASTR 310 Stellar Atmospheres and Spectroscopy 3 Credits
The course will explore models of the thermodynamic structure of a star's outermost atmosphere to predict its emitted energy spectrum and spectral line production. Applications of spectroscopy to binary stars, exoplanet host stars, and other astrophysical systems will be presented.

ASTR 341 Stellar Structure and Evolution 3 Credits
The course discusses how to model the physical and thermodynamic structure of a star, from its core to the surface. Computational techniques of stellar modeling, including polytropes, are presented. Applications of stellar modeling to asteroseismology, magnetic fields, and rapidly rotating stars are presented.

ASTR 362 Special Topics in Astronomy 1-4 Credits
Selected topics not sufficiently covered in other courses.

Repeat Status: Course may be repeated.

Attribute/Distribution: NS

ASTR 390 Honors Project 1-6 Credits
Course may be repeated.

ASTR 391 Honors Project 1-6 Credits
Course may be repeated.

ASTR 410 Stellar Atmospheres and Spectroscopy 3 Credits
The course will explore models of the thermodynamic structure of a star's outermost atmosphere to predict its emitted energy spectrum and spectral line production. Applications of spectroscopy to binary stars, exoplanet host stars, and other astrophysical systems will be presented.

ASTR 411 Stellar Structure and Evolution 3 Credits
The course discusses how to model the physical and thermodynamic structure of a star, from its core to the surface. Computational techniques of stellar modeling, including polytropes, are presented. Applications of stellar modeling to asteroseismology, magnetic fields, and rapidly rotating stars are presented.

ASTR 472 Special Topics in Astronomy 1-4 Credits
Selected topics not sufficiently covered in other courses.

Repeat Status: Course may be repeated.